Chapter 6 • Allen & Kennedy, *Optimizing Compilers for Modern Architectures*

Creating Coarse-Grained Parallelism
Chapter 6: Focus on parallelism for SMPs
- Contrast with Chapter 5 (vector and superscalar processors)
- Focus on parallelizing outer loops
 - Often contain large blocks of work in each iteration
- Thread creation, barrier synchronization expensive
 - Tradeoff: synchronization overhead vs. parallelism/load balance

Transformations that uncover coarse-grained parallelism
1. Define or review each transformation
2. Contrast with use in Chapter 5 (if applicable)
3. Describe effect on dependences
4. Discuss when it can/should be applied
Overview

Transformations on Single Loops
- Privatization, Alignment, Code Replication, Loop Distribution & Fusion

Transformations on Perfect Loop Nests
- Loop Interchange, Loop Skewing

Transformations on Imperfectly Nested Loops
- Multilevel Loop Fusion
I. Single-Loop Methods

- Privatization
- Loop Distribution
- Alignment
- Code Replication
- Loop Fusion

Focus on:

1. Parallelizing sequential loops
2. Increasing granularity of parallel loops
I. Single Loop Methods

Scalar Privatization (1/4)

◆ **The Transformation**
 - Make a variable used only within an iteration private

```plaintext
DO I = 1, N
  T = A(I)
  A(I) = B(I)
  B(I) = T
ENDDO

PARALLEL DO I = 1, N
  PRIVATE t
  t = A(I)
  A(I) = B(I)
  B(I) = t
END PARALLEL DO
```
I. Single Loop Methods

Scalar Privatization (2/4)

- Comparison with Chapter 5
 - Similar to scalar expansion
 - Also useful in parallelization (p. 243)
 - But privatization better for SMPs
 - Like scalar expansion, not cost-free

```
DO I = 1, N
  T = A(I)
  A(I) = B(I)
  B(I) = T
ENDDO
```

```
PARALLEL DO I = 1, N
  PRIVATE t
  t = A(I)
  A(I) = B(I)
  B(I) = t
END PARALLEL DO
```
I. Single Loop Methods

Scalar Privatization (3/4)

Effect on Dependences
- Eliminates loop-carried and loop-independent dep’s associated with a scalar
 - Like scalar expansion
 - Makes loop parallelizable

```plaintext
DO I = 1, N
    T = A(I)
    A(I) = B(I)
    B(I) = T
ENDDO
```

```plaintext
PARALLEL DO I = 1, N
    PRIVATE t
    t = A(I)
    A(I) = B(I)
    B(I) = t
END PARALLEL DO
```
Scalar Privatization (4/4)

When to Privatize a Scalar in a Loop Body

- When all dep’s carried by a loop involve a privatizable variable
 - *Privatizable*: Every use follows a definition (in the loop body)
 - Equivalently, no upwards-exposed uses in the loop body
 - Determine privatizability through data flow analysis (or SSA form – p.242)
 - If cannot privatize, try scalar expansion (p. 243)

```plaintext
DO I = 1, N
   T = A(I)
   A(I) = B(I)
   B(I) = T
ENDDO
```
Array Privatization

Make an array used only within an iteration private

I. Single Loop Methods

Overview of finding privatizable arrays: p. 244

PARALLEL DO I = 1, 100
 PRIVATE t(N)
 t(1) = X
 DO J = 2, N
 t(J) = t(J-1) + B(I,J)
 A(I,J) = t(J)
 ENDDO
 IF (I==100) T(1:N) = t(1:N)
ENDDO

PARALLEL DO I = 1, 100
 T(1) = X
 DO J = 2, N
 T(J) = T(J-1) + B(I,J)
 A(I,J) = T(J)
 ENDDO
ENDDO
I. Single Loop Methods

Loop Alignment (1/4)

Effect on Dependences

- **Problem:** Source computed on iteration prior to sink

```plaintext
DO I = 2, N
    A(I) = B(I) + C(I)
    D(I) = A(I-1) * 2.0
ENDDO
```

- **Solution:** Compute sources and sinks on same iteration

```
I = 1  2  3  4  5  6
```

```
A(1) = A(1)
A(2) = A(2)
A(3) = A(3)
A(4) = A(4)
A(5) = A(5)
A(6) = A(6)
```
I. Single Loop Methods

Loop Alignment (2/4)

The Transformation

- Naive implementation

```plaintext
DO I = 2, N
   A(I) = B(I) + C(I)
   D(I) = A(I-1) * 2.0
ENDDO
```

- Overhead due to extra iteration and conditional tests can be reduced...

```plaintext
DO i = 1, N
   IF (i>1)   A(i) = B(i) + C(i)
   IF (i<N)   D(i+1) = A(i) * 2.0
ENDDO
```

<table>
<thead>
<tr>
<th>I</th>
<th>A(1)</th>
<th>A(2)</th>
<th>A(3)</th>
<th>A(4)</th>
<th>A(5)</th>
<th>A(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>=A(1)</td>
<td>=A(2)</td>
<td>=A(3)</td>
<td>=A(3)</td>
<td>=A(5)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
1. Single Loop Methods

**Loop Alignment (3/4)**

**The Transformation**
- Improved implementation (Eliminates extra iteration & conditionals)

```
DO I = 2, N
 A(I) = B(I) + C(I)
 D(I) = A(I-1) * 2.0
ENDDO
```

```
D(2) = A(1) * 2.0
DO i = 2, N-1
 A(i) = B(i) + C(i)
 D(i+1) = A(i) * 2.0
ENDDO
A(N) = B(N) + C(N)
```

<table>
<thead>
<tr>
<th>I</th>
<th>A(1)</th>
<th>A(2)</th>
<th>A(3)</th>
<th>A(4)</th>
<th>A(5)</th>
<th>A(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>=A(1)</td>
<td>=A(2)</td>
<td>=A(3)</td>
<td></td>
<td>=A(4)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>=A(2)</td>
<td>=A(3)</td>
<td>=A(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>=A(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>=A(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I. Single Loop Methods

**Loop Alignment (4/4)**

◊ **When NOT to Apply**
- Alignment cannot eliminate a carried dependence in a recurrence (p. 248)
- Also alignment conflicts: two dependences can’t be simultaneously aligned
  
  Example:

  ![Alignment Diagram](alignment-diagram.png)

◊ **When TO Apply**
- Applied along with *Code Replication*, so let’s discuss that first...
I. Single Loop Methods

**Code Replication (1/2)**

- **Effect on Dependences**
  - Want to eliminate alignment conflicts by eliminating loop-carried deps

- **The Transformation**
  - Replace the code at the sink of a loop-carried dependence with the expression computed at the source

```
I = 2 3 4

A(2) = \text{expr2} \quad A(3) = \text{expr3} \quad A(4) = \text{expr4}

\begin{align*}
A(2) &= A(1) + A(2) \\
A(3) &= A(2) + A(3) \\
A(4) &= A(3) + A(4)
\end{align*}
```

```
I = 2 3 4

A(2) = \text{expr2} \quad A(3) = \text{expr3} \quad A(4) = \text{expr4}

\begin{align*}
A(2) &= \text{expr2} + A(2) \\
A(3) &= \text{expr2} + A(3) \\
A(4) &= \text{expr2} + A(4)
\end{align*}
```
I. Single Loop Methods

Code Replication (2/2)

DO I = 1, N
A(I+1) = B(I)+C
X(I) = A(I+1)+A(I)
ENDDO

DO I = 1, N
A(I+1) = B(I)+C

IF (I==1) THEN
  t = A(I)
ELSE
  t = B(I-1) + C
END IF

X(I) = A(I+1)+t
ENDDO

The Transformation

\[
\begin{align*}
A(2) &= \text{expr2} \\
A(3) &= \text{expr3} \\
A(4) &= \text{expr4}
\end{align*}
\]

\[
\begin{align*}
= &A(1)+A(2) \\
= &\text{expr2}+A(3) \\
= &\text{expr3}+A(4)
\end{align*}
\]
I. Single Loop Methods

**Alignment & Replication**

- **Effect on Dependences**
  - Both eliminate loop-carried dependences

- **When to Align Loops and/or Replicate Code**
  - Obviously, replication has a higher cost; alignment is preferable
  - “Alignment, replication, and statement reordering are sufficient to eliminate all carried dependences in a single loop that contains no recurrence and in which the distance of each dependence is a constant independent of the loop index.” (Theorem 6.2)
    - Proved constructively
    - read §6.2.4 for full detail
I. Single Loop Methods

Loop Distribution ("Loop Fission")

Also eliminates carried dependences
- Smaller loop bodies ⇒ Decreased granularity
  - This was good in Chapter 5 (vectorization); bad for SMPs
- Converts to loop-independent deps between loops
- ⇒ Implicit barrier between loops ⇒ Sync overhead
- ∴ Try privatization, alignment, and replication first

Use to separate potentially-parallel code from necessarily-sequential code in a loop
- Can recover granularity:
  - Use maximal loop distribution, then
  - Recombine ("fuse") loops...
I. Single Loop Methods

**Loop Fusion (1/6)**

**The Transformation**
- Combine 2+ distinct loops into a single loop

---

**DO I = 1, N**
- **A(I) = B(I)+1**
- **C(I) = A(I)+C(I-1)**
- **D(I) = A(I)+X**
- ENDDO

---

**DO I = 1, N**
- **A(I) = B(I)+1**
- ENDDO
- **DO I = 1, N**
  - **C(I) = A(I)+C(I-1)**
  - **D(I) = A(I)+X**
  - ENDDO

---

**PARALLEL DO I = 1, N**
- **A(I) = B(I)+1**
- **D(I) = A(I)+X**
- ENDDO
- **DO I = 1, N**
  - **C(I) = A(I)+C(I-1)**
  - **D(I) = A(I)+X**
  - ENDDO
Loop Fusion (2/6)

When to Fuse Loops: Safety Constraints

1. No fusion-preventing dependences

- **Def. 6.3:** A loop-independent dependence between statements in two different loops is *fusion preventing* if fusing the two loops causes the dependence to be carried by the combined loop in the reverse direction.

- Note that distributed loops can always be fused back together.

```plaintext
DO I = 1, N
 A(I) = B(I) + C
ENDDO
DO I = 1, N
 D(I) = A(I+1) + E
ENDDO
```

```plaintext
DO I = 1, N
 A(I) = B(I) + C
 D(I) = A(I+1) + E
ENDDO
```
I. Single Loop Methods

Loop Fusion (3/6)

- When to Fuse Loops: Safety Constraints
  - 2. No invalid reordering
    - Two loops cannot be fused if there is a path of loop-independent dependences between them that contains a loop or statement that is not being fused with them

```plaintext
PARALLEL DO I = 1, N
 A(I) = B(I) + 1
ENDDO
DO I = 1, N
 C(I) = A(I) + C(I-1)
ENDDO
PARALLEL DO I = 1, N
 D(I) = A(I) + C(I)
ENDDO
```
1. Single Loop Methods

Loop Fusion (4/6)

When to Fuse Loops: Profitability Constraints

3. Separate sequential loops
   - Do not fuse sequential loops with parallel loops:
     The result would be a sequential loop
I. Single Loop Methods

Loop Fusion (5/6)

❖ When to Fuse Loops: Profitability Constraints

■ 4. No parallelism-inhibiting dependences

❖ Do not fuse two loops if a fusion would cause a dependence between the two original loops to be carried by the combined loop

\[
\begin{align*}
\text{DO } I & = 1, N \\
A(I+1) & = B(I) + C \\
\text{ENDDO} \\
\text{DO } I & = 1, N \\
D(I) & = A(I) + E \\
\text{ENDDO}
\end{align*}
\]

\[
\begin{align*}
\text{DO } I & = 1, N \\
A(I+1) & = B(I) + C \\
D(I) & = A(I) + E \\
\text{ENDDO}
\end{align*}
\]
I. Single Loop Methods

Loop Fusion (6/6)

🌟 When to Fuse Loops: Satisfying the Constraints

- The problem of minimizing the number of parallel loops using only correct and profitable loop fusion can be modeled as a typed fusion problem
  - Nearly useless description and "proof" on pp. 261–267
  - Cryptic pseudocode spanning pp. 262–263
    - Does not describe what's happening conceptually (!)
II. Perfect Loop Nests

Loop Interchange
(Loop Skewing)
II. Perfect Loop Nests

Loop Interchange, Part 1 (1/2)

- **Comparison with Chapter 5**
  - Vectorization: We moved loops to the *innermost* position

- **The Transformation**
  - Parallelization: Move dependence-free loops to the *outermost* position
    - As long as a dependence will not be introduced

```
DO I = 1, N
 DO J = 1, M
 A(I+1,J) = A(I,J) + B(I,J)
 ENDDO
ENDDO
```

```
PARALLEL DO J = 1, M
 DO I = 1, N
 A(I+1,J) = A(I,J) + B(I,J)
 ENDDO
ENDDO
```
II. Perfect Loop Nests

Loop Interchange, Part 1 (2/2)

**Effect on Dependences**
- Recall from Chapter 5:
  1. Interchange loops ⇒ Interchange columns in direction matrix
  2. Can interchange iff all rows still have < as first non-= entry

**When to Interchange, Part 1**
- In a perfect loop nest, a particular loop can be parallelized at the outermost level iff its column in the direction matrix for that nest contains only “=” (Thm. 6.3)
  - Clearly, all “=” won’t violate #2 above
  - But are these really the only loops? (“iff”?!)  
    - If column contains >, can’t move outermost by #2
    - If column contains <, can’t parallelize: carries a dependence
II. Perfect Loop Nests

Sequentiality Uncovers Parallelism

- If we commit to running a loop sequentially, we may be able to uncover more parallelism inside that loop
  - If we move a loop outward and sequentialize it,
    - Its column is now the first in the direction matrix
    - Remove all rows that now start with a < (deps carried by this loop)
      - Correspond to dependences that carried by the sequential loop
    - Remove its column from the direction matrix
    - Use the revised direction matrix to find parallelism inside this loop

\[
\begin{align*}
\text{DO } & I = 1, N \\
\text{DO } & J = 1, M \\
& \text{DO } K = 1, L \\
& \quad A(I+1, J, K) = A(I, J, K) + Q \\
& \quad B(I, J, K+1) = B(I, J, K) + R \\
& \quad C(I+1, J+1, K+1) = C(I, J, K) + S \\
\text{ENDDO} \\
\text{ENDDO} \\
\text{ENDDO}
\end{align*}
\]

\[
\begin{align*}
\text{DO } & I = 1, N \\
\text{PARALLEL } \text{DO } & J = 1, M \\
& \text{DO } K = 1, L \\
& \quad A(I+1, J, K) = A(I, J, K) + Q \\
& \quad B(I, J, K+1) = B(I, J, K) + R \\
& \quad C(I+1, J+1, K+1) = C(I, J, K) + S \\
\text{ENDDO} \\
\text{ENDDO}
\end{align*}
\]
II. Perfect Loop Nests

Sequentiality Uncovers Parallelism: **Skewing**

**Effect on Dependences (Recall from §5.9)**

- Changes some = entries to <

Skew innermost loop w.r.t. the two outer loops using the substitution

\[ k = K + I + J \]
II. Perfect Loop Nests

Sequencially Uncovers Parallelism: Skewing

Effect on Dependences (Recall from §5.9)
- Changes some = entries to <

```
DO k = 5, N+M+1
 DO I = MAX(2,k-M-L-1), MIN(N+1,k-L-2)
 DO J = MAX(2,k-I-L), MIN(M+1,k-I-1)
 A(I,J,k-I-J) = A(I,J-1,k-I-J) &
 + A(I-1,J,k-I-J)
 A(I,J,k-I-J+1) = B(I,J,k-I-J) &
 + A(I,J,k-I-J)
 ENDDO
ENDDO
ENDDO

DO I = 2, N+1
 DO J = 2, M+1
 DO k = 1+I+J, L+I+J
 A(I,J,k-I-J) = A(I,J-1,k-I-J) &
 + A(I-1,J,k-I-J)
 A(I,J,k-I-J+1) = B(I,J,k-I-J) &
 + A(I,J,k-I-J)
 ENDDO
 ENDDO
ENDDO
ENDDO
```

Both inner loops can be parallelized!

Now make the innermost loop the outermost (interchange) and sequentialize it.
Both of the inner loops can then be parallelized.
II. Perfect Loop Nests

Sequentiality Uncovers Parallelism: Skewing

Skewing is useful for parallelization because it can

- Make it possible to move a loop to the outermost position
- Make a loop carry all the dependences originally carried by the loop w.r.t. which it was skewed
  - Running the outer loop sequentially uncovers parallelism
III. Imperfectly Nested Loops

Multilevel Loop Fusion
### Multilevel Loop Fusion

#### The Transformation

- For imperfectly nested loops,
  - First, distribute loops maximally
  - Then try to fuse perfect nests
III. Imperfectly Nested Loops

Multilevel Loop Fusion

When to Fuse Loop Nests: Difficulties (Example 1)

- Fusion of loop nests is actually NP-complete
- Different loop nests require different permutations
- Permutations can interfere if reassembling distributed loops
- Also memory hierarchy considerations

```
DO I = 1, N
 DO J = 1, M
 A(I,J+1) = A(I,J)+C
 B(I+1,J) = B(I,J)+D
 ENDDO
ENDDO

PARALLEL DO I = 1, N
 DO J = 1, M
 A(I,J+1) = A(I,J)+C
 ENDDO
ENDDO

PARALLEL DO J = 1, M
 DO I = 1, N
 B(I+1,J) = B(I,J)+D
 ENDDO
ENDDO
```
III. Imperfectly Nested Loops

Multilevel Loop Fusion

When to Fuse Loop Nests: Difficulties (Example 2)

```
DO I = 1, N ! Can be parallel
 DO J = 1, M ! Can be parallel
 A(I,J) = A(I,J) + X
 ENDDO
ENDDO
DO I = 1, N ! Sequential
 DO J = 1, M ! Can be parallel
 B(I+1,J) = A(I,J) + B(I,J)
 ENDDO
ENDDO
DO I = 1, N ! Can be parallel
 DO J = 1, M ! Sequential
 C(I,J+1) = A(I,J) + C(I,J)
 ENDDO
ENDDO
DO I = 1, N ! Sequential
 DO J = 1, M ! Can be parallel
 D(I+1,J) = B(I+1,J) + C(I,J) + D(I,J)
 ENDDO
ENDDO
```
III. Imperfectly Nested Loops

Multilevel Loop Fusion

**When to Fuse Loop Nests: Algorithm (Heuristic)**

- Try to parallelize individual perfect loop nests (as described earlier)
- Then use Typed Fusion to figure out which outer loops to merge, and repeat the whole procedure for the nests inside the merged outer loops
  - The “type” of a nest has two components:
    1. The outermost loop in the resulting nest
    2. Whether this loop is sequential or parallel

```plaintext
PARALLEL DO I = 1, N
 DO J = 1, M
 A(I+1,J+1) = A(I+1,J) + C
 ENDDO
ENDDO
PARALLEL DO J = 1, M
 DO I = 1, N
 X(I,J) = A(I,J) + C
 ENDDO
ENDDO
```

Type is (I-loop, parallel)

Type is (J-loop, parallel)