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Abstract 
 

As the current rate of improvement in processor performance far exceeds the rate 

of memory performance, memory latency is the dominant overhead in many 

performance critical applications. In many cases, automatic compiler-based 

approaches to improving memory performance are limited and programmers 

frequently resort to manual optimisation techniques. However, this process is tedious 

and time-consuming. Furthermore, a diverse range of a rapidly evolving hardware 

makes the optimisation process even more complex. It is often hard to predict the 

potential benefits from different optimisations and there are no simple criteria to stop 

optimisations i.e. when optimal memory performance has been achieved or 

sufficiently approached.  

This thesis presents a platform independent optimisation approach for numerical 

applications based on iterative feedback-directed program restructuring using a new 

reasonably fast and accurate performance prediction technique for guiding 

optimisations. New strategies for searching the optimisation space, by means of 

profiling to find the best possible program variant, have been developed. These 

strategies have been evaluated using a range of kernels and programs on different 

platforms and operating systems. A significant performance improvement has been 

achieved using new approaches when compared to the state-of-the-art native static 

and platform-specific feedback directed compilers. 
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Chapter 1 
 

Introduction 
 

This chapter briefly describes the research area, the contributions and the 

structure of this thesis. 

1.1 The problem 

Considerable progress has been made in processor technology in the last 30 

years. Early processors were simple 4/8-bit in-order execution chips with working 

frequencies of several megahertz, supporting only direct-addressed memory of 

several hundred kilobytes. Currently, however, they are complex 32/64-bit devices 

working at gigahertz frequencies with the support of out-of-order parallel multiple 

instruction execution, value prediction, speculation and virtual memory support. The 

sole motivation behind these advances is to make the processor perform 

computations faster. Naturally, the amount of data to process has also grown. This 

data is kept in main memory and is accessed by the processor as and when needed.  

One of the major problems in current computing systems is that the memory 

cannot supply data to the processor immediately on request due to its physical size 

and the speed of signal propagation. This leads to a mismatch between processor and 

memory performance. It was observed that while microprocessor performance has 

improved by approximately 55% per year since 1987, memory performance has only 

improved by 7% per year [HP96]. This leads to the processor-memory bottleneck; no 

matter how fast the processor is, the overall performance of the computing system is 

limited by the speed of memory. 

The most common solution to this problem is based on the introduction of 

intermediate smaller, but faster layers of memory, known as cache memory, between 

the processor and main memory [Smi82]. Caches are designed to exploit program 

locality [MB76] and are based on the two following observations: a) a memory 

location recently referenced is likely to be referenced again soon and b) a memory 

location adjacent to a referenced location is likely to be referenced soon. In practice, 
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however, programs may not exhibit this property. In this case, the task of 

restructuring of the data layout in memory or transforming the program to exploit 

locality has to be performed either manually by the programmer or automatically by 

the compiler.  

Modifying the program manually is tedious, time consuming and requires a good 

knowledge of the underlying hardware. Furthermore, if the program needs to be 

ported to a new platform, it has to be optimised once again to reflect the new 

hardware parameters, which may require many man-hours and hence is economically 

expensive. Conversely, compilers attempt to solve this problem by utilising static 

models of different platforms and transforming the code to match the particular 

hardware platform. Nevertheless, due to the complexity of the memory and processor 

architecture and for reasons of tractable analysis, compilers have to assume a 

significantly simplified machine model. In addition to this, the lack of important run-

time information such as loop bounds and branches taken, means that compiler 

memory optimisations often fail to achieve performance improvements. 

One of the techniques introduced to reflect the importance of run-time 

information is profile-directed compilation [PH90]. It is a dynamic optimisation 

process, which is performed in two steps. In the first step, the optimised program is 

instrumented and executed to collect certain run-time parameters. In the second step, 

the program is optimised according to the information obtained. Yet, most current 

profile-directed optimisations attempt to improve instruction cache use or enable 

better branch prediction whilst ignoring data cache usage, which may not improve 

the overall program performance if a memory bottleneck is present. 

A further weakness of current techniques is the inability to determine the 

potential benefit from an optimisation. Performance prediction techniques are usually 

based on a simplified hardware model and are inaccurate, or based on simulators that 

are extremely slow, sometimes by several orders of magnitude in comparison with 

the original program execution time. Alternatively, hardware counters can be used, 

but they often mispredict performance on current superscalar out-of-order execution 

processors. For example, a program may generate many cache misses that will be 

detected by hardware counters. This will lead to an assumption that memory 

optimisations are beneficial for this program, but memory access delays may be 
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hidden by other calculations performed in parallel and in this case memory 

optimisations will fail in gaining performance. However, knowing the potential 

performance improvement before optimising the code is important for judging the 

amount of effort worth expending. 

1.2 Contributions 

Three major contributions to the above problems are presented in this thesis. An 

iterative feedback assisted optimisation approach is presented. It is based on 

searching for the best possible program transformations in a large optimisation space. 

Unlike other search optimisation techniques that use some heuristics to analyse and 

optimise small kernels, it can successfully optimise large applications by applying 

transformations in a smart phase order to cut down the search space. This approach, 

while being slow and requiring thousands of runs of the transformed program, 

achieves a considerable performance improvement over state-of-the-art compilers. 

Considering that the set of transformations used in this approach is specially chosen 

to be the same or smaller than in used compilers, it demonstrates that current 

optimisers fail to find the best possible transformations statically. 

A new performance prediction technique for estimating the lower bound on 

program execution time is then presented. This is a dynamic, reasonably fast and 

accurate approach, based on transforming all array references into scalar references 

to remove cache misses, and profiling the new code.  

Finally, an approach for reducing the iterative compilation time dramatically is 

presented. It uses the performance prediction technique to detect sections of the 

program that may potentially benefit from optimisations and applies a random 

iterative transformation search to those sections. This can reduce the number of 

iterations by two orders of magnitude in comparison with the basic iterative search, 

thus making iterative compilation a superior and realistic option over the current 

static or profile-directed optimisations.  

The developed techniques have been implemented inside a cross-platform 

toolset, evaluated on two distinct RISC and CISC platforms using a variety of 

kernels and benchmarks and compared with the current native state-of-the-art 

compilers. 
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1.3 Thesis structure 

This thesis has the following structure. Chapter 2 surveys various processor 

designs and advances in the semiconductor technology. It describes and analyses 

techniques for exploiting instruction level parallelism such as pipelining and multiple 

instruction issue with out-of-order execution. This chapter further presents the 

evolution of the memory hierarchy and describes various cache designs that exploit 

locality to reduce memory access time. It also contains an introduction to basic 

compilation and optimisation techniques. 

Chapter 3 presents related work on memory optimisations. It starts with 

introducing formal notations for describing loops and data accesses, and then 

presents models to unify and ease program transformations and data locality analysis. 

This is followed by a description of various static methods for analysing and 

improving cache utilisation for a broad range of programs. This chapter concludes by 

presenting multiple dynamic techniques for profiling and optimising program 

performance. 

Chapter 4 describes a new platform-independent iterative optimisation approach 

that is able to outperform current state-of-the-art commercial compilers with both 

static and feedback-directed optimisations enabled. This chapter analyses the 

influence of array padding, loop tiling and loop unrolling transformations on the 

program performance in detail, and examines the reasons why static optimisation 

approaches often fail in improving performance or can even degrade it. Experimental 

results show considerable performance improvements after using this iterative 

approach for two kernels and eight SPEC benchmarks on two platforms. However, 

the major drawback of iterative compilation is its excessive optimisation time. 

Thousands of executions of program variants are often needed, which may not be 

tolerable for general-purpose computing. Therefore, the two following chapters 

present techniques to reduce iterative compilation time. 

Chapter 5 presents a new performance prediction technique that can provide 

information about whether program segments have the potential for performance 

improvement or not. This platform-independent technique transforms the original 

program at the assembler level in such a way that the new program behaves as if 
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there were no cache misses occurring. Profiling the original and transformed 

programs and comparing the difference in the execution time shows the potential for 

performance improvement. This technique is reasonably fast and accurate as no 

simulations are involved and no approximations are used. It is compared to other 

existing methods and it is shown that many of these methods, which are based on 

counting the number of cache misses, give inaccurate predictions on modern 

superscalar processors with out-of-order execution. Performance prediction can 

reduce the iterative compilation search space by removing loop nests that do not have 

any potential for performance improvement from the search.  

Chapter 6 presents a new iterative compilation approach that combines 

performance prediction and random search, thus considerably reducing the search 

space. Using this optimisation technique reduces the number of program executions 

to less than a hundred while still obtaining considerable performance improvement. 

This makes iterative compilation a realistic approach for general-purpose 

optimisation. A comparison with other techniques is presented at the end of this 

chapter. Finally, chapter 7 summarises the results achieved and outlines future work. 
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Chapter 2 
 

Background 
 

This chapter briefly surveys trends in processor design; describes memory design 

evolution and summarises basic compiler technology. It starts with a short 

description of the first microprocessor architecture followed by a review of major 

hardware design changes to improve its performance. These changes are possibly 

due to the advances in semiconductor technology and the gradually increasing 

number of transistors on the chip. Pipelined superscalar processors with out-of-order 

execution to exploit instruction level parallelism are discussed. The evolution of 

memory design to improve the speed of data access is further presented and various 

cache designs to exploit program locality are described. Finally, basic program 

compilation and optimisation methods are discussed.  

2.1 Processor architecture 

It is important to know the architecture of the platform in order to effectively 

optimise programs so that all platform specific features are used in the best possible 

way. Therefore, this section describes the architecture of the modern processors used 

in this thesis and presents the major techniques used to improve their performance. It 

briefly surveys processor evolution and describes pipelining and parallel out-of-order 

execution of instructions. 

2.1.1 Processor design evolution 

The history of microprocessors dates back to 1971 when the world’s first 

microprocessor, the Intel 4004, was introduced [FHM+96]. The major difference 

between this processor and other computing devices was that all its components were 

assembled on a single semiconductor chip. The design of this processor is shown in 

figure 2.1. It is based on the von Neumann architecture [BGN63] that uses the same 

storage for both data and instructions, fetching and executing instructions one by 
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one. It consists of registers that contain temporal data and memory addresses, a 

functional unit or ALU (arithmetic and logic unit) that performs mathematical 

operations and a CU (control unit) that fetches an instruction, decodes it according to 

the instruction set and controls its execution. Typically, instruction execution in a 

von Neumann processor occurs in five stages: fetching the instruction, decoding the 

instruction, loading data from memory or register, performing an operation and 

storing the result in a register or memory. Thin arrows in figure 2.1 show the 

propagation of the synchronisation clock signal. Thick arrows in this figure represent 

wide bus connections consisting of more then one signal that interconnect all 

processor components. The processor also communicates with external devices such 

as memory using external data/code, control and address buses.  

The Intel 4004 has a simple design by today’s measures. It processes data in 4 

bits, has sixteen 4-bit general-purpose registers, can address up to 4 KB of data 

memory and has a clock speed of 108 KHz. Nevertheless, most of its components 

can still be found in current mainstream SISD (single instruction single data) 

computing systems, according to Flynn’s computer architecture classification 

[Fly72]. Other types of computing systems such as SIMD (single instruction multiple 

data) and MIMD (multiple instruction multiple data) are used in parallel machines 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Data/code Control Address Clock 

Figure 2.1: Von Neumann processor architecture 
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CU 
 

Address 
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registers 
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and surveyed in [Dun90], however, they are beyond the scope of this thesis. SISD 

computers are further classified by their instruction set. If they support a large 

number of complex instructions covering as many operations as possible, they are 

called CISC (complex instruction set computer) computers. If they support a minimal 

instruction set covering only the most commonly used instructions, they are called 

RISC (reduced instruction set computer) computers. Differences between these 

architectures are described further in section 2.1.2. 

Since the introduction of the first microprocessor, all further design changes have 

been to improve the processor performance due to the ever-increasing demand for 

faster data processing. A relatively straightforward way to speed up a processor is to 

make transistors, which are the basic blocks of the chip, smaller and faster, enabling 

more transistors to be placed on the single chip and increasing the processor clock 

speed. One of the Intel’s founders, Gordon Moore, made a prediction in 1965 that the 

number of transistors on the chip would double every 18 months [Moo65]. This 

prediction, referred to as Moore’s law, has been surprisingly accurate: while Intel’s 

4004 microprocessor had 2300 transistors and had a clock speed of 108 kHz, today’s 

processors may have hundreds of millions of transistors on a chip and can operate at 

gigahertz frequencies such as Intel’s Itanium 2, for example [MN03]. Furthermore, 

this allows the speeding up of the processor by increasing the processor data width 

and by enabling the addition of full integer and floating-point arithmetic. 

Research on increasing the chip density continues. However, it faces many 

obstacles.  One of the major problems is that current designs are approaching the 

physical limit of semiconductors where classical physics laws are no longer 

applicable and quantum effects are to be considered, as shown in [Llo00] and 

[Fra02]. Therefore, promising technologies such as nano and molecular ones are 

being developed [Lun02], [BDG02]. Another key problem of current semiconductor 

technology is the increase in the chip power dissipation that has grown from just a 

few watts in the first microprocessors to more than one hundred watts for some 

processors such as the Intel Itanium 2 [Int03a], for example. This power is dissipated 

as heat and requires special cooling systems. Otherwise, the processor may become 

inoperable or can even be physically destroyed. Thus, a new research direction in the 

area of low power electronics has appeared, aimed at designing power aware 
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computer architectures to reduce power consumption. Major methodologies of the 

low power design are introduced in the book [RP96].   

2.1.2 Pipelining 

The previous section described those advances in semiconductor technology that 

allow the placing of large amounts of transistors on a chip and make it possible to 

explore different designs to speed up microprocessors. Burger and Goodman present 

speculations in [BG97] about various potential processor designs when a one billion 

transistor chip is available. However, the scope of this thesis is mainstream SISD 

processors. Therefore, the following sections present design changes to extend and 

speed up von-Neumann architecture microprocessors. 

One of the most significant changes in processor design came from the 

understanding that the execution of instructions can be overlapped in time. This 

potential for overlapping instructions is called ILP (instruction-level parallelism). 

One of the first techniques to exploit ILP comes from the observation that instruction 

execution stages in von-Neumann architectures, described in the previous section, 

are potentially independent for different instructions. The technique for overlapping 

the execution of different stages of instructions is called pipelining [RL77]. This 

name appeared due to the analogy with pipelines when a continuous stream of 

instructions passes the processor and each part of the processor simultaneously 

executes different stages of different instruction in the stream. Figure 2.2 

demonstrates this technique and shows the execution of two instructions on non-

pipelined and pipelined processors with five abstract execution stages. 

This technique was first implemented in the IBM’s Stretch computer in 1959 as 

described in [Blo59]. However, implementing a pipeline in the first CISC 

microprocessors had been problematic due to the variable number of cycles for each 

instruction execution [HP96]. RISC architectures overcome this problem. These 

architectures and their advantages over CISC architectures are presented in [PD80]. 

Briefly, RISC architectures have a minimal instruction set consisting of the most 

commonly used instructions and simplified hardware that enables pipeline 

implementation, optimised for the fastest possible execution with a reduced number 

of cycles per instruction. The first implementations consisted of five main stages 
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[HP96]: fetching, decoding, instruction execution, accessing memory and writing 

data back to register, variations of which can still be found in most of the current 

processors. One of the costs for such architectures is a more complex programming 

target, unlike CISC processors where the complex instruction set is aimed at easing 

programming. This resulted in the development of special automatic compiler 

techniques described in section 2.3. 

One of the main problems that degrade the high potential performance of 

pipelined processors happens when the instruction is stalled in the pipeline and so are 

all the following instructions. This situation is called a hazard and may occur in three 

cases [HP96]. The first hazard type is called data hazard and arises when one of the 

instructions in the pipeline depends on the results of a previous instruction. In this 

case, the execution of this instruction has to be delayed until the dependence is 

resolved. Figure 2.3 shows an example of the behaviour of the pipeline when the 

abstract stage S3 of the second instruction depends on the results of the first 

instruction. Three possible types of data dependences exist in this hazard [RL77]. A 

RAW (read after write) dependence arises when an instruction attempts to read from 

a source before an earlier instruction writes into it so that it gets an old value. It is 

often referred to as a true dependence. A WAR (write after read) dependence arises 

when an instruction writes to a source before an earlier instruction reads it so that the 

earlier instruction gets a new value. A WAW (write after write) dependence arises 

when an instruction writes to a source before an earlier instruction writes into it so 
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that writes are performed out of order. WAR dependencies are often referred to as 

anti-dependencies and WAW ones as output dependencies. It is possible to minimise 

data hazard stalls or even eliminate some of them on a hardware level by a 

forwarding technique, when the result of the current instruction is forwarded 

immediately to all processor units that may potentially need it [HP96]. Another way 

to reduce data stalls is by better instruction scheduling to improve pipeline 

performance as shown in section 2.3. 

The second hazard type is called structural hazard and occurs when the same 

processor functional unit such as the ALU is used in more than one stage of the 

pipeline and several instructions need it at the same time. This may happen when for 

example the ALU is used for both data and address calculations. In this case, two 

subsequent instructions that have some data calculations and memory access may 

attempt to use the ALU at the same pipeline stages that will cause a stall. However, it 

can be solved by duplicating the functional units to allow all possible combinations 

of instructions in the pipeline without structural hazard stalls and is based on the 

trade-off between the cost and the speed of the processor.  

The last hazard type is called a control hazard and arises in branch instructions, 

when a decision has to be made as to whether or not to take the branch, but the 

information on which it is based is not yet available. One of the simplest solutions to 

cope with this problem is to continue fetching instructions after the branch and if the 

branch is taken, all the fetched instructions are cleared and the fetch is restarted from 
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the new address. However, if the branch is always taken, the pipeline will be always 

flushed after this instruction, thus, considerably degrading performance. To prevent 

such situations, a branch prediction table is used. It stores information about whether 

the particular branch was taken or not so that when this instruction is executed again, 

the processor will continue executing the instruction in the pipeline from the 

predicted address. Nevertheless, it can be potentially problematic to predict the 

outcome of the branch on the first occurrence or when the condition for the branch 

changes frequently. In this case, software methods for program analysis and branch 

prediction are used in cooperation with hardware methods. It is shown in section 2.3 

and chapter 3. 

One of the measures of how well the instructions are overlapped is CPI (clock 

cycles per instruction). It can be used to analyse the effectiveness of the pipeline for 

the particular program. Ideally, if all data and control stalls are eliminated it is 

possible to achieve the maximum performance of one cycle per instruction. 

However, further potential improvement in performance is possible by fetching more 

than one instruction in parallel and is discussed in the following section.  

2.1.3 Superscalar processors 

The CPI of the pipelined microprocessor is always limited by 1. However, it is 

possible to further improve performance if the microprocessor has the capability of 

issuing more than one instruction simultaneously and execute them in parallel. In this 

case, the CPI is not limited and can be far less then 1. Processors that have a 

pipelined architecture but are enhanced with a multiple-issue capability, are called 

superscalar microprocessors and described in detail in books [Joh91] and [HP96]. 

The straightforward design change to enable pipelined processors executing 

instructions in parallel would be to duplicate functional units and to add issue logic 

to fetch two or more instructions simultaneously. However, the main challenge in the 

design of the superscalar processor is to cope with those instructions that have 

dependencies without stalling the processor. 

Instruction dependencies are classified into three types. The first type called 

“data dependencies” occurs when simultaneously issued instructions are data 

dependent and therefore cannot be executed in parallel. It corresponds to the RAW 
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data dependence in the processor pipeline. The second type called “name 

dependencies” or “storage conflicts” arises when the same registers or memory 

locations are used by simultaneously issued instructions. It corresponds to WAR and 

WAW data dependencies in the pipeline. The last type called “control dependencies” 

occurs when there is a branch instruction among simultaneously issued instructions.  

The simplest way to cope with these hazards would be to stall the processor until 

all of them are resolved, however, it can considerably degrade performance. 

Nevertheless, it is possible to overcome data hazards by better static compiler 

scheduling, as shown in section 2.3 and chapter 3, or by dynamic scheduling where 

the processor rearranges the order in which instructions are executed. It enables the 

processor to look ahead of the instructions with dependence or resource conflicts and 

execute further independent instructions instead of stalling. This approach is 

implemented by inserting a buffer called an “instruction window” between the 

decode and execute stages. In this case, the processor places instructions into this 

window and then issues those instructions that do not have any dependencies and 

thus can be executed. This can result in the out of order issue of instructions from the 

buffer and therefore processors that use this approach are referred to as processors 

with out-of-order execution. 

 Overcoming WAR and WAW hazards is possible by providing additional 

buffers, called reservation stations, that fetch operands of the decoded instructions as 

soon as they are available, and by renaming the same destination registers with the 

names of different reservation stations. This technique, called register renaming, can 

therefore eliminate name dependencies between instructions.  

Preventing the processor from stalling on branch instructions can be achieved by 

using speculation techniques, where the execution of the instructions following the 

branch continues even if it has not been decided whether this branch is taken. A 

branch-prediction buffer can assist the speculation by keeping information about 

whether this branch was taken or not last time. However, if the branch is wrongly 

predicted during out-of-order instruction execution and the program continues 

executing, it can generate incorrect results. Therefore, special speculation status bits 

are attached to instructions and registers. The use of these bits allows the processor to 
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mark all instructions that are executed after the branch, so that if the branch 

prediction failed, the results of the wrongly executed instructions can be discarded. 

Finally, it should be noted, that there are ways, other than superscalar techniques, 

that can execute instruction in parallel, thus, utilising ILP and improving 

performance. There are systems consisting of multiple processors, processing vector 

data, using multi-threading. However, this thesis considers only the mainstream 

scalar processors where there are two major alternative designs to superscalar 

microprocessors. These are the VLIW (very long instruction word) approach [Fis83] 

and the EPIC (explicitly parallel instruction computing) [SR00].  

Unlike superscalar processors, where the performance is improved by dynamic 

rescheduling of instructions, VLIW processors use a single instruction that explicitly 

specifies several concurrent operations independent from each other. They have a 

simplified hardware without dynamic scheduling or dependencies resolutions thus 

relying on compilers and other software methods to pack and schedule instructions. 

Furthermore, the code produced is generally not portable across different 

architectures and thus, is not used for general-purpose computing. However, it is 

popular in DSP (digital signal processing) applications where most of the execution 

time is spent in small kernels that are relatively easy to analyse for dependencies and 

to optimise on the assembler level for the specific DSP processor. 

The EPIC approach combines some features of VLIW and superscalar 

processors. It relies on the compiler to extract instruction level parallelism and to 

schedule independent instructions statically as in the case of VLIW. However, it is 

also similar to a scalar processor with a sequential instruction set that allows 

programs to be portable among various processor implementations. This approach is 

used in Intel’s IA-64 processors, as described in [HMR+00], [MN03] and [Int03a]. 

2.2 Memory hierarchy 

The previous section concentrated on how to improve the processor performance. 

However, the overall computer performance depends not only on the processor speed 

but also on the speed of all components. One such component is the memory system. 

This section describes memory design evolution, locality and cache classifications. 
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2.2.1 Memory design evolution 

Computer memory is used as storage for program code and data. It is one of the 

key computer components and influences the overall computer performance by 

taking the burden of supplying data steadily to the microprocessor. The simplest 

design of the computer system would be if all data is kept and processed in the same 

non-volatile memory. In practice, however, it is not feasible because permanent 

memory devices such as tapes or magnetic and optical disks are generally slow. The 

economical and electronic trade-off in this technology is that it is possible to build 

fast but small or large but slow memory systems. Therefore, a memory hierarchy, 

based on speed, size and cost is used. It was first introduced in the Atlas computer 

that was developed at the University of Manchester [KE62]. 

A typical memory hierarchy contains registers inside the processor, which are 

small in number but provide immediate access; reasonably fast and large main 

memory for storing both program code and data; and finally some slow permanent 

storage. Scheible surveys various hardware memory designs in [Sch02]. Main 

memory is often referred to as RAM (random access memory) because any word in 

such memory can be accessed in random order. There are two basic types of RAM: 

SRAM (static random access memory) and DRAM (dynamic random access 

memory). The difference between these two types is in the hardware implementation. 

Dynamic memory has a simple design and needs to be refreshed periodically so as 

not to loose data, thus, making this memory cheap but relatively slow. Static memory 

has a more complex design without the need to be refreshed, thus working faster than 

DRAM. However, it is physically larger and more expensive. Therefore, DRAM is a 

common choice for main memory. 

Advances in semiconductor technology improve the main memory size and 

transfer speed by placing more transistors with higher density on the chip. 

Furthermore, it is also possible to improve DRAM performance by changing 

memory and interface design. Some of those designs are surveyed in [Sch02]. 

Briefly, one of the techniques is to make the bus that connects the processor and 

memory wider so that more data can be sent to the processor within each cycle. 

Another technique, called interleaving, is based on separating memory into several 

independent banks and allowing access to multiple data at the same time without 
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conflicts. Synchronous DRAM (SDRAM) can speed up sequential memory access by 

matrix interconnection topology. Finally, two recent competing technologies are 

Rambus DRAM (RDRAM) and Double Data Rate DRAM (DDR DRAM). RDRAM 

provides a new interface with a packet-based protocol that allows overlapped 

memory transactions. DDR DRAM uses a technique where data is transferred 

between processor and memory on both the rising and the falling edges, thus, 

doubling memory speed without any increase in clock frequency [CJD+01]. 

2.2.2 Locality and cache design 

The previous section described advances in the hardware design of main memory 

to improve its speed. Nevertheless, the gap between processor and memory 

performance is widening exponentially [HP96]. One of the most commonly used 

techniques to solve this problem is based on placing small and fast intermediate 

storage between the main memory and the registers within the processor [Smi82]. 

This small storage is called cache memory and is used to keep frequently used data 

and code closer to the processor so that it can access them faster.  

Cache memory exploits locality. There are two types of locality – spatial and 

temporal. Spatial locality means that a memory location adjacent to a referenced 

location is likely to be referenced soon. Temporal locality means that a memory 

location recently referenced is likely to be referenced in the nearest future. Whenever 

the processor requests an item of data from memory, it first checks whether this data 

can be found in cache.  If data is not in cache, a cache miss occurs. In this case, data 

is fetched from slow main memory to the processor and is simultaneously placed into 

cache. If the program exhibits temporal locality so that the processor requests the 

same data later, a cache hit occurs and this data is only fetched from the fast cache, 

thus, considerably reducing the overall memory access time. To exploit spatial 

locality, a fixed-size block of adjacent data to the requested data is also fetched from 

main memory to cache on a cache miss. Therefore, if the processor requests this 

adjacent data later, it is fetched directly from the cache, speeding up execution of the 

program.  

When data is moved to the cache, the location within the cache is determined by 

its original address and the cache organisation. The cheapest and simplest 
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organisation is used in direct-mapped caches, where each memory location can be 

mapped to one unique location in cache using the modulo function: 

Address cache   =   Address main memory    MOD   Size cache 

However, the major drawback of this cache type is the reduced capability for 

exploiting locality. This happens when new data is fetched to an already allocated 

place in cache, so that old data has to be replaced even if it can be potentially used in 

the near future. In contrast, fully associative caches allow data to be placed anywhere 

in cache. However, this cache organisation is more complex and expensive as the 

cache now keeps not only the data but also its corresponding address. It needs to 

have fast logic for finding this data by comparing the requested address with all the 

stored addresses in the cache simultaneously (associatively). Therefore, due to 

economical reasons set-associative caches are used. They consist of a number of sets 

so that the memory location is first mapped to the set using a module function in the 

same way as direct-mapped caches. Data can then be placed anywhere within the set. 

If there are n possible locations in the set where data can be placed, the cache is 

called n-way set associative. When the set is full, some data should be replaced. Two 

most commonly used replacement strategies are random, where data is replaced 

randomly within the set and LRU (least-recently used) strategy, where data accesses 

are recorded and the least used data is replaced, thus, attempting to exploit temporal 

locality.  

The above methods are used to speed up data reads from memory because in 

practice they dominate memory access. However, memory writes can also 

considerably degrade the overall performance. There are two main cache policies for 

cache behaviour when a data write occurs. The simplest policy is “write through” 

where data is written to both cache and main memory, however, it usually stalls the 

processor until the operation is finished. One solution is not to stall the processor by 

introducing a write buffer that allows overlapping processor execution with writing 

to memory. Another policy is called “write back”. This policy allows data to be 

written back to the cache without writing it to memory first. Only when this data is to 

be replaced in cache due to other memory requests, is it written to main memory. 

This policy better exploits temporal locality, but the cache organisation is more 

complex and needs to control data synchronisation between cache and main memory. 
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Since the gap between processor and memory speed continues to grow and the 

amount of data to process grows as well, the memory hierarchy continues to alter as 

shown in figure 2.4. Multilevel caches are introduced to accommodate the increasing 

gap between the speed of the main memory and the cache, so that the closer the 

cache is to the processor the smaller and faster it is.  

Virtual memory allows the processing of larger amounts of data than the main 

memory size. It uses main memory as a cache for larger storage such as the hard 

drive by dividing it into pages so that when the memory access occurs it is mapped to 

a specific page. If a page is not in memory, a page fault occurs and this page is 

loaded into the main memory from the hard drive or other storage. Since the cost of a 

page fault is high due to the access to the relatively slow devices, a fully associative 

policy is usually used so that pages can be placed anywhere in main memory. When 

main memory is full, the least recently used page is replaced. To speed up the 

mapping of physical addresses to virtual addresses, a page table or TLB (translation 

look-aside buffer) is used. It caches the physical addresses of recently used pages 

and, thus, provides a fast translation from virtual to physical addresses.  

An important characteristic that shows the cost of memory behaviour is the cache 

miss rate, which is the percentage of the memory accesses that result in cache misses. 

There are three sources of misses: compulsory, capacity and conflict. Compulsory 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.4: Memory hierarchy in current computing systems 
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misses occur when data is brought to the cache for the very first time. Capacity 

misses occur due to the limited cache size so that when it is full, some data that is 

still in use nevertheless has to be replaced. Conflict misses occur in direct-mapped or 

set-associative caches when too many main memory lines are mapped to the same 

cache set so that some data, later accessed, has to be discarded.  

Reducing cache misses means reducing the number of costly accesses to main 

memory and therefore potentially speeding up the program execution. Many different 

techniques have been proposed to reduce data traffic between main memory and the 

cache. Software methods to analyse program behaviour and reduce cache misses are 

surveyed in chapter 3. Hardware methods are out of the scope of this thesis and the 

most common of them are described in [HP96]. Briefly, they are based on making 

the block size larger to bring more data from main memory on the cache miss thus, 

reducing compulsory misses. Reducing conflict misses is possible by increasing the 

associativity of the cache or by using different designs such as column-associative 

caches [AP93], skewed-associative caches [BS95], victim caches or by using 

randomised cache placement [TG99].  However, it should be noted that while 

reducing cache miss rate improves the performance of the in-order processors, where 

each cache miss causes the stall, it does not necessarily improve the performance of 

current out-of-order execution processors due to the potential overlapping of memory 

access with executing other instructions instead of stalling. This is examined in detail 

in chapter 5.  

2.3 Compiler technology 

The compiler is an important software component of any computing system, 

responsible for translating user program into machine code. This section contains a 

brief survey of compiler technologies and describes major compiler optimisations to 

produce faster code for superscalar processors with out-of-order execution, excluding 

memory optimisations, which are described in chapter 3.  
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2.3.1 Introduction to compiling 

Early computers were programmed directly using binary machine code. 

However, this process is not only tedious and time consuming, but also requires a 

good knowledge of the underlying computer hardware. Moreover, binary code is 

difficult to analyse and modify if any further changes are necessary. Furthermore, 

such codes are generally not portable to new architectures. Therefore, an assembly 

language is used instead. It translates program source code containing computer 

instructions into machine code. The assembler usually has some basic support for 

data structures and subroutines making it easier to develop and modify programs. 

However, it still requires knowledge of the particular architecture instruction set and 

is not portable between different platforms.  

This problem has been solved by introducing high-level computer languages and 

their respective compilers. High-level languages are usually designed for some 

particular classes of problems and are platform independent allowing programmer to 

write compact portable programs. Compilers, however, are typically platform 

dependent and translate programs written on the high-level language into the 

assembly language or machine code of the targeted architecture. One of the earliest 

languages and compilers developed for scientific applications was Fortran. It is not 

only still in use today, but it also became a standard for numerical programs 

[PTV+92]. Fortran compilers use mature technology that has been developed over 

many years and is now capable of producing high quality fast code for a variety of 

platforms.  

Compilers transform source code into machine code through different stages. The 

common stages are lexical, syntax and semantic analysis that form the compiler 

front-end. Code optimisation and machine code generation constitute the compiler 

back-end. These stages are described in detail in [ASU86]. 

Briefly, the compiler front-end is responsible for checking that the program is 

correct lexically, syntactically and semantically. It constructs an abstract intermediate 

representation of the program. This intermediate representation removes 

redundancies in the application and contains only unique machine-independent 

information about the original program. This simplifies the retargeting of the 

compiler for different languages and platforms so that only the compiler front-end is 



 

21

  

changed for a new language and the compiler backend is changed for a new platform. 

The code optimisation stage remains intact. The code optimisation stage is 

responsible for improving the quality of the intermediate code so that faster and 

smaller machine code will be produced. This stage will be described in more detail in 

section 2.3.2 and in chapter 3. Finally, the compiler back-end is responsible for 

producing assembly or machine code from the program intermediate representation 

for the target platform. During this stage, registers are allocated and certain platform-

specific optimisations, such as instruction scheduling, are performed. It is described 

in the next section. 

2.3.2 Code optimisations 

Using high-level languages helps the programmer to abstract from the underlying 

machine architecture, to have an easier and simpler development process and to write 

compact portable programs. However, this means that the compiler has a major role 

in producing fast and efficient target machine code automatically. This is not a trivial 

task because potentially many variants of the machine code exist for the same 

program. Hence, the task of the compiler is to find and produce the best version of 

the machine code for any given program. This process is called program 

optimisation. 

Program optimisations are performed via program transformations that can 

improve speed and/or size of the final machine code without changing the behaviour 

and meaning of the program [ASU86]. These transformations are applied at different 

compiler stages and can either be platform independent, when properties of the 

targeted machine are not taken into consideration, or platform dependent when 

various platform parameters are taken into account.  

Before optimising any program, the compiler has to perform control flow 

analysis and data flow analysis. Control flow analysis is usually performed in the 

front-end of the compiler where the intermediate representation of the program is 

generated. It divides the whole program into basic blocks that have only one entrance 

and one exit, and produces a control flow graph that shows how the basic blocks are 

interconnected. This helps the compiler identify loop structures and other parts of the 

program that can be further legally transformed.  
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Data flow analysis is performed on the intermediate representation of the 

program. It examines the flow of data in the whole program, producing information 

about each variable, such as where this variable is first defined, how it is used in 

basic blocks and finally where it is redefined. This is a complex process that requires 

examining all control paths of the program but simplifies further data dependence 

analysis and program optimisation. 

Once the control and data flow graphs are available, the compiler starts 

optimising the program. First, machine independent optimisations are performed. 

These include transformations such as code motion, code inlining, common 

subexpression elimination and copy propagation transformations [ASU86]. Briefly, 

the code motion transformation moves invariant statements within a loop outside, 

thus, eliminating redundant computation and speeding up the overall execution of the 

program. Code inlining is used to remove the call statement overhead by merging 

small and frequently called subroutines with the caller. This transformation can 

speed up the program but it can also increase the size of the program if there is more 

than one place where the subroutine is called. Finally, both global common 

subexpression elimination and copy propagation are used to avoid repetitive 

computations, thus, improving code performance as well as code size. 

The final compiler stage is to allocate register and memory resources to the 

program and to generate and schedule machine instructions from the program 

intermediate representation. It is not a trivial task, as the compiler has to take into 

account various machine parameters in order to produce the fastest possible code for 

the particular architecture. This stage is beyond the scope of this thesis and is 

described in detail in [ASU86] and [GH88]. 

Briefly, during the register allocation phase, the compiler has to determine which 

values should be placed in registers based on the data flow and dependence analysis. 

The major difficulty of this task is that there is a limited number of hardware 

registers. The main objective is to reduce the number of memory accesses giving a 

potential performance improvement. Various methods for register allocation are 

presented in [ASU86] and [Tou02]. 

During the instruction scheduling phase, the compiler has to produce and 

optimise the instruction sequence in such a way that data and control dependencies 
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are not violated and that the program’s ILP is exploited without introducing 

processor stalls [SCD+97]. Though most modern processors have an automatic 

support for deriving program ILP at run time, it is limited because the processor can 

analyse ahead only those instructions that reside in the instruction window at a time. 

Compilers have the advantage of analysing the whole program and scheduling 

instructions for the pipeline globally and in some cases predicting branches using 

static information from the data flow and dependencies analysis. Furthermore, to 

exploit features of modern superscalar processors with out-of-order execution the 

compiler can perform various machine dependent optimisations.  

Loop unrolling and software pipelining are two major transformations that can 

improve scheduling of the program and better exploit ILP. Loop unrolling replicates 

the loop body multiple times, thus, reducing the number of loop branch checks. This 

is one of the transformations used in the research for this thesis and thus, is reviewed 

in more detail in chapter 3. Software pipelining transforms a loop in such a way that 

each instruction of the new loop is assembled from instructions belonging to 

different iterations of the original loop, thus, allowing the overlapping of multiple 

instructions without data dependencies. It is described in detail in [BGS94]. 

One of the difficulties compilers face in this phase is the lack of precise 

information about the hardware of the targeted machine. Hence, simplified machine 

models are used that reduce the potential for exploiting ILP. This is discussed in 

detail in chapter 3.  

2.4 Summary 

The evolution of the processor design is surveyed in this chapter starting from the 

description of the internal structure of the world’s first microprocessor, the Intel 

4004. Advances in the semiconductor technology allowing higher transistor density 

per chip are discussed and followed by the brief analysis of various design changes 

to improve the processor performance. CISC and RISC processor architectures are 

compared and pipelining technique implementation for both architectures are 

discussed. Multiple issue techniques and out-of-order instruction execution for 

exploiting instruction level parallelism are presented. This is followed by the 

discussion of various hazards on superscalar processors that can considerably 
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degrade the performance and the hardware solutions used to overcome them. The 

need for memory hierarchy to accommodate the widening gap between the speed of 

the processor and the memory is outlined. The main memory designs are briefly 

surveyed, which is then followed by the introduction of caches that exploit locality to 

further reduce memory access time. The most common cache organisations are 

analysed. Finally, this chapter finishes with the introduction to the compiling 

technology and with the description of basic optimisations excluding memory 

analysis and optimisations that are discussed in the next chapter.  
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Chapter 3 
 

Memory hierarchy optimisations 
 

This chapter surveys existing work related to the research of this thesis. It 

reviews various program transformations that can improve memory performance by 

reducing data traffic between the processor and the memory and primarily focuses on 

loop tiling, array padding and loop unrolling, though other transformations are also 

briefly reviewed.  It discusses certain program representations and issues concerning 

the legality of transformations. Various static techniques for analysing data reuse and 

locality and for obtaining the number of cache misses within a program are further 

presented. It is followed by a survey of static algorithms for transforming programs 

to improve data locality and reduce conflict and compulsory misses. A review of 

program dynamic analysis is then presented. It obtains various run-time parameters 

that are not available statically by means of profiling or simulations. This run-time 

information can be used during dynamic optimisations such as in feedback assisted, 

iterative or adaptive compilation, as described in the last section of this chapter.  

3.1 Program transformations 

This section describes various transformations and their effect on program 

performance. This includes major loop and data transformation used in the research 

of this thesis such as loop tiling, array padding and loop unrolling. Other 

transformations such as software pipelining and prefetching are also briefly 

described. Examples of mathematical notations for the representation of loops and 

arrays to ease dependence analysis and automatic application of those 

transformations are presented. 

3.1.1 Introduction 

The aim of new hardware designs of computing systems that target numerical 

codes is faster execution of a broad range of programs. Those programs are generally 
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developed for older platforms that do not reflect new design features, and are ported 

to a new hardware without major changes due to economical reasons. Therefore, 

there are two major ways to improve the performance of the unchanged program: by 

analysing and rescheduling the stream of instructions dynamically by the processor 

or by analysing and transforming the program statically by the compiler. The first 

way of scheduling instructions by the processor is limited as the processor can only 

analyse several instructions at a time and does not see the whole program behaviour 

as discussed in section 2.3.2. On the contrary, a compiler can analyse the whole 

program and adapt it to a new computing system using program transformations, 

even if the original algorithm is unchanged.  

The aim of program transformations is to reorder operations in a program to 

improve performance without changing the meaning of the program. Program 

transformations that remove redundancies and improve scheduling were first 

introduced in this thesis in section 2.3.2. This section focuses on memory 

transformations that are used to overcome the increasing gap between the speed of 

the processor and the main memory, by improving data locality and minimising the 

number of non-local memory accesses. 

Memory transformations are divided into two groups: loop and data 

transformations. Loop transformations modify loop iteration order in an attempt to 

achieve better data locality, without changing the meaning of the original program. 

The emphasis on loop structures is due to an observation that programs spend most 

of their execution time in loops. Data transformations modify the layout of array data 

in the memory with the same aim of achieving better locality. 

Bacon et al. [BGS94] survey various loop and data transformations and describe 

their influence on program locality and performance. This thesis focuses on three 

transformations: loop tiling, unrolling and array padding. These transformations have 

been selected due to their potential to considerably improve performance. They are 

described in detail in the following sections 3.1.2, 3.1.3 and 3.1.4. 

Transformations such as loop unrolling and array padding are relatively easy to 

analyse and implement, while others, such as loop tiling, require thorough 

dependence analysis and can be difficult to implement inside the automatic 
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optimising compiler. Therefore, linear algebraic models to represent loop and data 

structures are used to enable automatic optimisations.  

One of the first significant papers that uses a mathematical model to unify 

various transformations is [WL91b] by Wolf and Lam. It describes a matrix model 

for transformations and incorporates dependence vectors to check the validity of 

transformations within the same framework. It provides the theory for the automatic 

analysis of the validity of standalone or even compound transformations and enables 

the data locality analysis, as is shown in further sections of this chapter. However, 

the loop transformation theory of this paper is limited by unimodular transformations 

such as loop interchange, reversal and skewing for the perfectly nested loops. 

Briefly, this model represents a loop nest as a finite convex polyhedron and each 

iteration in this loop nest is described as an index vector p
r . Data dependencies 

restrain the execution order of the iterations and can be represented as dependence 

vectors d
r

. Loop transformations map original iterations into new ones and can be 

represented as matrices T . When loop transformation is applied, new iteration and 

dependence vector is found as the matrix-vector multiplication, that is pTp
rr

=new , 

dTd
rr

=new . If a compound transformation, consisting of several transformations 

NTTT ,...,, 21 has to be applied, the final matrix of the compound transformation is 

found as a consecutive multiplication of all matrices Nnew TTTT ...21= . Finally, a new 

transformation is legal if the transformed code can be executed sequentially, or in 

mathematical terms, if all transformed dependence vectors are lexicographically 

positive. The definition of a lexicographically positive vector d
r

 is the following: 

)0 :    and 0 ( :  if    ≥<∀<∃ ji dijdi . 

The following example, taken from [WL91b], demonstrates the use of the loop 

transformation theory: 

for I1: = 1 to N do 

   for I2: = 1 to N do 

       a[I1, I2] := f( a[I1, I2], a[I1+1, I2-1] ); 

The dependence vector of this double nested loop is ( 1,-1 ) and the iteration vector is 

( ji, ). Consider that in the first case the loop interchange transformation has to be 

applied and in the second case a compound transformation consisting of the loop 
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interchange and the loop reversal transformations has to be applied. The matrix of 

the loop interchange transformation is ⎥
⎦

⎤
⎢
⎣

⎡
=

01
10

T and the matrix of the loop reversal 

transformation is ⎥
⎦

⎤
⎢
⎣

⎡−
=

10
01

T . When loop interchange is applied, the new 

dependence vector ⎥
⎦

⎤
⎢
⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=

1
1

1
1

01
10

newd is lexicographically negative. 

Therefore, this transformation is not legal for this code. However, when the 

compound transformation of the loop interchange and the loop reversal is applied, 

the new dependence vector ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡−
=

1
1

1
1

01
10

1
1

01
10

10
01

newd is 

lexicographically positive. Hence, this compound transformation can be legally 

applied to the above code. 

Analysing data dependencies for large programs can be a complex and slow 

process and can be hard to implement inside a production compiler. The Banerjee 

test [Ban88], based on the Intermediate Value Theorem, is commonly used to detect 

all the dependencies between variables within a given region of the program. A faster 

method for determining data dependence relationships based on an integer 

programming algorithm is introduced by Pugh in [Pug91]. To speed up the analysis, 

an Omega test is used. This method allows one to determine if an integer solution 

exists to a set of linear equalities and inequalities.  

Another important issue, which arises after applying some particular 

transformations, such as loop tiling, is that loop bounds have to be transformed as 

well. Calculating new loop bounds can be performed directly by transforming all 

inequalities derived from the loop nest, as proposed originally by Wolf and Lam in 

[WL91b]. However, it may potentially contain excessive maxima and minima 

computations in the new loop bounds that can degrade overall performance. To 

overcome this problem, Ancourt and Irigoin introduce several algorithms in [AI91] 

that optimise minima and maxima computations in the loop bounds using integer 

linear system methods. 

Li and Pingali extend unimodular transformation theory in [LP92] by using non-

singular matrices for transformations. In this loop transformation framework called 
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Λ -transformations, some new transformations can be used, in addition to all 

unimodular transformations that are included as a sub-case. One such transformation 

is loop skewing, which non-singular transformation matrix is ⎥
⎦

⎤
⎢
⎣

⎡
=

20
01

T . In 

addition, integer lattice theory is used to generate efficient code. This paper also 

contains a proof that any transformation, which can be represented by an integer non-

singular matrix, can be composed using four basic transformations: permutation, 

skewing, reversal and scaling. 

To expand the loop transformation theory on non-perfectly nested loops, Xue 

suggests converting an imperfectly nested loop to a perfect loop nest in [Xue97a] by 

using Abu-Sufah’s Non-Basic-to-Basic-Loop transformation. This allows one to 

apply unimodular transformations and extract data dependencies in the usual manner. 

Figure 3.1 demonstrates an example from this paper for transforming an n-deep non-

 do x1 = L1 , U1 
S1a : H1a ( x1 ) 
 do x2 = L2 , U2 
S2a : H2a ( x1 , x2 ) 
 . . . 
 do xn = Ln , Un 
Sn : Hn ( x1 , . . . , xn ) 
 . . . 
S2b : H2b ( x1 , x2 ) 
S1b : H1b ( x1 ) 

(original loop) 
 

 do x1 = L1 , U1 
 do x2 = L2 , U2 
 . . . 
 do xn = Ln , Un 

S1a : if x2 = L2 ∧ . . . ∧ xn = Ln then H1a ( x1 ) 
S2a : if x3 = L3 ∧ . . . ∧ xn = Ln then H2a ( x1 , x2 ) 
 . . . 
Sn : Hn ( x1 , . . . , xn ) 
 . . . 
S2b : if x3 = U3 ∧ . . . ∧ xn = Un then H2b ( x1 , x2 ) 
S1b : if x2 = U2 ∧ . . . ∧ xn = Un then H1b ( x1 ) 

(transformed loop) 

 Figure 3.1: Abu-Sufah’s transformation of imperfectly nested loop to a perfect 
loop nest. 
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perfectly nested loop to a perfectly nested loop. This approach has two major 

drawbacks. The first one is that the Non-Basic-to-Basic-Loop transformation is not 

always legal and the issue of legality is discussed in this paper. The second one is 

that the innermost loop contains an excessive amount of “if” statements that can 

degrade performance considerably, particularly on pipelined processors with out-of-

order execution, as discussed in sections 2.1.2 and 2.1.3. 

To unify various loop transformations and to extend their applicability to 

arbitrary loop nests, affine partitioning was proposed by Lim and Lam in [LL97]. 

Originally, this paper suggested using affine partitions to maximise parallelism and 

minimise synchronisation for multiprocessor computing systems. Later, this method 

was extended to optimise data locality for uniprocessors in [LLL01] by Lim et al. 

Briefly, this model uniquely identifies all operations by the loop index values of the 

enclosing loops. It expresses all possible combinations of various transformations 

using affine transforms that are created for each operation to map old index values 

into new ones. Depending on the task, various search algorithms are used to find the 

optimal affine transform for maximising parallelism or improving data locality. 

Feautrier provides some additional details about solving affine scheduling efficiently 

in [Fea92]. 

Besides loop transformations, data transformations can also benefit from the 

mathematical representation. O’Boyle and Knijnenburg introduce a single framework 

in [OK99] that unifies various non-singular data transformations. It allows one to 

perform compound transformations in one step, using matrix representation for 

arrays and transformations in a similar way to the framework proposed by Wolf and 

Lam in [WL91b]. For example, if J  is the iteration vector and there is an access to 

an array A(i+j, j) inside a two-nested loop, then the subscripts of this array can be 

written as an affine mapping ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=+

0
0

10
11

j
i

uUJ . Data transformation in this 

model consists of a non-singular matrix A  and a shift vector a  and its application to 

the array access results in a new access, where AUU'= and aAuu' += . It should be 

noted that data transformations affect all accesses to the particular array globally, 

unlike loop transformations that are local for the loop nest.  
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Figure 3.2 demonstrates data skewing transformations for the array A and the 

respective transformation matrices and shift vectors. The advantage of this 

framework is that it unifies and eases the analysis and application of data 

transformations, and can be easily implemented inside production compilers.  

Finally, an approach to combine loop and data transformations that can achieve 

better results than if those transformations are used separately, is presented by 

Kandemir et al. in [KCR+98]. This paper proposes an integrated compiler framework 

that combines both loop and data transformations for optimising data locality for 

numerical codes. The following sections contain further information about three 

transformations that are used in the research of this thesis: loop tiling, array padding 

and loop unrolling.  

3.1.2 Loop tiling 

Loop tiling (blocking) is a transformation that is used to improve cache reuse 

within a loop nest, by dividing the iteration space of the nest into fixed-size blocks. 

 
do i = 1, n 
 do j = 1, n 
 A(2*i,i+j) = i+j 
do i = 1, n 
 do j = 1, n 
 A(2*i,j) = B(i+j) 

 

 (original access to array A) 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

11
01

A , ⎥
⎦

⎤
⎢
⎣

⎡
=

0
0

a  

 
 

 

 

 

 (transformed access to array A after array skewing) 

 Figure 3.2: Data transformation theory examples 
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do i = 1, n 
 do j = 1, n 
 A(2*i,3*i+j) = i+j 
do i = 1, n 
 do j = 1, n 

 A(2*i,2*i+j) = B(i+j) 
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This transformation can be used in cases where the data footprint of the original loop 

nest, which is defined as the amount of data touched within this loop nest, is bigger 

than the cache size. In this situation, if the tile size is chosen to fit the new data 

footprint into cache, it can result in better data reuse inside the new loop structure. 

Wolfe describes various practical examples of loop tiling and discusses issues of 

the legality of this transformation in [Wol89]. A simple example of tiling a 2-nested 

loop from this paper is shown in figure 3.3. It demonstrates how the iteration space is 

divided into blocks of size SS*SS to improve data locality.  

Xue uses a mathematical formulation similar to the one introduced in section 

3.1.1 to analyse the effects of the tiling transformation on data dependencies and to 

ease the dependence test for the legality of the transformation [Xue97b]. Figure 3.4 

presents a generalised version of the loop tiling for the m-dimensional loop nest with 

tile factor of B. Loop tiling decomposes this m-dimensional loop nest into 2m-

original loop nest: transformed loop nest: 

 do IT = 1, N, SS 

  do JT = 1, N, SS 

do I = 1, N do I = IT, MIN(N, IT+SS-1) 

 do J = 1, N do J = JT, MIN(N, JT+SS-1) 

 A(I,J) = A(I,J) + B(I,J) A(I,J) = A(I,J) + B(I,J) 

 C(I,J) = A(I-1,J) * 2 C(I,J) = A(I-1,J) * 2 

 end do end do 

end do end do 

 end do 

 end do 

iteration space iteration space 

of the original loop: of the transformed loop: 

 

 

 

 

 

 
Figure 3.3: Loop tiling example 
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dimensional loop nest, so that the innermost m loops iterate within a block, thus, 

improving data locality. 

Finally, it should be noted that it is also possible to tile imperfectly nested loops. 

More information about the tiling of imperfectly nested loops can be found in paper 

[AMP00]. 

The major question before applying loop tiling transformation is how to choose 

the tile size to improve the performance of the code. Data locality analysis and 

analysis of conflict cache misses are used to derive this information and are 

discussed in section 3.2. 

3.1.3 Array padding 

Array padding modifies the program data layout to remove cache conflict misses 

that occur due to a limited cache set associativity, as briefly described in section 

2.2.2. This transformation has two types: inter- and intra-variable padding. Inter-

variable padding changes the base addresses of arrays, and intra-variable padding 

inserts dummy data locations between the columns of arrays. Rivera and Tseng 

describe both types and present an analysis and heuristic to apply this transformation 

in [RT98].  

original loop nest: transformed loop nest: 

 

do i1 = 1, N do ii1 = 1, N, B 

 do i2 = 1, N do ii2 = 1, N, B 

 … … 

 do im = 1, N do iim = 1, N, B 

 S(i1, i2, …, im) do i1 = ii1, N, min(N, ii1+B-1) 

 do i2 = ii2, N, min(N, ii2+B-1) 

 … 

 do im = iim, N, min(N, ii3+B-1) 

 S(i1, i2, …, im) 

 Figure 3.4: Generalised version of loop tiling 
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Figure 3.5 (a) presents an example for inter-variable padding from this paper.  

Unit-stride consecutive accesses to arrays A and B have a potential for spatial 

locality. However, if the cache is direct-mapped and if these arrays are situated in 

memory at such addresses that every access to A(i) and B(i) is mapped to the same 

cache line, then every reference will generate a cache conflict miss, thus, degrading 

performance. To solve this problem and ensure cache reuse, inter-variable array 

padding is used. It changes the base address of the array B in such a way that 

references to A(i) and B(i) are mapped to different cache locations. The array base 

real S, A(N), B(N) real S, A(N), DUM(PAD), B(N) 

do i = 1, N 

 S = S + A(i)*B(i) 

Memory: Memory: 

array A array B array A DUM  array B 

 

 

 

Cache Cache 

(a) Inter-variable padding 

real A(N,N), B(N,N) real A(N+PAD,N), B(N,N) 

do i = 2, N-1 

 do j = 2, N-1 

  B(j,i) = (A(j-1,i)+A(j,i-1)+A(j+1,i)+A(j,i+1))/4 

Memory: Memory: 

A(N,1) A(N,2) A(N+PAD,1)   A(N+PAD,2) 

 

 

 

Cache Cache 

(b) Intra-variable padding 
 Figure 3.5: Intra-variable and inter-variable array padding examples 
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address can be changed directly on assembler level, or indirectly on source level, by 

inserting some dummy array DUM between arrays A and B. 

Similar situations may occur in cases of multidimensional arrays. Figure 3.5(b) 

shows an example of stencil computation from the same paper [RT98]. Memory 

references to the 2-dimensional array A in this example have a potential for spatial 

and temporal reuse. However, if the column size of array A is a multiple of the cache 

size, all columns of this array will map to the same cache lines and will generate 

cache misses. Therefore, inter-variable padding is applied by inserting some dummy 

locations between array columns to avoid their mapping to the same cache lines. 

Finally, a generalised version of intra-padding with a PAD factor for array A(N1, N2, 

…), as used in the research of this thesis, is A(N1+PAD, N2, …). 

The major questions before applying array padding are how to detect conflicting 

array references and how to choose the size of the dummy array to reduce conflict 

misses. The data layout analysis and optimisations are presented in section 3.2. 

3.1.4 Loop unrolling 

Loop unrolling is used primarily to improve instruction level parallelism and 

reduce loop overhead by replicating the body of the loop a number of times and 

replacing the loop step with this number. In addition, loop unrolling can also improve 

data locality and register usage by reducing the number of memory accesses and is 

therefore within the scope of memory optimisations. Dongarra and Hinds briefly 

describe this transformation and show its effect for various unrolling factors on two 

original loop: loop unrolled twice: 

  do i = 2, n-2, 2 

  a[i] = a[i] + a[i-1] * a[i +1] 

do i = 2, n – 1 a[i+1] = a[I+1] + a[i] * a[i+2] 

 a[i] = a[i] + a[i-1] * a[i+1] end do 

end do if (mod(n-2,2) = 1) then 

  a[n-1] = a[n-1] + a[n-2] * a[n] 

 end if 
 Figure 3.6: Loop unrolling example 
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subroutines in [DH79]. Bacon et al. analyse loop unrolling in more detail in 

[BGS94]. Figure 3.6 presents an example from this paper and shows an original 

sample loop and unrolled loop with a factor of two.  

This example demonstrates that the loop overhead that consists of the increment, 

test and branch operations, is 2 times less than in the original loop. Moreover, 

reducing the number of branches can reduce the number of control dependencies and 

thus improves program performance on modern pipelined processors with out-of-

order execution, as discussed in sections 2.1.2 and 2.1.3. This example also 

demonstrates how data or register locality can be improved: array references A[i] and 

A[i+1] are used twice in the unrolled loop, thus, reducing the number of memory 

accesses from 3 to 2 per iteration. It should also be noted that the if statement at the 

end of the unrolled loop, in this example, is needed when it is not known at a compile 

time whether the total number of iterations in the loop is a multiple of the unrolling 

factor or not. If it is not an exact multiple then this code is needed to process the 

original loop: unrolled loop (u - unroll factor): 

do i = 1, n do i = 1, n, u 

 S1(i) S1(i) 

 S2(i) S2(i) 

 … … 

end do S1(i+1) 

  S2(i+1) loop body replicated 

  … u times 

  S1(i+u-1) 

 S2(i+u-1) 

 … 

 end do 

 do j = i, n 

 S1(j) processing all 

 S2(j) remaining 

 … elements 

 end do 

 Figure 3.7: Generalised version of loop unrolling 
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remaining elements. However, it is also possible to generalise loop unrolling using 

two loops, as shown in figure 3.7, where an additional loop is needed to process all 

remaining elements. 

Finally, it should be noted that applying unrolling is always legal for a single 

loop. However, the major question is how to choose the best unrolling factor to 

improve performance. This is discussed in section 3.2.1. 

3.1.5 Other transformations 

There are many other transformations besides loop tiling, array padding and loop 

unrolling that can potentially improve program performance. Many of these 

transformations are described in detail by Bacon et al. in [BGS94]. They are omitted 

here, except for two highly related transformations. These transformations are 

software pipelining and prefetching and are briefly described further.  

Software pipelining, as well as loop unrolling, is a technique for improving 

instruction level parallelism. Similar to hardware pipelining, described in section 

2.1.2, software pipelining transforms a loop in such a way that each iteration of the 

new loop contains instructions from several different iterations of the original loop. 

This transformation requires a start-up code before the loop to fill up the software 

pipeline and an additional code after the loop to process the remaining elements of 

the loop. Software pipelining exploits the ILP across different loop iterations, thus, 

allowing instructions from successive iterations to execute in parallel. Software 

pipelining and loop unrolling can both achieve better scheduling for the inner loop, 

but in a different way: loop unrolling tackles branch and counter update overhead 

whilst software pipelining attempts to reduce the time when the inner loop is not 

running at a peak speed. Figure 3.8 presents two graphs from [BGS94] that show 

how operations are overlapped in the inner loop after loop unrolling and software 

pipelining. The shaded area in these graphs shows when the loop is not running at the 

peak speed. For loop unrolling, this happens during each iteration, whilst for 

software pipelining it happens only at the beginning and the end of the loop. 

Originally, software pipelining was intended to be used on VLIW platforms as 

described by Lam in [Lam88]. However, it was later noticed that loops on RISC and 
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other platforms could also benefit from this transformation. Allan et al. generalised 

and thoroughly analysed this transformation in [AJL+95].   

Software prefetching [CKP91] is a technique that can reduce the number of 

compulsory misses by inserting prefetch instructions into the code to bring data into 

the cache before it is needed. In this case, when data is accessed it is already in the 

cache and thus, reduces potential stalls. This technique can considerably improve 

program performance. However, inserting more instructions can potentially degrade 

performance. Therefore, analysis is needed to determine whether the code will 

benefit from the software prefetching. It is important to find the best places where to 

insert prefetch instructions in code and the amount of data to be brought into cache. 

Mowry et al. and VanderWiel et al. describe and analyse various techniques to apply 

software prefetching in [MLG92] and [VL00] respectively. Figure 3.9 presents a 

simple software pipelining example from the last paper. A compulsory cache miss 

occurs in the original loop at every fourth iteration, assuming a four-word cache 

block. Therefore, a basic approach to prefetching is to fetch data from the main 

memory to the cache one iteration before this data is needed. 

The following section will describe static analysis and code optimisations that 

use loop tiling, array padding and loop unrolling. 

loop unrolling: 
 
overlapped  
operations 
 
 
 
 
 time 
software pipelining: 
 
overlapped 
operations 
 
 
 
 
 time 

Figure 3.8: Software pipelining versus loop unrolling 
 



 

39

  

3.2 Static analysis and optimisations 

The previous section described transformations used in the research of this thesis 

that can improve the program instruction level parallelism or data locality. The major 

question is how to choose the transformation parameters to achieve the best 

performance. Therefore, this section surveys work on the static analysis of 

applications for data locality and ILP. It also reviews static methods for choosing the 

transformation parameters to improve data reuse and reduce cache misses.  

3.2.1 Improving ILP 

Program optimisations that improve instruction level parallelism are out of the 

scope of this research. However, some of them can also improve cache performance 

as in the case of loop unrolling. It can reduce the number of memory accesses as 

described in section 3.1.4 and thus, is examined further. 

This section briefly reviews existing work on selecting unrolling factors for loops 

to minimise execution time. Carr and Kennedy describe a technique for 

automatically choosing the best unrolling factor for a transformation called unroll-

and-jam in [CK94]. This transformation consists of two transformations: loop 

unrolling and loop fusion. First, loop unrolling is applied to an outer loop and then 

original loop: 

for (i = 0; i < N; i++) 

 ip = ip + a[i]*b[i]; 

loop after software prefetching 

for (i = 0; i < N; i++){  

 fetch( &a[i+1]); 

 fetch( &b[i+1]); 

 ip = ip + a[i]*b[i]; 

} 

 Figure 3.9: Software prefetching example for inner product calculation 
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loop fusion is applied to bring inner loops together, as shown in the example from 

this paper in figure 3.10. 

The authors propose an algorithm for automatically transforming a loop to 

improve performance by optimising the ratio of memory operations to floating-point 

operations. It is based on a static method of estimating the performance of a loop on 

a targeted platform using a simple performance model that incorporates only a few 

parameters of that platform, such as the number of floating-point and load operations 

per cycle and the number of registers. The general idea of this method is to optimise 

a loop in such a way that both memory accesses and floating-point operations are 

performed at peak speed without delays.  

Two characteristics are used to analyse and quantify the balance between loads 

and floating-point operations: machine balance and loop balance. Machine balance is 

a platform-dependent characteristic, defined as the following: 

Machine balance ( Mβ= ) = 
)( cycle / flopsmax 
)( cycle / max words

M

M

F
M

=
= , 

where MM is the peak rate of data loads and FM is the peak rate of floating-point 

operations. Loop balance is a characteristic of a specific loop, defined as the 

following: 

Loop balance ( Lβ ) = 
)( flops ofnumber 

) ( referencesmemory  ofnumber 
F

M
=

= . 

Comparing loop balance with machine balance allows one to analyse the 

performance of a particular loop on a particular platform. The case when ML ββ <  

original loop: 

 DO 10 I = 1, 2*M 

 DO 10 J = 1, N 

10  A(I) = A(I) + B(J) 

after unroll-and-jam of I by a factor of 1: 

 DO 10 I = 1, 2*M, 2 

 DO 10 J = 1, N 

 A(I) = A(I) + B(J) 

10  A(I+1) = A(I+1) + B(J) 
 

Figure 3.10: Unroll-and-jam transformation example 
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means that the loop is compute bound, i.e. the rate of data retrieval from memory is 

faster than its processing rate. The case when ML ββ >  means that it is memory 

bound, i.e. data is retrieved from the memory slower than it can be processed. 

Finally, the loop is balanced on the target platform if ML ββ = . Therefore, to improve 

performance with unroll-and-jam transformation, a non-linear integer optimisation 

problem should be solved that improves the balance of the loop:  

  objective function: min 
0

ML ββ −  

constraint: # floating-point register required ≤  register-set size 

The last constraint is needed as the unroll-and-jam transformation can potentially 

spill floating-point registers. Loop balances and register usage are calculated at 

compile time as functions of Xi, that is the number of times the ith outermost loop is 

unrolled + 1. Hence, to determine the best possible unrolling factor, the above 

optimisation problem is solved to get a linear function of Xi and then the solution 

space is searched in parallel with checking the register pressure. 

The above method has been implemented in a Fortran source-to-source compiler. 

The experimental results showed that in most of the cases hand optimisation was 

unable to achieve a much better balance than this automatic technique. However, the 

loop performance prediction model used in this method is very simple, based only on 

a few parameters of a target platform, such as the number of registers and machine 

balance. Hence, it may not predict performance correctly on current platforms, with 

processors supporting out-of-order execution and with memory hierarchy. To 

overcome this problem Carr and Guan propose an extension to this algorithm in 

[CG97]. In the new method, the calculation of Mβ  is the same, but the calculation of 

Lβ  reflects the observation that cache miss latency can be hidden in some platforms 

by software prefetching or non-blocking caches. The architecture in this paper is 

assumed to have a prefetch-issue buffer of the size 0≥MP  and a prefetch latency of 

0≥ML  cycles. Therefore, the prefetch issue bandwidth is 
M

M
M

L
PI = . Considering, 

that for every LL  cycles the innermost loop requires LP  prefetches, then in the case 

of M
L

L
L I

L
PI ≤= , the memory latency can be hidden, otherwise all prefetches 
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( LML LIP − ) cannot be processed. This gives the final version of calculating the loop 

balance: 

L

h

m
LMLL

L
F

C
CLIPM ×−+

=

+)(
β , 

where 
⎩
⎨
⎧

<
≥

=+

0 if     0
0 if     

x
xx

x , Cm is the cost of a cache miss and Ch is the cost of a cache 

hit.  In addition, to compute the memory operation cost, data reuse is analysed. This 

is described in the next section.  

The modified method takes more parameters of the targeted platform into 

consideration and is potentially more precise than the previous one. Finally, Sarkar 

presents a similar algorithm in [Sar00], which uses a cost function that incorporates 

unrolling factors for all loops. This algorithm automatically determines the best 

unrolling factors for perfectly nested loops and generates more compact code than 

the algorithm described in [CG97]. It enumerates a set of all profitable unroll vectors 

during the optimisation process and computes the cost function for each of them. 

Finally, the unrolling vector with the smallest cost function is selected. 

3.2.2 Data locality analysis and optimisations  

Data locality is an important characteristic of the program that describes the 

program’s ability to effectively utilise the memory hierarchy. Analysing data locality 

statically allows one to predict the memory behaviour and to find the potential for 

utilising the cache hierarchy. It can be further used to apply transformations that 

improve data locality and to speed up the program, as is shown in the next 

subsections.    

Most of the research in this domain is aimed at analysing data reuse that occurs 

within loops. Wolf and Lam describe a mathematical formulation of reuse and 

locality in [WL91a], based on the loop transformation theory that is briefly described 

in paragraph 3.1.1 of this chapter. They propose an algorithm for improving the data 

locality of a loop nest.  

The authors of this paper stress a distinction between reuse and locality: if some 

data is used in different iterations of a loop nest, it is reused in this loop nest. 
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However, reuse does not guarantee locality, since the data may be flushed out of the 

cache by intervening iterations. Those iterations that can exploit reuse form a 

localised iteration space. This iteration space can be characterised as localised vector 

space to abstract from its bounds. 

This paper describes four types of reuse: self-temporal reuse, when a reference 

accesses the same word for different loop iterations; self-spatial reuse, when a 

reference accesses a word in the same cache block for different loop iterations; 

group-temporal reuse, when references accesses the same word and group-spatial 

reuse, when references refer to a word in the same cache block. The following loop 

nest is an example from this paper to demonstrate these types of reuse: 

 for I1 := 1 to n do 

 for I2 :=1 to n do 

  f(A[I1],A[I2]); 

Reference A[I1] from this loop nest has self-temporal reuse in the innermost loop and 

reference A[I2] has self-temporal reuse in the outermost loop. Besides, reference 

A[I1] has self-spatial reuse in the outermost loop and reference A[I2] has self-spatial 

reuse in the innermost loop. 

This paper uses the concept of uniformly generated references to quantify reuse 

and locality, and underlines that non-uniformly generated references exhibit little 

exploitable reuse. The definition of the uniformly generated references is the 

following: 

Let n  be the depth of a loop nest, and d  be the dimensions of an array A . 

Two references )]([ ifA
rr

 and )]([ igA
rr , where f

r
 and gr  are indexing 

functions dn ZZ → , are called uniformly generated if 

fciHif rrrr
+=)(  and gciHig rrrr

+=)(  

where H  is a linear transformation and fcr  and gcr  are constant vectors. 

The references to the same array and with the same H  are further partitioned 

into equivalence classes of references called uniformly generated sets. Consider the 

following sample loop nest from this paper: 
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 for I1 := 0 to 5 do 

 for I2 :=0 to 6 do 

  A[I2+1] := 1/3 * (A[I2] + A[I2+1] + A[I2+2]); 

References A[I2], A[I2+1] and A[I2+2] have the following indexing functions: 

[ ] [ ]010
2

1
+⎥

⎦

⎤
⎢
⎣

⎡
I
I

, [ ] [ ]110
2

1
+⎥

⎦

⎤
⎢
⎣

⎡
I
I

 and [ ] [ ]210
2

1
+⎥

⎦

⎤
⎢
⎣

⎡
I
I

. 

These references have the same H = [ ]10  and therefore belong to the same 

uniformly generated set. 

This paper further presents methods for quantifying four types of reuse within a 

loop nest: self-temporal, self-spatial, group-temporal and group-spatial. For example, 

a reference ][ ciHA rr
+  has a self-temporal reuse if iterations 1i

r
 and 2i

r
 access the 

same data, that is ciHciH rrrr
+=+ 21 , or 0)( 21

rrr
=− iiH . In this case, the reuse occurs 

in the direction of vector rr , if 0
rr

=rH . The solution of this equation is a vector space 

,ker HRST =  called self-temporal reuse vector space. The condition for the reuse to 

be exploited is the inclusion of direction vectors in the localised vector space. Other 

types of reuse are quantified in a similar way.  

Finally, this paper presents methods for calculating the number of memory 

accesses per iteration for the innermost loop and introduces an algorithm for 

improving locality. This algorithm uses loop interchange, reversal, skewing and 

tiling to improve cache performance. It attempts to place outermost loops without 

reuse and then tries to tile innermost loops to minimise the memory accesses per 

iteration. This algorithm is evaluated using LU-decomposition, matrix-multiplication 

and SOR benchmarks. 

The method described above provides a practical solution for quantifying the data 

locality of loop nests and for improving cache performance. However, it can use only 

unimodular transformations and can be applied only to perfectly nested loops. Affine 

partitioning is used to overcome this restriction, as described by Lim et al. in 

[LLL01]. It allows transforming arbitrary loop nests and improving their data 

locality. This paper generalises loop tiling and extends the data locality algorithm 

presented in [WL91a]. The locality optimisations have been evaluated on a number 

of kernels and speed-up has been achieved in each case. 
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Bodin et al. use the concept of “reference window” to optimise program data 

locality in [BJW+92]. Reference window characterises “active” array elements that 

have a reuse and therefore has to be kept in the cache. It is defined as following: 

The reference window, W(t), for a dependence between two references to 

array A, 21: SSA →∆ , at time t is defined to be the set of all elements of A 

that are referenced by S1 before t that are also referenced after or at t by 

S2. 

Further, a cost and a benefit of a reference window are defined: 

The cost of a reference window Cost(W) is defined as the maximum size of 

the window over the time (the size of the window W is denoted W ). 

The benefit of a reference windowBen(W) is defined as the number of 

accesses to main memory saved. 

Consider the following loop from this paper, for example: 

 DO 1 i1 = 1, N1 

 S1  A(i1) = X(i1) 

 S2  D(i1) = X(i1-3) 

1  CONTINUE 

This loop has the reference window WX = {X(i1-3), X(i1-2), X(i1-1)}. Its Cost(WX) = 3 

and Ben(WX) = N1-3. If the reference window fits the cache, the data locality of a 

loop nest is optimal. Otherwise, the window has to be reduced using loop nest 

restructuring to fit it into lower levels of the memory hierarchy. 

The size of the reference windows is further used to drive data locality 

optimisations. Loop interchange and loop tiling are used to reduce the size of the 

reference windows to fit into the cache. The practical optimisation algorithm 

presented in this paper is evaluated on a number of hand-coded benchmarks and 

speed-up is achieved in most of the cases. The major restriction of this algorithm 

however, is that it can be applied only to perfect loop nests and it uses 

approximations to express reference windows analytically in order to simplify 

calculation.  

McKinley et al. use a simplified cost model for computing temporal and spatial 

reuse for loops and to improve data locality in [MCT96]. First, references within a 

loop are placed into the specific reference groups. Reference groups consist of those 
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references that have group-temporal or group-spatial reuse. Then, the cost of the 

reference groups and loops is calculated, as shown in figure 3.11.  

First, RefCost calculates the number of cache lines used by the loop l for the 

reference Refk. For loop-invariant references, RefCost is equal to 1. For consecutive 

references, RefCost is equal to trip/(cls/stride), where trip is the number of iterations 

in the loop, cls is the size of the cache line and stride is the loop step multiplied by 

the coefficient of the loop index variable. For non-consecutive references, RefCost is 

equal to trip. Finally, LoopCost calculates the total number of cache lines accessed 

within the loop nest, when l loop is the innermost position. This function can be used 

to guide loop nest transformation by interchanging loops in order to minimise the 

number of accessed cache lines. Figure 3.12 presents an example from the paper for 

calculating LoopCost for matrix multiplication kernel. Arrays C(I,J), A(I,K) and  

INPUT: 
 L  = { l1, …, ln } a loop nest with headers lbl, ubl, stepl 

 R  = { Ref1, …, Refm } representatives from each reference group 

   tripl  = ( ubl – lbl + stepl ) / stepl 

  cls  = the cache line size in date items 

  coeff( f, il)  = the coefficient of the index variable il in the subscript f 

  stride( f1, il, l )  = stepl * coeff( f1, il )  

OUTPUT: 
 LoopCost( l )  = number of cache lines accessed with l as innermost loop 

ALGORITHM: 

   LoopCost( l )  =∑
=

m

k 1
RefCost( Refk( f1 ( i1, …, in ), …, fj( i1, …, in )), l )) ∏

≠lh

triph 

RefCost( Refk, l )  =  1 if (( coeff( f1, il ) = 0) ∧∧ ...   Invariant 

  ( coeff( fj, il ) = 0)) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
),( ,1 ll

l

ifstride
cls

trip
 if (( stride( f1, il, l) < cls ) ∧   Unit 

 ( coeff( f2, il ) = 0 ) ∧∧ ...  

 ( coeff( fj, il) = 0 )) 

 trip1     otherwise  None 
 

Figure 3.11: Algorithm for calculating loop cost (McKinley et al.) 
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B(K,J) are invariant for the loops K, J and I respectively and therefore have 

RefCost=1. The same arrays have n non-consecutive references for the loops J, K 

and J again respectively and therefore have RefCost=n. Finally, these arrays have n 

consecutive references for the loops I, I and J respectively and therefore have 

RefCost=
4
1 n. The LoopCost function shows that this loop nest accesses minimum 

number of cache lines when the loop I is the innermost. 

Furthermore, an algorithm for improving data locality by combining loop 

permutation, fusion, distribution and reversal is presented in this paper. It is a 

relatively simple and inexpensive algorithm for minimising the cost function. It can 

be applied to non-perfectly nested loops with complex subscript expressions. This 

algorithm has been evaluated on a wide range of programs. It achieved a significant 

performance improvement on several of these programs.  

Finally, Ghosh et al. present an algorithm for calculating the cache misses 

precisely for a loop nest using Cache Miss Equations in [GMM98]. Initially, a cache 

set accessed by a reference RA at iteration i
r

is calculated as following: 

 

{ JKI ordering } 

DO J = 1, N 

 DO K = 1, N 

 DO I = 1, N 

 C(I,J) = C(I,J) + A(I,K) * B(K,J) 

 LoopCost (with cls=4) 

Refs J K I 

C(I,J) 

A(I,K) 

B(K,J) 

n * n2 

1 * n2 

n * n2 

1 * n2 

n * n2 

4
1 n * n2 

4
1 n * n2 

4
1 n * n2 

1 * n2 

Total 2n3 + n2 
4
5 n3 + n2 

2
1 n3 + n2 

 Figure 3.12: Loop cost for matrix multiplication kernel (McKinley et al.) 
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)(___)( iRofAddressMemoryiMem ARA

rr
=  

⎣ ⎦sRR LiMemiLineMemory AA /)()(_
rr

=  

⎣ ⎦ ssRR NLiMemiSetCache AA mod/)()(_
rr

= , 

where Ls is the cache line size, Ns is the number of cache sets and )(iMem AR
r

is the 

memory address accessed by RA at the iteration i
r

. )(iMem AR
r

can be computed by 

analysing the subscript expressions of RA. Consider the matrix multiplication 

example shown in figure 3.12. If the number of cache sets is 128, line size is 4, the 

base address of the array C is 4192 and the number of elements per column of this 

array is 32, then the cache set accessed by the reference C(j, i) is the following: 

⎣ ⎦ 128mod4/)1324192( −++ ji  

Then reuse is analysed for a loop nest and reuse vectors are generated in a similar 

way to [WL91a], which is briefly reviewed above. Furthermore, misses are 

quantified along the reuse vector and two types of CME equations are generated for a 

particular reuse vector of a particular reference: cold miss equations and replacement 

miss equations. Solutions to these equations represent a potential number of 

compulsory and conflict misses respectfully. Finally, an algorithm is presented for 

quantifying all the cache misses of a loop nest by combining multiple CMEs.  

Cache Miss Equations allow a precise analysis of cache misses and use 

mathematical analysis to determine solutions. This paper presents algorithms to find 

optimal optimisations by solving CMEs before and after applying particular 

transformation. However, solving all equations can be a potentially time consuming 

process, slower than other approximate static methods described above. Vera and 

Xue extend CME framework in [VX02] to analyse the cache behaviour of whole 

programs that have regular computations and validates the accuracy of the method on 

a number of real codes from SPEC’95 benchmark in comparison with cache 

simulation for those codes. It also shows that for large programs, such as applu, the 

whole analysis on Pentium III 933MHz takes about 128 seconds, which is about 

three orders of magnitude faster than the cache simulator, but still slower than other 

static methods. 
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3.2.3 Reducing conflict misses 

Conflict misses occur due to the limited cache associativity, as described in 

chapter 2. It is possible to considerably reduce conflict misses by increasing the 

associativity of the cache on the hardware level. However, it is an expensive 

solution. It is also possible to use software optimisations to considerably reduce 

conflict misses, particularly by using array padding and loop tiling.  

Temam et al. present a comprehensive analysis of cache interferences in 

numerical loop nests in [TFJ94], which detect and compute the number of conflict 

misses analytically. The method is based on introducing reuse and interference sets 

and on counting the number of cache misses, when a disruption of locality occurs. 

The paper shows that the algorithm is fast and reasonably precise by evaluating it on 

a number of kernels. It also demonstrates that optimising codes for capacity misses 

only may not be enough, as the conflict misses may be large and frequent.  

Lam et al. analyse the influence of loop tiling (blocking) on cache performance in 

[LRW91]. The authors describe methods for modelling cache interference and 

provide algorithms for determining the overall cache miss rate as a combination of 

three types of misses: intrinsic misses, self-interference misses (conflicts between 

elements of the same array) and cross-interference misses (conflicts between 

different variables). The input parameters for this algorithm are the matrix size N and 

the cache size C. The output is the largest tile size that removes self-interference 

misses. This algorithm is based on finding those array elements that are mapped to 

the same location in the direct-mapped cache. For an array word Y[i,j] it attempts to 

find another array word of the form Y[i + di,j + dj] that maps to the same location in 

the cache of the size C. Finally, the returned best tile is the maximum of di and dj. It 

is a relatively fast and simple method, which is easy to implement. However, it is 

also imprecise and does not remove conflict misses that may occur between different 

arrays. An additional approach to the above algorithm, for eliminating cache misses 

by copying reusable non-contiguous data into contiguous area, is presented in this 

paper and is called copy optimisation. For example, array tiles can be copied to some 

temporary continuous arrays that do not exhibit cache conflicts.  

Copying all array tiles into temporary arrays can also degrade performance when 

the copying overhead is higher than the benefit from reducing conflict cache misses. 
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Therefore, Temam et al. extends this work and presents a compile-time technique in 

[TGJ93] for selective data copying by analysing the cost and the benefit of 

eliminating conflicts. Cross interferences are further categorised as internal and 

external ones. Finally, an algorithm targeting each particular type of interference step 

by step is presented and is manually evaluated on a number of benchmarks. 

However, this algorithm may not be precise on modern processors where the cache 

miss latency can be hidden by the execution of other instructions.  

Coleman and McKinley present a Tile Size Selection (TSS) algorithm in 

[CM95], based on the cache size and cache line size, to eliminate both capacity and 

conflict misses. This algorithm uses rectangular tiles and attempts to determine the 

best dimensions of these tiles without self-interference. First, potential row sizes to 

fit in the cache are determined and potential column sizes are determined as 

multiples of the cache line size to benefit from spatial locality. Finally, those 

dimensions for the tile are chosen that minimise the number of cross-interference. 

This algorithm is evaluated on a number of kernels and its accuracy is validated 

using simulators. The rate of conflict misses is reduced considerably in most of 

cases. 

Rivera and Tseng improve the above algorithms and integrate intra-variable 

padding in [RT99]. The algorithm for determining tile sizes is based on the one 

proposed in [CM95], however, it is simpler and more accurate. Calculation of both 

the height and width of the tile uses a recursive function and can be computed 

simultaneously. In some pathological cases, frequent conflict misses can still occur 

between tiles. In such cases, intra-variable array padding can solve the problem. It is 

incorporated into a cost model with loop tiling so that for each padding parameter 

from a small range, tile sizes are calculated and the ones that minimise conflict 

misses are chosen. This algorithm is evaluated on matrix multiplication and LU-

decomposition for various matrix sizes and performance improvement is achieved in 

most of the cases. 

Finally, the paper [GMM98], briefly reviewed in the previous section, 

demonstrates how to use Cache Miss Equations to automatically determine intra-

variable and inter-variable padding to reduce self- and cross-interferences. An 

algorithm to determine optimal tiling parameters, which reduce conflict misses by 
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combining array padding with loop tiling, is further proposed. Its strong point is that 

it provides precise information about cache misses. However, it is considerably 

slower than all the above algorithms. 

3.2.4 Reducing compulsory misses 

Two previous sections concentrated on algorithms to remove capacity and 

conflict misses. This section will only briefly review algorithms that use software 

prefetching to reduce compulsory misses, as it is out of the main scope of the 

research of this thesis.  

The major challenge for designing algorithms for software prefetching is to 

identify data that has to be prefetched and to determine when this data should be 

prefetched. The potential problems are the software prefetching overhead and cache 

disruption if prefetching instructions are not scheduled correctly. 

Callahan et al. present a theoretical algorithm in [CKP91] to identify data that 

should be prefetched, based only on the analysis of variables within the inner loops. 

Its influence on performance and hit ratio is evaluated using a simulator. Methods for 

reducing the overhead and for eliminating unnecessary prefetches are proposed. They 

are based on the analysis of the dependence graph in an attempt to eliminate 

prefetching data that already resides in the cache. 

Mowry et al. describes a practical compiler algorithm for prefetching in 

[MLG92]. It uses a similar framework for data locality analysis as in [WL91a] and 

reviewed in section 3.2.2. This analysis allows one to determine accesses that may 

cause cache misses to be candidates for prefetching. A loop splitting transformation 

is used further to split the innermost loop into a prolog loop, steady state loop and 

epilog loop. The first loop initialises the cache; the steady state loop executes the 

original loop iterations and prefetches data for the further iterations; the epilog loop 

finalises the execution of the last iterations. Software pipelining transformation, 

briefly described in section 3.1.5, is applied to the split loops to ensure that there are 

enough iterations before prefetched data is used. The algorithm has been evaluated 

on a number of benchmarks and performance improvements have been achieved in 

most of the cases. However, the restriction of this algorithm is that it can handle only 

affine array accesses. It was also noted from experiments that conflict misses 
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exhibited in some programs could considerably suppress the benefit from software 

prefetching. 

Finally, VanderWiel and Lilja survey and compare various data prefetch 

mechanisms and describe their drawbacks and benefits in [VL00]. 

3.3 Dynamic analysis 

The two previous sections presented techniques to analyse a program cache 

performance statically and described transformations that could improve the cache 

behaviour of programs. Some of the techniques presented proved useful for a variety 

of codes. However, most of these techniques are inherently imprecise as they use 

simplified program models in order to be reasonably fast and tractable. Therefore, 

they are usually restricted to specific types of loops and memory access patterns; 

otherwise, they can be time consuming as in the case of CMEs. This section presents 

dynamic techniques that attempt to overcome some of these problems, and are used 

to analyse the program performance during execution or during simulation. The 

major benefit of these methods is the access to run-time information, which is not 

available at compile time. Dynamic analysis has its own advantages and restrictions, 

and is not intended to replace static analysis. Instead, both static and dynamic 

analysis can complement each other, as is shown in this and the following section 

3.4. 

3.3.1 Profiling 

Profiling is a wide-spread technique for obtaining various run-time program 

parameters during its execution. One of the simplest and basic techniques is a 

procedure-level profiling when code is instrumented by adding calls to the 

monitoring routines on the entry and the exit of each profiled procedure. After the 

code is executed, the profiling information is gathered into the file that may be 

further parsed to obtain the program execution time distribution. Such techniques are 

easy to implement but overhead due to calls to the monitoring routines can be 

excessively high. Besides, time measuring can be more complicated on time-sharing 

platforms, since execution time of other processes needs to be accounted. Therefore, 
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sampling technique is often used on such systems. This technique samples the value 

of the program counter with some interval and later obtains execution time 

statistically from the distribution of the samples within the whole program. It is used 

in such tools as gprof [GKM82], has a relatively small overhead and is useful in 

determining parts of the program that dominate the execution time, thus, reducing 

unnecessary analysis of the whole program. Unfortunately, procedure-level profiling 

is insufficient to spot the problems inside the subroutines. This can be important in 

cases when those subroutines contain multiple loop nests or irregular memory 

accesses, which are difficult to analyse statically. Therefore, other tools are used that 

can profile programs on a basic block level or on an instruction level. 

Smith describes a tool called Pixie in [Smi91] that allows the collection of run-

time information about basic blocks of the program. This tool rewrites the executable 

file and inserts additional instructions to count the number of executions of each 

basic block. During the execution of the modified code, the run-time information is 

captured and saved into data files. After the execution is finished, the tool analyses 

the data files and produces a report about cycle counts within subroutines. This 

information can be matched with the source code and can be used to determine the 

bottlenecks within the procedure that should be further optimised. The major 

problem of this method arises in profiling programs with a large number of small 

basic blocks. In such cases, the number of inserted instructions can be overwhelming, 

and, for example, can influence the behaviour of caches, thus, producing imprecise 

cycle counts. Besides, this tool cannot provide information about stalls, which could 

be useful for program optimisations. To overcome this problem, new methods are 

used for profiling programs on an instruction level without their modification. These 

methods are based on using processor hardware counters. These counters obtain run-

time information in parallel with the program execution and can dump this 

information periodically to the collecting tool to be saved for further analysis. Such 

methods do not influence the behaviour of the program and thus, can produce 

accurate instruction-level profiles with a small overhead. 

Anderson et al. describe the Digital Continuous Profiling Infrastructure (DCPI) 

system that works on Alpha processors and uses their hardware performance 

counters in [ABD+97]. It consists of two parts: a data collection subsystem and an 
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analysis subsystem. The data collection subsystem runs continuously on a platform 

and collects profiles for unmodified executables or even for the entire system. It 

samples performance counters for various events, such as cache misses or branch 

mispredictions, periodically at a high rate (over 5200 samples per second on a 

333MHz Alpha processor) with a low overhead  (1-3% slowdown) and records them 

in a database. The analysis subsystem produces accurate information about the 

program based on the collected profile data at several levels: from the time spent in 

subroutines to the number of stalls for each instruction within the subroutine. 

Furthermore, it can provide an explanation for particular stalls in the program. 

However, the major restriction of the DCPI tool is that it fails in attributing profile 

data to the instructions on out-of-order execution processors. 

Dean et al. present a tool called ProfileMe in [DHW+97] for instruction-level 

profiling on out-of-order execution processors. Unlike DCPI that counts processor 

events, ProfileMe samples instructions and collects information about stalls and 

events within a pipeline. It can also collect information about parallel execution and 

interaction of concurrent instructions. Besides, ProfileMe can provide information 

not only about instructions retired from the pipeline, but also about instructions that 

have been aborted due to speculative execution, thus, providing valuable information 

for further optimisations. A special inexpensive hardware support is needed for such 

profiling and is available in the latest Alpha processors. This is done by adding a few 

ProfileMe registers for recording the processor state for a profiled instruction and by 

passing a special ProfileMe tag through a pipeline to indicate profiling instructions. 

Therefore, this tool enables accurate low-overhead instruction-level profiling on both 

in-order and modern out-of-order execution platforms to provide feedback about 

stalls in the pipeline and about useful concurrency and is useful to drive further 

optimisations. Another tool, called VTune [Int03b], provides similar instruction-level 

profile information on Pentium-based platforms. 

The tools described above provide raw information about stalls in programs and 

are able to identify bottlenecks in these programs. However, they do not provide 

information such as the number of cache misses for a particular instruction, most 

notably in the case of dynamically allocated memory, and the types of cache misses, 

which could be useful for further memory performance optimisations. Therefore, 
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additional methods are needed to analyse the nature of cache misses using obtained 

profile information. 

Buck and Hollingsworth describe a technique for determining the number of 

cache misses for a particular memory area that can be allocated statically or 

dynamically in [BH00]. It uses hardware counters that can cause interrupts after a 

number of cache misses and can report the address of the last cache miss. This 

address is associated with the memory region defined by the program and the 

corresponding counter is incremented. Therefore, this technique provides 

information about program objects that have poor cache behaviour. The SPLAT tool, 

described by Sánchez and González in [SG00], is able to identify the type of cache 

misses by matching static information about program data locality provided by the 

compiler with the run-time information provided by a profiler. It uses fast methods 

for analysing data locality, described in section 3.2 of this chapter, and fast profiling 

techniques, thus, providing information about cache misses with a low overhead. 

Such information can be used further in choosing particular types of optimisation. 

Finally, a tool called ATOM described by Srivastava and Eustace in [SE94] 

should be noted. It is used for instrumenting programs on an Alpha platform to 

obtain various precise run-time parameters and can be used for building customised 

program analysis tools. It has its own macro language to define procedures, basic 

blocks and instructions and can insert calls to auxiliary subroutines with register 

value parameters on instruction or basic-block level, for example. The information 

obtained can be stored in temporary arrays and can be dumped onto disk after the 

execution of the program. This information can be further used by various analysis 

tools. The ATOM tool is particularly useful in designing simulators, as described in 

the following section. 

3.3.2 Simulating 

System simulators can assist in understanding the run-time behaviour of the 

program and the influence of various architectural parameters on the program 

execution. They are useful in cases where static information is unavailable and 

profiled information is imprecise or not sufficient for successful optimisation. Such 

tools contain a software model of the hardware and simulate the execution of the 
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program step by step. The major advantages of the simulation are that it provides the 

opportunity to analyse and visualise the hardware state step by step during the 

program execution; to test new hardware designs and validate performance and to 

obtain various run-time parameters. However, its major drawbacks are high 

execution time and resource consumption, and the need to have a precise system 

model. 

Burger et al. and Austin et al. describe a tool called SimpleScalar for computer 

system modelling in [BAB96] and [ALE02]. This tool contains flexible software 

models for different hardware to help designers test their ideas before building the 

real system. These models include a dynamic program analyser, a branch predictor 

simulator, a multilevel cache memory simulator and many others, and are 

characterised by performance, flexibility and detail. The general trade-off for the 

models is that the higher the detail level and flexibility, the lower the performance. 

The SimpleScalar tool supports multiple platforms and has a visualisation module 

capable of displaying the processor pipeline stages for each instruction. This tool is 

useful in detecting and analysing various software and hardware bottlenecks. The 

high level of detail and accuracy makes it possible to simulate the behaviour of 

complex out-of-order execution superscalar processors and cache memories to 

analyse the cache hit rate, memory access latency or even calculate power 

dissipation, for example.  

Trace-driven simulation is another approach that creates streams of instrumented 

instructions, which are further used in hardware or software timing models. During 

the execution of those instruction streams, traces with various parameters are 

collected. Since these traces can be large, a trace reduction mechanism is used to 

make them smaller. Finally, the obtained traces are processed to derive useful 

information. Uhlig  and Mudge survey and compare, in detail, over 50 trace-driven 

simulation tools with the emphasis on memory design in [UM97]. These tools record 

sequences of memory references and attempt to predict memory-system 

performance. They are characterised by the detail and accuracy of simulation and 

how traces are collected and reduced. 

Both execution- and trace-driven simulations are generally accurate. However, 

they require excessive simulation times and computer resources. For example, the 
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simulators reviewed in [UM97] had a slowdown in the range of 45 to 6250 times 

compared to the execution time of the original program. Another statistical approach 

for modelling the performance of superscalar processors, that is both fast and 

reasonably accurate is presented by Noonburg and Shen in [NS97]. The main idea of 

this method is to calculate the probability of being in a particular processor state. The 

processor model consists of blocks or components that have one input and one 

output, and are interconnected between each other. Therefore, each component has 

and input and output instruction flow. This flow can be limited by various 

restrictions, such as the bandwidth of the connection or by being blocked by some 

components. The processor state is represented as a vector that describes instructions 

in each component. Finally, a state distribution is computed using Markov chains. 

This paper presents several simple processor models and compares the performance 

obtained, using the above method, with the simulated performance. The results 

demonstrate that the statistical approach can be reasonably accurate (within 2% in 3 

benchmarks and within 10% for Livermore loops) and is considerably faster than 

execution- or trace-driven simulations. 

To complete this section about simulation techniques, some examples of their 

usage are further presented. McKinley and Temam analyse and quantify the loop nest 

locality of different benchmarks in [MT96] by simulating the cache and by using the 

ATOM tool to obtain information about data accesses. The intra- and inter-nest 

locality are measured and quantified in a similar way as described in section 3.2.2. 

Though the simulation process was excessively slow, it made it possible to obtain 

precise information about the number of cache misses and their types for loop nests. 

The analysis of the obtained data questioned some common assertions such as 

“spatial reuse is the dominant form of reuse” and that “capacity misses occur more 

frequently than conflict misses, and both are significant sources of misses”. For 

example, it was found that spatial and temporal reuse are generally balanced and that 

group-conflict misses dominate intra-nest misses. Besides, this paper confirmed 

another common assertion that most reuse occurs within a nest rather than across 

nests. However, it also shows that most of the misses occur across nests. Such results 

can help in designing or modifying cache systems and can be useful for program 

optimisations. 
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Lebeck and Wood describe a cache profiling tool, called CPROF in [LW94]. 

This tool is a uniprocessor cache simulator and visualiser that allows one to detect 

the number and type of cache misses on the source-line level. It can further suggest 

program transformation such as padding, loop fusion, blocking and others to improve 

performance. This tool is evaluated on a number of SPEC benchmarks and 

performance improvement is achieved in most of the cases. 

Van der Deijl et al. present a Cache Visualisation Tool (CVT) in [VKT+97] that 

visualises the cache operations step by step. This tool uses a cache simulator to 

produce detailed analysis of the cache behaviour for various code structures and can 

be used to analyse the influence of different program transformation on this 

behaviour. Besides, it is possible to study the effect of cache designs on program 

performance by changing cache parameters of the simulator. Therefore, this tool can 

be useful for hardware and software optimisations. Finally, Yu et al. describe a 

technique for visualising the cache behaviour and reuse distances for the whole 

program as a compact pattern in [YBH01]. This information can be further used for 

global program optimisations. 

3.4 Dynamic optimisations 

The previous section presented various dynamic methods to analyse the run-time 

behaviour of the program. This section describes techniques that use the obtained 

run-time information to tune the code for better performance during feedback-

assisted compilation, or to optimise the program on the fly as during adaptive 

compilation.  It completes the review of the major analysis and optimisation methods 

related to the research presented in this thesis. 

3.4.1 Feedback-assisted and iterative compilation 

When run-time information for a program is obtained, it is possible to better 

optimise this program using information that was unavailable during the compilation 

stage. An optimisation process that instruments and executes a program for the 

particular dataset to obtain run-time information and then uses this information to 
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automatically re-optimise the program is called feedback-assisted compilation. This 

process is also known as feedback-directed or profile-guided optimisation.  

Chang et al. describe a 2-step compiler system in [CMH91] that automatically 

profiles a program and then optimises this program using profile information. The 

profiler can identify frequently used program paths and can obtain run-time 

information about branches taken, loop bounds, etc. This information can further 

help to improve program performance. For example, it can be used to improve the 

accuracy of branch prediction and therefore improve performance on modern 

pipelined superscalar processors that have high penalty for branch misprediction. It 

can also be used to group frequently executed sequences of basic blocks together to 

improve instruction cache utilisation and reduce the number of branch instructions. 

Besides, various other optimisations such as loop unrolling, loop invariant code 

removal and dead code removal, for example, can produce better quality code taking 

run-time information into consideration. This paper presents algorithms for applying 

the above optimisations using profile information. These algorithms are evaluated on 

a range of benchmarks and performance improvement is achieved in all cases.  

Currently, most modern compilers include profile-guided optimisations. Cohn 

and Lowney describe an implementation of the feedback-directed optimisations in 

the Compaq compilers for an Alpha platform in [CL99]. Profiles are obtained using 

either pixie or DCPI tools, which are described in section 3.3.1. Then various 

optimisations such as inlining, loop restructuring transformations, register allocation, 

code layout, and branch prediction are preformed and speed-ups are achieved for a 

number of benchmarks. Finally, Smith reviews various techniques and tools for the 

feedback-directed optimisations in [Smi00], discusses further challenges and 

suggests some ways to overcome them. 

Current feedback-directed compilation techniques generally optimise the 

program to improve ILP. However, they do not target the memory bottleneck 

problem since run-time information still may not be sufficient to choose the best 

program transformation such as loop tiling or array padding. To overcome this 

problem, it is possible to create several versions of the program with various tiling 

and padding parameters, execute them, and choose the best one with better 

performance. Such a process, that investigates sequences of parameters for various 
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transformations, creates and executes these variants and picks one with the highest 

speed-up, is called iterative compilation. Kisuki et al. present an iterative compilation 

technique in [KKO+00] that uses three program transformations: loop tiling, loop 

unrolling and array padding. These transformations with varied parameters are 

applied to a program successively until code with the lowest execution time is 

obtained. This technique is evaluated on several benchmarks and platforms to 

demonstrate the performance improvements achieved in comparison with static 

methods. The major benefits of this technique are the ability to tackle memory 

problem and the possibility to find optimal code. However, the major drawback of 

this technique is an excessive optimisation time. Nevertheless, in cases when the 

lifetime of a program with a particular dataset size is much longer than the 

optimisation time, it is beneficial to use this technique to obtain code with optimal 

performance.  

Whaley and Dongarra describe “Automatically Tuned Linear Algebra Software” 

(ATLAS) in [WD98]. This software uses static and iterative techniques to tune 

various numerical subroutines for a better performance during its first installation. 

Therefore, all the further calls to these subroutines will be forwarded to a particular 

optimised variant, depending on the dataset size and other parameters. This is an 

example of the case when the optimisation time for the library is not critical, since 

the lifetime of this library is much longer. 

Finally, two papers that use the iterative compilation approach, though not 

directly related to the research of this thesis, should be mentioned. Van der Mark et 

al. uses iterative compilation in [MRB+99] to optimise programs for embedded 

VLIW processors. This approach is beneficial for embedded applications as the long 

optimisation time can be reimbursed by the good performance and by the number of 

systems produced. Of the major constraints of embedded applications is the limited 

size of the code. Therefore, an iterative search is used to find the best loop unrolling 

and software pipelining parameters for a trade-off between code speed and size. 

Nisbet proposes an iterative search for the best parallelisation transformations on 

distributed memory architectures using genetic algorithm techniques in [Nis98]. 

Briefly, these techniques work in a similar way as the evolution of living organisms 

by iteratively searching better solutions to problems. In the context of parallelisation, 
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genetic algorithm techniques are used to determine program transformation 

sequences in order to minimise the execution times of various programs.  

3.4.2 Adaptive compilation 

Adaptive compilation is a technique for optimising the program dynamically 

during its execution. The advantage of this technique is that it allows the program to 

adapt for the particular platform and for the particular dataset to achieve best 

performance without the need for lengthy recompilations and test executions. 

However, implementing such a technique in practice is a challenging task since the 

analysis and optimisation of a program should be performed fast and on the fly, and 

may degrade performance instead of improving it. Besides, the optimisation tool may 

not have access to the program source code, and therefore it should be able to 

transform either intermediate representation of the program or the binary code 

directly. 

Voss and Eigenmann present a framework for dynamic program optimisation 

called “Automated De-coupled Adaptive Program Transformation” (ADAPT) in 

[VE00]. It decouples dynamic compilation that produces several versions of the code 

from the dynamic selection of these versions. This allows compilation to be 

performed in parallel with program execution to minimise overheads. ADAPT 

instruments the program to obtain run-time values and then uses a translator that 

optimises parts of the program during its execution depending on the dataset and 

platform parameters. When new versions of the program parts are available, the 

dynamic selection mechanism makes a run-time decision about which version to use 

in order to achieve better performance. ADAPT supports various transformations 

including loop distribution, loop tiling and loop unrolling. It is evaluated using three 

SPEC benchmarks and speed-ups are achieved in all cases in comparison with 

statically optimised programs. 

Zhang et al. describe a tool called Morph in [ZWG+97] for automatically 

profiling and optimising programs in the background on Alpha platforms. It is 

composed of three major components. A Morph Monitor profiles programs 

continuously with low overhead and is similar to the DCPI tool reviewed in section 

3.3.1. A Morph Editor is a tool that optimises programs using code layout 



 

62

  

optimisations based on the profile information. It deals with the intermediate 

representation of the program if the source code is unavailable, and transforms it into 

binary executable form. A Morph Manager analyses the profile information, and 

makes a decision about when to re-optimise the code. Therefore, the Morph system is 

capable of optimising programs automatically in the background, taking into account 

various hardware parameters and program usage patterns. It is evaluated on a number 

of benchmarks and performance improvement is achieved in all cases. 

Finally, Kistler and Franz present a comprehensive analysis for continuous 

program optimisation in [KF03]. They describe a system that continuously profiles 

programs and can adjust dynamic data layouts for better cache locality or re-schedule 

instructions for better ILP in the background with the program execution. An 

algorithm that decides when the code should be optimised, based on the profiled 

information, is further presented and is followed by the optimisation algorithms. This 

system is evaluated on a number of benchmarks and speed-ups are achieved in most 

of the cases. The results are compared with the statically optimised codes and 

overheads and profitability of this technique are discussed. 

3.5 Summary 

This chapter reviewed major papers that are related to the area of memory-

hierarchy optimisations. Mathematical models for various transformations and data 

locality analysis were described in detail to provide an important background for the 

research presented in this thesis. Various static and dynamic techniques that analyse 

and improve program performance were also reviewed in detail to be compared with 

new methods developed in this thesis. 
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Chapter 4 
 

Iterative Compilation 
 

The focus of this thesis is a platform independent optimisation approach based on 

feedback-directed program restructuring.  This chapter presents the case for iterative 

compilation. It briefly describes the experimental framework used and shows the 

influence of various transformations on program performance. The results obtained 

help explain the difficulty of determining the best transformation parameters using 

current static or dynamic methods. It is followed by a description of the program 

optimisation space with the given set of available transformations. An algorithm is 

proposed for searching the optimisation space of large applications to choose the best 

transformation to minimise the overall execution time. This algorithm is evaluated on 

a wide range of kernels and real programs from the SPEC benchmark suite and is 

compared to existing static and dynamic optimisers.  

4.1 Introduction 

The research presented in this thesis tackles the problem of the ever-increasing 

gap between the speed of processor and memory. Previous chapters have provided 

the motivation and the background for this work and described various hardware and 

software techniques that attempted to overcome this memory problem. 

Briefly, hardware solutions are based on the introduction of faster but smaller 

intermediate layers of memory between the processor and the main memory. These 

layers of memory called cache memory exploit data locality. However, the original 

programs may exhibit many cache misses when the program data is not found in the 

cache and therefore has to be retrieved from slower main memory. This depends on 

the program structure and the memory hierarchy organisation, and can considerably 

degrade performance. Therefore, software optimisation methods based on program 

transformations are used to improve data locality and reduce the number of cache 

misses. Three major program transformations are used in this thesis: loop tiling, loop 

unrolling and array padding. These transformations are capable of reducing cache 



 

64

  

misses as described in detail in section 3.1. Potentially, these transformations can be 

applied manually for small and simple programs. However, it requires a good and 

detailed knowledge of the underlying hardware from a programmer and is a tedious 

and time-consuming process. Moreover, any small changes in the software or 

hardware parameters may invalidate the whole optimisation process so it has to be 

started from scratch again. Therefore, automatic optimisation approaches are 

desirable for optimising portable codes for particular architectures.  

Traditional automatic optimisation approaches are based on comprehensive static 

program analysis as described in section 3.2. These approaches attempt to analyse 

program data locality and to predict the number of cache misses, taking into 

consideration software parameters and hardware models. Modern platforms have 

complex internal organisations with the support of pipelines, out-of-order execution 

and cache memory. Therefore, hardware models used by optimisations are simplified 

in order for the analysis to be tractable. It means that static approaches provide rough 

performance estimates and often fail to select the best optimisation. Static 

approaches also fail in cases where information is not available at compile time. 

Dynamic methods are intended to solve these problems by obtaining various run-

time parameters during program execution and then by re-optimising this program 

using these parameters. Some of these methods are described in section 3.3. 

However, it is also shown that current dynamic approaches focus on improving ILP 

by better branch prediction or on improving instruction cache usage by moving 

frequently accessed parts of the code closer to each other. Thus, these methods also 

fail to tackle the problem of the growing performance gap between processor and 

memory. 

This chapter presents an iterative feedback-assisted optimisation approach that 

can overcome the above problems. This approach is based on creating variants of the 

program with different transformation parameters. All variants of the program are 

executed and the one with the lowest execution time is picked as the best version. 

This algorithm is described in detail further in this chapter and is evaluated on two 

platforms using a number of kernels and large benchmarks. The major advantage of 

this approach is that it does not need the detailed knowledge of the program and the 

underlying hardware and is capable of outperforming current static and dynamic 
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approaches. Unlike some other iterative compilation techniques that are applied to 

small kernels, it can successfully optimise large applications using a smart phase 

order. The major drawbacks are the excessive compilation time of iterative methods 

and the potential sensitivity of the optimisations to dataset sizes and to conditional 

dependencies on the data values. However, new techniques for reducing the 

compilation time have been developed and are presented in chapters 5 and 6. Some 

techniques that allow applying iterative compilation to programs with different 

datasets are subjects of the future research and briefly proposed in chapter 6 and 7. 

4.2 Experimental framework 

This section gives an outline of the experimental framework briefly describing 

the software architecture, platforms and benchmarks used. Some additional technical 

details about the platforms used can be found in Appendix A. 

4.2.1 Software architecture 

The validation of platform-independent iterative compilation and performance 

prediction techniques developed in this research requires conducting a number of 

experiments on multiple benchmarks and platforms. Therefore, an optimising 

software suite capable of conducting a large number of various experiments 

automatically has been developed. This suite is a set of tools designed to analyse 

program behaviour and optimise its performance. In order to make this toolset easily 

usable, portable and flexible, a client/server architecture [Sin92] is used as shown in 

figure 4.1. It consists of autonomous components such as servers, clients and a 

shared network file system. These components communicate with each other over 

the network using data files on the shared file system and using standard telnet 

protocol [DHP+77] as shown by arrows in figure 4.1. Servers perform various 

analysis and optimisation tasks on the target platform, while the client is a Graphical 

User Interface (GUI) application that enables users to interact with servers remotely. 

A client is platform independent and can access various platforms, obtain and present 

results in a convenient way.  
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This software architecture is flexible as it is easy to update the software and add 

new tools without the need to stop and restart all components. It supports auto error 

and fault recovery as servers can be restarted and the analysis and optimisation 

process can continue from the last correct state. The Run Server is introduced to ease 

portability between different platforms. This server is platform dependent and is used 

to execute applications and obtain their run-time parameters. Therefore, it is written 

in C to use low-level OS calls and recompiled for each platform using options 

specific for the particular platform. Most of the remaining software is written in Java 

and thus portable across platforms. Next in the software hierarchy are the 

Compilation and Transformation Servers. The Compilation Server sends requests to 

the Run Server to compile and execute programs and to collect various profile 

information. The Transformation Server supports array padding, loop tiling and loop 

unrolling  transformations  of  Fortran  programs,  described  in  detail  in section 3.1.  

Clients 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Preliminary Analysis Server, Transformation Server, 
Iterative Compilation Server, Compilation Server, 
Performance Prediction Server Run Server 
 
 

Shared Network File System 
 Figure 4.1: Software architecture of the optimising suite 

Network 



 

67

  

Finally, the Preliminary Analysis Server, Iterative Compilation Server and 

Performance Prediction Servers are tools that implement new analysis and 

optimisation techniques developed in this thesis. Briefly, the Preliminary Analysis 

Server is used for obtaining various preliminary information about the program such 

as the number of subroutines and loops, original execution time and so on, needed 

for further optimisations. The Iterative Compilation Server is used for applying new 

iterative compilation techniques. The Performance Prediction Server is used for 

predicting the ideal performance of the program. Similar architectures proved to be 

versatile and reliable in previous research projects such as MHAOTEU [ATA+00]. 

4.2.2 Platforms and applications 

To demonstrate new platform-independent optimising techniques two distinctive, 

widespread platforms have been chosen for the experiments: 

• Compaq Alpha 21264 500 MHz 512Mb, Digital Unix 

• Intel Pentium III 650 MHz 256Mb, Windows 2000 Professional 

For simplicity, further references to these platforms in the thesis will be as “Alpha” 

and “Pentium”. The Alpha platform has a reduced instruction set (RISC) and the 

Pentium platform has a complex instruction set (CISC). Both platforms have a 

superscalar architecture with out-of-order execution support. Both platforms have 

two levels of cache: the Alpha has a 64KB 2-way set associative first level of cache 

and a 2MB direct-mapped second level of cache; the Pentium has a 16KB 4-way set 

associative first level of cache and a 256KB 8-way set associative second level of 

cache. These architectural features are described in detail in sections 2.1 and 2.2. 

More information about these platforms can be found in Appendix A. 

Matrix multiplication (matmul), successive over relaxation (sor) and eight 

benchmarks from the SPEC’95 benchmark suite [SPE03] with reference datasets 

bigger than the cache size have been chosen for the experiments (two more 

benchmarks from this suite have been omitted due to technical compilation 

problems). Table 4.1 presents a brief description of each program (the SPEC suite 

description is taken from the official website [SPE03]) and shows the number of 

lines of the source code and the number of subroutines. All these applications are 

based on scientific numerical, floating-point algorithms within the scope of this 
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research and are written in Fortran. The two kernels, matmul and sor, are selected to 

allow simple and detailed performance evaluation and to analyse the developed 

techniques in depth. Their source codes are presented in figure 4.2. Their data sizes 

are selected to be larger than the cache size. The number of times these kernels are 

executed is selected in such a way that their execution times are similar to those of 

the SPEC benchmarks. The SPEC benchmarks are based on real applications that are 

hard to optimise. They are used to give a realistic and critical evaluation of the 

developed techniques. Moreover, all these programs are well studied ([WD98] and 

[MT99], for example) and can be used to compare results of the new techniques 

presented in this thesis with existing ones. 

Table 4.1: Description of applications 

Application: Lines of code/ 

Number of subroutines: 

Description: 

matmul 63 / 2 Matrix multiplication. 

sor 59 / 2 Successive over relaxation method. 

tomcatv 190 / 1 SPEC’95 FP. Fluid Dynamics / Geometric 

Translation. Generation of a two-dimensional 

boundary-fitted coordinate system around general 

geometric domains. 

swim 429 / 6 SPEC’95 FP. Weather Prediction. Solves shallow 

water equations using finite difference 

approximations.  

su2cor 2332 / 35 SPEC’95 FP. Quantum Physics. Masses of 

elementary particles are computed in the Quark-

Gluon theory.  

mgrid 484 / 12 SPEC’95 FP. Electromagnetism. Calculation of a 3D 

potential field. 

applu 3868 / 16 SPEC’95 FP. Fluid Dynamics/Math. Solves matrix 

system with pivoting. 

turb3d 2101 / 23 SPEC’95 FP. Simulation. Simulates turbulence in a 

cubic area. 

apsi 7361 / 96 SPEC’95 FP. Weather Prediction. Calculates 

statistics on temperature and pollutants in a grid.  

wave5 7764 / 105 SPEC’95 FP. Electromagnetics. Solves Maxwell's 

equations on a cartesian mesh. 
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Before analysing and comparing various execution times, it is important to 

determine the precision of the timing on the particular platform. Execution time is 

generally measured using the system timer and can oscillate from run to run due to 

various operating system management processes. An additional tool has been created 

to measure the precision of the execution time. It executes the same time-consuming 

application 10 times and measures the deviation of the execution time. For the Alpha 

platform with Unix operating system, the obtained precision is 0.2 seconds. For the 

Pentium platform with Windows 2000 operating system, the original precision is 2.5 

seconds. However, after setting the execution priority of the application just one 

level above normal, the precision becomes 0.5 seconds. Therefore, both platforms 

have a deviation less than 0.4% in execution time for all the programs used in the 

experiments. 

C     this subroutine is executed 8 times 
      IMPLICIT REAL (A-F) 
      PARAMETER (N=512) 
      COMMON Y, A(N,N), B(N,N), C(N,N) 
      DO I=1, N 
       DO J=1, N 
        DO K=1, N 
         A(I,J)=A(I,J)+B(I,K)*C(K,J) 
        END DO 
       END DO 
      END DO 

(a) matmul 

C     this subroutine is executed 256 times 
      IMPLICIT REAL (A-F,X) 
 
      PARAMETER (N=2048) 
      COMMON Y, A(N,N) 
 
      DO J=2, N-1 
       DO I=2, N-1 
        A(I,J)=A(I,J)+(A(I+1,J)+A(I-1,J)+A(I,J+1)+A(I,J-1))*0.00001 
       END DO 
      END DO 

 (b) sor 

 
Figure 4.2: Source code of matmul and sor kernels 
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4.3 Impact of program transformations 

The aim of this section is to show the variable impact of program transformations 

on the program performance and to demonstrate why finding the best transformation 

parameter using known static and dynamic methods fails on modern platforms. It 

demonstrates that the impact of program transformations is of a non-linear nature and 

that it varies across different machines, underlining the challenge in developing 

portable automatic optimisation approaches. The impact of array padding, loop 

unrolling and loop tiling is examined using the small matmul kernel and the large 

swim benchmark on two platforms. 

4.3.1 Array padding 

Several studies of the cache behaviour of various programs reviewed in detail in 

sections 3.1.3 and 3.2.3, show that many programs exhibit severe conflict misses, 

which degrade performance considerably. In such cases, intra- and inter-variable 

array padding is one of those program transformations that can be used to reduce 

conflict misses by inserting dummy data entries between the columns of arrays. 

Previous studies show a potentially large number of conflict misses in the cache 

behaviour of both matmul and swim programs. Therefore, array padding can be an 

effective transformation to improve their performance.  

To simplify the experiments, intra-variable array padding is applied to all arrays 

simultaneously with the same parameter within the range of 1 to 64. This also 

changes the base address of each array, thus indirectly performing inter-variable 

array padding as well. Figure 4.3 demonstrates the changes in the execution time for 

matmul on the Alpha and Pentium platforms as a function of the array padding 

parameter and figure 4.4 presents the same experiments for swim on both platforms. 

These experiments show that matmul and swim have indeed a large number of 

conflict misses that can be removed by array padding. This simple and effective 

transformation considerably improves program performance. It improves matmul 

performance by approximately 70% on the Pentium platform and by approximately 

40% on the Alpha platform. Array padding improves the performance of the swim 

benchmark by approximately 45% on the Alpha platform and by approximately 25% 
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on the Pentium platform. These figures also show that the influence of array padding 

varies considerably across platforms. This is due to the fact that the effect of array 

padding depends on the cache organisation as shown in section 3.1.3. The oscillatory 

behaviour of array padding is due to the limited size and associativity of the cache. 

This means that array layouts and base addresses are changing in such a way after 

array padding, that they are mapped to the same cache lines periodically. Matmul has 

a higher performance improvement than swim because it performs less calculations 

per memory access and thus has a higher potential speed-up when cache misses are 

removed. 

These experiments also explain why current static optimisation methods often 

fail to improve program performance after applying array padding. Static methods 
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 Figure 4.3: Execution time for varying array padding factors (matmul) 
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often use approximations to be tractable and may lack important run-time 

information such as array base addresses. Therefore, if these methods mispredict the 

array padding parameter even by a small factor in comparison with the best one, the 

overall performance can degrade considerably. For example, the difference in the 

execution times of the swim on the Alpha platform for the optimal padding factor 9 

and for the following padding factor 10 is approximately 43%! The performance 

degradation for the same benchmark on the Pentium platform is also significant, 

approximately 14%, if padding factors 6 or 8 are selected that are close to the 

optimal padding factor 7. 

 

Figure 4.4: Execution time for varying array padding factors (swim) 
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4.3.2 Loop tiling 

Loop tiling is used to improve cache reuse within a loop nest by dividing its 

iteration space into tiles as described in section 3.1.2. Various studies reviewed in 

section 3.2.2, show the effectiveness of this transformation in improving program 

performance when the data footprint of the original loop nest is bigger than the cache 

size. Since loop tiling changes the memory access pattern for the loop nest, it can 

also be used on its own or with array padding for removing conflict misses for this 

loop nest. Previous studies presented in section 3.2.3, introduce complex static 

techniques to analyse cache reuse for loop nests and to choose the best tile factor in 

such a way that tiles fit cache and exhibit minimum conflict misses. 

Figure 4.5 shows the changes in the execution time for matmul on two platforms 

as a function of the loop tiling parameter. Analysis of these results shows that the 

original matrix multiplication algorithm for matrices bigger than the caches size has 

a poor locality, which can be improved using loop tiling. Graphs for both the Alpha 

and Pentium platforms have two distinct flat areas: approximately from 4 to 32 and 

from 46 to 255 for matmul on the Alpha platform, and from 32 to 122 and from 172 

to 212 for this kernel on the Pentium platform. These results reflect the fact that both 

systems have two levels of cache and that tiles with the increasing size first fit level 

one cache and then fit level 2 cache. It is also possible to see some oscillations near 

the minimum in the graph for the Alpha platform in comparison with the relatively 

smooth graph for the Pentium platform. This can be explained by conflict misses 

occurring on the Alpha platform due to the limited associativity of its caches. The 

Pentium platform has a higher associativity of caches and therefore is capable of 

removing these misses at the hardware level.  

Figure 4.6 shows the changes in execution time for the swim benchmark on two 

platforms as a function of the loop tiling parameter applied consecutively to the three 

most time consuming loops. As in the case of matmul, there are execution time 

oscillations near the minimum area for all three swim loops on the Alpha platform. 

However, loop tiling behaviour is different on the Pentium platform where one loop 

has multiple small oscillations while the other two loops have relatively smooth 

graphs. The loops in the swim benchmark perform more calculations per memory 
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access than matmul loops and therefore have less improvement after applying 

memory transformations. 

Many static methods exist for analysing data locality and for choosing the best 

tile parameter as described in sections 3.2.2 and 3.2.3. They work reasonably well to 

eliminate capacity misses on simple kernels such as matrix multiplication. However, 

these methods encounter similar problems on complex programs with both conflict 

and capacity misses, as in the case of array padding. They lack the precision and run-

time information to predict conflicts between memory accesses. These methods are 

evaluated in detail in section 6.5 where they are compared to the optimisation 

methods developed in this thesis. 
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 Figure 4.5: Execution time for varying loop tiling factors applied to the 
most time consuming loop (matmul) 
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4.3.3 Loop unrolling 

Loop unrolling described in section 3.1.4 is used to improve ILP by increasing 

the number of operations within a single loop iteration, and to improve data locality 

by reducing the number of memory accesses through better register reuse. On the 

other hand, loop unrolling increases the size of the code that may result in 

performance degradation if the transformed code is larger than the instruction cache 

size. Naturally, as the code grows, the effect of loop unrolling depends on the 

number of available registers and on other hardware resources. Thus, high loop 

45
47
49
51
53
55
57
59
61
63
65

0 32 64 96 128

loop tiling parameter

pr
og

ra
m

 e
xe

cu
tio

n 
tim

e 
(s

ec
.)

0 32 64 96 128
loop tiling parameter

0 32 64 96 128

loop tiling parameter

 
(a) Alpha platform 

105

110

115

120

125

130

0 32 64 96 128

loop tiling parameter

pr
og

ra
m

 e
xe

cu
tio

n 
tim

e 
(s

ec
.)

0 32 64 96 128
loop tiling parameter

0 32 64 96 128
loop tiling parameter

 
(b) Pentium platform 

 Figure 4.6: Execution time for varying loop tiling factors applied to the three 
most time consuming loops (swim) 



 

76

  

unrolling factors can degrade the performance of large loops, and small unrolling 

factors are generally beneficial as shown in studies presented in section 3.2.1. 

Figures 4.7 show the changes in the execution time for matmul on two platforms 

as a function of the loop unrolling parameter within the range of 2 to 128. Both 

graphs have similar behaviour. The execution time decreases rapidly on both graphs 

for small unrolling factors until 15 on the Alpha platform and until 7 on the Pentium 

platform. Further, performance improvements slow down and are negligible on both 

platforms. This shows that after some unrolling factor threshold, all hardware 

resources are utilised and all the potential ILP is exploited. These graphs also show 

that loop unrolling either improves performance or at least does not degrade it for the 

Figure 4.7: Execution time for varying loop unrolling factors applied to the 
most time consuming loop (matmul) 
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kernel within the chosen range of unrolling factors. This is explained by the fact that 

matmul is a small and simple kernel with a high register reuse. Therefore, the 

transformed code fit the instruction cache for all chosen unrolling factors. 

The behaviour of loop unrolling is different for larger loops. This situation is 

demonstrated in figure 4.8 that presents graphs with changes in execution time for 

the large swim benchmark on two platforms as a function of the loop unrolling 

parameter. Loop unrolling is applied to the three most time consuming loops of this 

benchmark. There are small improvements in the execution time after applying loop 
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 Figure 4.8: Execution time for varying loop unrolling factors applied to the 
three most time consuming loops (swim) 
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unrolling with small factors for all three loops on the Alpha platform with a sharp 

performance degradation after a certain parameter, which is 6 for the first loop, 4 for 

the second loop and 16 for the last loop. The little improvements in this benchmark 

performance in comparison with matmul  is explained by the fact that the body of the  

original loop is already large enough to exploit ILP and there is a little potential for 

further improvements. The sharp performance degradation shows that the 

transformed code becomes larger than the instruction cache size after a particular 

unrolling factor. There is a less sharp performance degradation on the Pentium 

platform after applying loop unrolling with large factors and is explained by the fact 

that this platform has a complex instruction set. Therefore, both the original and 

transformed programs are considerably more compact than on the Alpha platform 

and fit the instruction cache for larger unrolling factors. 

The oscillations that can also be seen in both the matmul and swim graphs 

depend on many factors, for example the way the compiler allocates registers and the 

way the processor executes instructions and predicts branches. These oscillations 

demonstrate that choosing a fixed unrolling factor or using static techniques for 

predicting ILP generally improves the performance for small kernels but may not be 

optimal or can even degrade performance for large programs such as the SPEC 

benchmarks. 

The experiments presented in this section show a high potential for improving the 

program performance using array padding, loop tiling and loop unrolling. It also 

demonstrates why modern static and dynamic optimisation techniques often fail to 

deliver this performance improvement. The following section presents a new 

feedback-directed optimisation method that considerably outperforms the state-of-the 

art compilers with no architectural knowledge. 

4.4 Basic search strategy 

The main objective of a compiler optimisation strategy is to decide which 

transformations to apply. It is usually guided by information obtained using static or 

dynamic analysis and heuristics that reduce the transformation space considered. The 

majority of existing research in optimisation via high level restructuring relies on 

static information and often fails to achieve the best performance due to the 
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imprecision of models, as described in sections 3.1 and 4.3. Furthermore, due to a 

highly erratic behaviour of each transformation, determining the best combination for 

an arbitrary program and platform is very difficult. To overcome this problem, the 

approach presented in this thesis primarily deals with developing search-based 

iterative compilation techniques that are solely based on dynamic information and 

have minimal or no architectural knowledge at all. 

Ideally, iterative compilation is a process that creates multiple variants of a 

program for all possible transformations, executes them and chooses the one with the 

Figure 4.9: Basic search strategy algorithm 

1. profile original program 

2. choose set of arrays and loops 

3. apply data transformations: 

o apply array padding (1..Na) for all global arrays 

o run program variant and record the best execution time  

o select the best transformation (minimal execution time) 

4. apply loop transformations: 

for each selected loop nest: 

for each loop from this nest: 

if loop is not innermost and is within a perfect nest: 

o apply loop tiling (2..Nt) for the loop nest 

o run program variant and record the best execution time 

if loop is innermost: 

o apply loop unrolling (2..Nu) for the innermost loop without tiling 

o run program variant and record the best execution time 

if the best tiling factor is found for the enclosing iterators  

within the loop nest: 

o choose best tiling transformation 

o apply loop unrolling (2..Nu) for the innermost loop 

o run program variant and record the best execution time 

select the best transformation for the loop nest 

(either loop unrolling or a combination of both loop tiling and loop 

unrolling) 
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best performance. However, the transformation search space for real programs can be 

overwhelmingly large  making it impossible  to investigate  within a reasonable time.  

For instance, consider the swim benchmark from the SPEC suite with 14 arrays 

and 8 double-nested loops, and only three transformations: array padding with 

parameters up to 64, loop tiling with parameters up to 256, and loop unrolling with 

parameters up to 128. The search space for this benchmark consists of approximately 

1052 possible different transformations that is unrealistic to explore. An additional 

problem is that the same dataset has to be used during iterative compilation. This 

means that the best variant of the program found during iterative compilation for the 

particular dataset may not be optimal if dataset size or content are changed. A 

potential solution is to optimise a program several times for some typical datasets 

with the most time consuming branches taken and to embed the conditional checks 

on the dataset into the final program to choose different optimised versions. 

However, this is out of the scope of this thesis. Preliminary results of using smaller 

datasets for iterative compilation, shown later in section 6.6, demonstrate such a 

possibility. However, this is out of the scope of this thesis. Therefore, the datasets of 

the programs studied in this thesis have a fixed size and the influence of their content 

on the optimisation process is a subject for future research.  

Figure 4.9 presents a new basic search strategy algorithm that reduces the search 

space dramatically by considering data and loop transformations separately one by 

one instead of all combinatorial options. Initially, the program is profiled and those 

subroutines that dominate execution time are marked. Only loop nests and arrays 

referenced within these subroutines are selected for the search strategy to remove 

unimportant loops from further investigation. 

As data transformations are global in effect, they are considered first on the 

assumption that local loop transformations can later compensate for some adverse 

effects that can be caused locally by the global data transformations. First, array 

padding is applied to the first dimension of the marked arrays. If there are Na 

padding factors to consider and m arrays, then the number of different padding 

combinations is Na
 m. To reduce this complexity, each array is padded with the same 

factor, reducing the number of iterations to Na. For each array padding parameter, a 
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new variant of the program is executed and the best padding factor, according to the 

minimal execution time, is selected.  

When the process of choosing the array padding factor is completed, the best 

array padding transformation is incorporated in all further program variants. After 

that, loop transformations are applied sequentially. For each loop from a selected 

loop nest, if this loop is not innermost and is within a perfect loop nest then loop 

tiling is applied with factors from 2 to Nt. Each new variant of the program is 

executed and the best execution time is recorded. When the loop is innermost, loop 

unrolling is applied first with factors from 2 to Nu. Each new variant of the program 

is executed and the best execution time is recorded. Further, according to studies 

presented in chapter 3, applying a combination of loop tiling and loop unrolling can 

potentially achieve better performance improvements than after applying each 

transformation on its own. Therefore, if the best loop tiling factor has been found for 

the outer enclosing iterators within this loop nest, the loop tiling with this parameter 

is applied and loop unrolling is further applied for the innermost loop with factors 

from 2 to Nu. Each new variant of the program is executed and the best execution 

time is recorded. Finally, the best sequence of transformations, which is either loop 

tiling or loop unrolling or a combination of both, is selected for this loop nest to be 

used with the following transformations. 

This basic optimisation strategy considerably reduces the search space. For 

example, the search space for the swim benchmark from the SPEC suite mentioned 

above is reduced from approximately 1052 variants to approximately 2500 possible 

variants. Though this number is still high, it can be tolerable for small programs and 

kernels with a long lifetime that need to be well optimised, thus making this 

approach a realistic alternative to other optimisation methods. However, this basic 

strategy treats data and loop transformations, which may potentially influence each 

other, separately and therefore may not achieve the best possible performance. 

Nevertheless, the following evaluation section shows that this simplified strategy can 

still achieve considerable performance improvements without architectural 

knowledge compared to current compiler static and feedback-directed optimisation 

techniques.  
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4.5 Experimental results 

Development of any new optimisation technique should ideally be compared 

with methods implemented in the best commercial optimising compilers. The 

following optimising compilers are chosen for the experiments: 

• Digital Fortran 5.2 (Alpha platform) 

• Intel Fortran 6.0 (Pentium platform) 

Both compliers support static data and loop transformations. However, since static 

optimisation methods can fail to achieve the best performance on rapidly evolving 

hardware or may even degrade it, dynamic methods are used as well. Both of the 

above compilers support feedback-assisted compilation. Briefly, it consists of three 

steps: program instrumentation where special code is inserted into the program to 

obtain run-time information, execution of the instrumented code to collect this run-

time information, and finally feedback-assisted compilation where the program is 

optimised using run-time information. 

For further reference and comparison all applications are compiled using three 

options: 

Opt.1) maximum internal optimisations with data and loop transformations 

disabled; 

Opt.2) maximum internal optimisations with data and loop transformations 

enabled; 

Opt.3) feedback-assisted optimisations. 

This allows comparison of the best static and dynamic optimisation methods 

implemented in the state-of-the-art compilers with the new techniques developed in 

this thesis. It also allows one to analyse the influence of static compiler data and loop 

transformations on the program performance. 

The execution times for 2 kernels and 8 SPEC benchmarks used in the 

experiments with the optimisations described above for the Alpha and Pentium 

platforms are presented in table 4.2 with the best execution times highlighted. Figure 

4.10 present graphs with execution time improvements of Opt.2 and Opt.3 over 

Opt.1 on both platforms, where improvement is calculated as 
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%100⋅
−

Toriginal
ToriginalTnew . These results support the statement made in the previous 

sections that current static and dynamic optimisation techniques with data and loop 

transformations are still not efficient and may even degrade performance. On the 

Alpha platform, internal static compiler optimisations are only capable of achieving a 

considerable performance improvement, approximately 30%, on matmul when 

applying data and loop transformations. Swim, su2cor, applu and wave5 have 

performance improvements between 10 and 15% after loop and data transformations; 

sor, mgrid and apsi have a negligible performance improvement; tomcatv has its 

performance slightly degraded and finally, turb3d has its performance degraded 

considerably by 20%. Feedback-assisted optimisations perform better only on mgrid 

and wave5 on the Alpha platform. For all other codes, dynamic optimisations fail to 

improve on static optimisations on the Alpha platform. On the Pentium platform, the 

influence of both static and dynamic optimisations on program performance is 

insignificant. Similar to the Alpha platform, some codes have performance 

improvements while others has their performance degraded, but in all cases, the 

change in the execution time is less than 3.5% of the original time. Furthermore, 

feedback-directed optimisations slightly degrade the performance of mgrid and apsi. 

These results for the Pentium platform can be explained by its smaller cache size, 

lower memory throughput and higher instruction latencies common for CISC 

platforms as described in section 2.1.2. Furthermore, Digital Fortran for the Alpha 

platform has an aggressive optimisation engine and therefore can achieve better 

performance.  

The basic search strategy is evaluated on the same programs on the Alpha and 

Pentium platforms. All applications are first profiled to choose the subroutines that 

dominate execution time. Within each chosen subroutine, all loop nests and arrays 

referenced are selected for the use in the basic search strategy. The maximum array 

padding factor has been chosen as Na = 64. The maximum loop tiling and unrolling 

factors have been chosen as Nt = 512 and Nu = 512. To compare the efficiency of the 

search strategy with the best commercial compilers, table 4.3 presents execution time 

improvements achieved after applying iterative compilation with the basic search 



 

84

  

strategy relative to Opt.1, Opt.2 and Opt.3, and figure 4.11 presents a graph with 

these results. 

Since iterative compilation selects only the best variants of the transformed 

program, it achieves performance improvement in all cases unlike best static and 

feedback directed optimisation methods that may degrade performance of some 

codes. Moreover, iterative compilation achieves high performance improvements on 

small kernels that have relatively few loops and arrays after several thousands of 

iterations.  The  original  matmul   has  a  poor  data  reuse  that  can  be  dramatically  

 Alpha platform Pentium platform 

Application: Opt.1 Opt.2 Opt.3 Opt.1 Opt.2 Opt.3

matmul 45.2 31.1 31.1 86.4 83.9 85.0

sor 48.4 48.4 48.4 48.9 48.9 48.9

tomcatv 79.9 83.1 82.0 144.8 144.3 140.6

swim 83.6 71.4 71.4 131.7 132.5 131.8

su2cor 79.5 69.6 70.1 170.1 169.6 168.8

mgrid 85.3 84.6 80.1 189.0 188.9 191.1

applu 93.5 83.0 84.3 170.2 166.6 164.4

turb3d 137.1 163.6 150.1 190.5 188.7 189.3

apsi 62.0 60.1 60.3 111.0 110.2 113.5

wave5 73.5 65.3 62.5 121.3 119.3 119.0

 
Opt.1)  maximum internal optimisations with data and loop transformations disabled: 

 “-O4” for the Alpha platform, 

 “/O2 /Qunroll0” for the Pentium platform; 

Opt.2)  maximum internal optimisations with data and loop transformations enabled: 

 “-O5” for the Alpha platform, 

 “/O3 /Qunroll” for the Pentium platform; 

Opt.3)  feedback-assisted optimisations: 

 “-O5 -feedback” for the Alpha platform, 

 “/O3 /Qunroll /Qprof_use” for the Pentium platform. 

 Table 4.2: Application execution times after internal compiler optimisations 
(best times are highlighted) 
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improved using padding, tiling and unrolling as described in various studies 

presented in chapter 3. After iterative compilation, matmul achieves a considerable 

performance improvement of 80.1% on the Alpha platform over Opt.1 and an even 

higher improvement of 92.6% on the Pentium platform. Sor has better locality and 

therefore less potential for improvement after memory optimisations. Nevertheless, 

this kernel still achieves a considerable performance improvement of 28.6% on the 

Alpha platform after iterative compilation and 16.0% on the Pentium platform. On 

average, both kernels achieve around 54% performance improvement on both 

platforms after 1599 iterations over Opt.1. These kernels achieve considerable 
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(b) Pentium platform 
 

Figure 4.10: Execution time improvements (%) of Opt.2 and Opt.3 over Opt.1 
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performance improvements of 50% on the Alpha platform and of around 54% on the 

Pentium platform on average even over Opt.2 that are high loop and data 

optimisations and over Opt.3 that are feedback directed optimisations. Such high 

improvements after iterative compilation are due to simple loop structures of such 

kernels that allow easy, straightforward and efficient memory optimisations of the 

code. However, this may not be the case for real large applications with multiple 

loop nests where data reuse occurs across nests [MT99]. In such cases, transforming 

loop nests separately can potentially reduce overall optimisation effect. Nevertheless, 

results presented in table 4.3 and figure 4.11 for eight SPEC’95 benchmarks show 

that iterative compilation with the basic search strategy is capable of achieving high 

performance improvements even on real complex applications with multiple loop 

nests.  

Improvements vary considerably across applications and platforms. For the 

Alpha platform, performance improvements vary between 13.0% and 45.1% and for 

the Pentium platform between 4.8% and 22.5%. The number of iterations needed for 

the optimisation varies between 5694 and 27180 for both platforms as the same 

number of loops and arrays has been selected for simplicity. It should be noted that 

the higher number of iterations means that more loops have been selected for the 

optimisations. However, it does not necessarily mean that the achieved performance 

improvement is higher as naturally not all loops can benefit from memory 

optimisations. For example, swim has the highest performance improvement of 

45.1% over Opt.1 among all other SPEC benchmarks on the Alpha platform after 

only 6205 iterations and one of the highest performance improvements of 18.0% on 

the Pentium platform. On the contrary, applu has one of the lowest performance 

improvements of 16.0% among SPEC benchmarks on the Alpha platform after a 

considerable 27180 iterations and the lowest improvement of 4.8% on the Pentium 

platform. This can be explained by the fact that swim has only three most time 

consuming loops with a simple structure operating with large two-dimensional 

matrices that can be easily transformed and can benefit the most from memory 

optimisations. In contrast, applu has several time consuming loops with either 

complex structures or non-perfectly nested loops operating on five-dimensional 

matrices and are difficult to transform.  
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Execution time improvements: Application: Number of 
iterations: Over Opt.1 Over Opt.2 Over Opt.3 

matmul 1599 80.1% 71.1% 71.1% 

sor 1599 28.6% 28.6% 28.6% 

average 
(kernels) 

1599 54.4% 49.9% 49.9% 

tomcatv 7738 29.6% 32.3% 31.4% 

swim 6205 45.1% 35.7% 35.7% 

su2cor 9280 26.5% 16.0% 16.7% 

mgrid 14905 22.5% 21.9% 17.5% 

applu 27180 16.0% 5.4% 6.9% 

turb3d 5694 30.1% 41.4% 36.2% 

apsi 10813 13.0% 10.2% 10.6% 

wave5 7744 24.2% 14.6% 10.8% 

average 
(benchmarks) 

11195 25.9% 22.2% 20.7% 

(a) Alpha platform 

 
Execution time improvements: Application: Number of 

iterations: Over Opt.1 Over Opt.2 Over Opt.3 

matmul 1599 92.6% 92.4% 92.4% 

sor 1599 16.0% 16.0% 16.0% 

average 
(kernels) 

1599 54.3% 54.2% 54.2% 

tomcatv 7738 4.8% 4.5% 2.0% 

swim 6205 18.0% 18.5% 18.0% 

su2cor 9280 7.4% 7.1% 6.7% 

mgrid 14905 13.0% 13.0% 13.9% 

applu 27180 4.8% 2.8% 1.5% 

turb3d 5694 9.1% 8.3% 8.6% 

apsi 10813 22.5% 22.0% 24.2% 

wave5 7744 17.4% 16.1% 15.8% 

average 
(benchmarks) 

11195 12.1% 11.5% 11.3% 

(b) Pentium platform 
Table 4.3: Execution time improvements (%) after iterative compilation with 

the basic search strategy over Opt.1, Opt.2 and Opt.3 
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Naturally, the outcome of iterative compilation as well as the performance 

improvements after static or dynamic optimisations depends heavily on the processor 

architecture, memory hierarchy and compiler technology used as shown in chapter 3 

and in section 4.3 and therefore can vary considerably across different platforms. The 

results presented in table 4.3 for SPEC benchmarks demonstrate this statement. For 

example, tomcatv, su2cor and turb3d have considerable performance improvements 
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(b) Pentium platform 
 Figure 4.11: Execution time improvements (%) after iterative compilation with 

the basic search strategy, Opt.2 and Opt.3 over Opt.1 
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on the Alpha platform of around 30% whilst the same benchmarks have relatively 

small improvement of around 5 to 9% on the Pentium platform. Apsi, on the other 

hand, achieves better performance improvement of 22.5% on the Pentium platform 

than on the Alpha platform where its improvement is smaller of 13.0%. Finally, 

mgrid and wave5 have high performance improvements on both platforms. Such 

variations are explained by differences between CISC and RISC architectures of the 

used platforms and by differences in memory hierarchy: the Alpha platform has 

larger caches but with less available associativity than the Pentium platform. 

When compared to Opt.2 that are static compiler loop and data optimisations and 

Opt.3 that are feedback-directed optimisations, iterative compilation should achieve 

less performance improvements. The above experiments for both kernels and SPEC 

benchmarks prove this statement. Iterative compilation achieves 54.4% improvement 

for kernels on average over Opt.1 and 49.9% over Opt.2 and Opt.3 on the Alpha 

platform. It achieves 54.3% improvement for the same kernels on average over Opt.1 

and 54.2% over Opt.2 and Opt.3 on the Pentium platform. SPEC benchmarks have 

performance improvements of 25.9% on average over Opt.1, 22.2% over Opt.2 and 

20.7% over Opt.3 on the Alpha platform and performance improvements of 12.1% 

over Opt.1, 11.5% over Opt.2 and 11.3% over Opt.3 on the Pentium platform. These 

figures show that though performance improvements after iterative compilation with 

the basic search strategy are slightly smaller for Opt.2 and Opt.3 than Opt.1, overall 

they are considerable for all kernels and for most of the benchmarks. The smaller 

average performance improvements on the Pentium platform in comparison with the 

Alpha platform are explained by the limitations of optimisations on CISC platform 

due to higher instruction latencies and due to smaller cache size and lower memory 

throughput. Nevertheless, these results are remarkable, considering that this search 

strategy does not have knowledge of the underlying hardware and has a minimal 

knowledge about the program structure. This is important for optimising programs 

on rapidly evolving hardware since performance improvement varies considerably 

from one platform to another. Besides, it shows the high potential for performance 

improvements that modern static and dynamic methods fail to explore. The following 

chapters will compare the obtained results with other methods and will present a new 

realistic approach for predicting best potential performance for programs. 
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To demonstrate the iterative compilation process in detail, figure 4.12 shows the 

execution time of the transformed matmul kernel on the Alpha and Pentium 

platforms during each iterative step and the best achieved execution time. Matmul 

has a single subroutine and a triple-nested loop referencing three arrays. All three 

arrays have been selected for iterative compilation. However, only the inner and 

outer loops have been selected for iterative compilation for the sake of simplicity and 
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 Figure 4.12: Changes in execution time during each iterative step (matmul) 
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to reduce the number of iterations. Therefore, iterative compilation for this kernel 

consisted of four major steps:  

• global array padding (1..64); 

• loop tiling of the outer loop (65..576); 

• best loop tiling of the outer loop plus loop unrolling of the inner loop 

(577..1088); 

• loop unrolling of the inner loop (1089..1599), 

where numbers in brackets show iterations that belong to each step. The above 

graphs demonstrate that optimisations depend heavily on the hardware and that best 

transformation factors vary considerably across platforms. For example, the best 

performance for matmul on the Alpha platform is achieved using array padding and 

loop tiling, whilst on the Pentium platform it is achieved using array padding and the 

combination of loop tiling and unrolling. This also demonstrates the difficulties 

which static optimisation methods face, as these techniques should not only consider 

separate transformations but also their combinations. 

The basic search strategy presented in this chapter has a major drawback: the 

time spent for program optimisation is considerably higher that used by modern 

static or dynamic approaches – it can require thousands of runs of program variants. 

This can be acceptable and useful for optimising small programs and kernels whose 

lifetime is greater than the overall optimisation time, but in many other cases the 

iterative compilation time is unacceptable. To overcome this drawback, the following 

chapters will investigate the possibilities in finding the trade-off between the speed-

up and the iterative compilation time by reducing the search space and by using 

advanced search strategies. 

4.6 Summary 

This chapter shows the influence of array padding, loop tiling and unrolling on 

application performance, and describes a new iterative optimisation approach 

including all these transformations that outperforms current static and feedback 

directed compiler techniques. This approach allows optimisers to adapt to any new 

platform by way of feedback directed iterative compilation. Considerable speed-up 
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has been achieved after applying iterative compilation for two well-known kernels 

and eight SPEC FP benchmarks across two platforms compared to the results 

obtained using native high-level restructurers and platform-specific profile-directed 

optimisers that employ the same transformations. Furthermore, iterative compilation 

never degrades program performance unlike current static and dynamic methods that 

can considerably degrade it. 

This chapter shows that it is possible to dramatically outperform current static 

and dynamic optimisation methods using iterative compilation with the same or a 

smaller set of transformations, regardless of the platform. The major drawback of the 

new approach is a very large number of iterations making it very time-consuming. 

To overcome this problem the next chapters investigate new techniques to predict the 

possible performance improvements before applying costly iterative compilation and 

describe new search strategies to dramatically reduce the search space. 
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Chapter 5 
 

Performance Prediction 
 

This chapter describes a new fast and accurate technique that can predict the 

potential benefit from applying memory transformations to various program sections. 

Since the optimisation process can be tedious and time-consuming, this technique 

allows the removing of those program sections from the optimisation process that do 

not have the potential for performance improvement. It is particularly important for 

iterative compilation where investigating only one loop nest may require thousands 

of executions of program variants. This technique is platform-independent and 

transforms the assembler code of the original program so that the new program 

variant does not exhibit cache misses. Thus, profiling the original and new program 

followed by a comparison of execution times provides a fast evaluation of the 

potential benefit from applying memory transformations that target cache misses. 

The advantages of this technique over existing ones are compared at the end of this 

chapter. Chapter 6 shows how this performance prediction technique effectively 

reduces the search space.  

5.1 Introduction 

In performance critical applications, memory latency is frequently the dominant 

overhead and in many cases, automatic compiler-based optimisations to improve 

memory performance are limited.  As shown in the previous chapter, in the majority 

of such cases iterative compilation provides a significant performance improvement. 

However, this method is excessively time-consuming and is therefore unrealistic to 

use in general purpose computing. Furthermore, as the potential benefit from 

optimisation is unknown there is no way to judge the amount of effort worth 

spending and there are no criteria from which to decide when the optimisation 

process should stop, i.e. when the optimal memory performance has been achieved or 

sufficiently approached.  
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This leads to the following technical question: is it possible to estimate the 

potential benefit of memory program optimisation before applying costly iterative 

compilation? While it is difficult to provide an accurate value of the expected 

execution time beforehand, a new technique for estimating a lower bound on 

execution time for scientific applications is proposed and described in this chapter. 

Memory transformations and most of the current memory optimisations 

described in detail in chapter 3 attempt to remove cache misses. Therefore, the lower 

bound on execution time of a program or the potential execution time of a program 

after memory optimisations is defined here as the execution time of a program if all 

its cache misses are removed. Obtaining this lower bound on old in-order-execution 

processors can be relatively straightforward by using hardware counters: the 

execution time of the original program minus the number of misses (as recorded by 

hardware counters) times the memory access latency would provide an accurate 

lower bound on execution time [HP96]. However, modern superscalar processors 

described in detail in section 2.1 have non-blocking caches, out-of-order execution, 

complex memory hierarchies and can continue executing the program in parallel with 

memory accesses instead of stalling. Thus, it is not possible to deduce the no-miss 

execution time directly based only on the execution time of the original program and 

the number of misses. This is empirically demonstrated further in section 5.7 of this 

chapter. 

Processor simulators, such as SimpleScalar described in section 3.3.2, provide a 

simple means to compute this lower bound, as it is trivial to modify a processor 

simulator so that it mimics perfect cache behaviour. However, processor simulators 

have several major drawbacks. Firstly, they generally model only the processor while 

the whole system can have a strong impact on memory performance: the way the 

TLB is reloaded, the bus arbitration mechanism, the physical to virtual mapping in 

lower cache levels and the type of memory (SDRAM, DDRAM), for example. 

Consequently, there is a need for a system simulator rather than a processor 

simulator.  Secondly, it is difficult to develop a processor simulator that accurately 

models an existing processor without privileged access to the processor internal 

workings, so that an accurate system simulator would require a significant effort to 

accurately model the chip set, the memory chips, the operating system and all other 
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components. Finally, processor simulators are extremely slow: a simulated program 

on a current superscalar processor runs several hundred times slower than normal 

execution as described in section 3.3.2. Whether the simulator is used only once at 

the beginning of the optimisation process or worse, at each step, such a slowdown is 

rarely acceptable for most of the programs and is not tolerable for applications whose 

execution time exceeds a few minutes. 

As the whole system architecture needs to be taken into account and excessive 

analysis time is unaffordable, simulators do not provide a satisfactory means for 

computing the execution time lower bound. In this chapter, a new technique that is 

both fast and reasonably accurate for estimating the execution time lower bound of a 

program is described. This technique has been implemented and tested on a wide 

range of programs and has been compared to other existing techniques. 

5.2 Motivation and example 

This section provides a motivating example, illustrating the assembler 

modification technique to remove almost all cache misses without affecting the 

remainder of the program. The general approach is to modify the program so that it 

retains the characteristics of the original program but induces the minimal number of 

misses. Therefore, the execution time of the instrumented program or its specific 

parts will provide a lower bound on execution time of the original program once all 

cache misses have been eliminated. 

In numerical scientific programs where loops dominate the execution time, 

almost all cache misses are due to array references within these loops.  The baseline 

of the new technique is to transform each individual array reference into a scalar 

reference. The memory footprint, i.e. the number of unique memory references of the 

resulting program is negligible compared to the original footprint and the number of 

misses is close to zero.  The challenge is to make sure that this transformation will 

not affect the rest of the program and its execution on a superscalar processor. 

Consider the array reference A[i] in the fortran loop in figure 5.1 (a). After 

compiling on the Alpha platform, this reference is translated into the assembly code 

shown in figure 5.1 (b), where integer register $19 contains the current target address 

of the load instruction, i.e., the base address of array A plus loop counter i times the 
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size of one memory element (8 bytes in this example). Lda is a misleading acronym, 

it is not a load instruction but an add instruction dedicated to address computations. 

So in this case, it increments register $19 by 8 to fetch the next element of array A. 

The load instruction, ldt, fetches the data located at the address stored in register $19 

into a floating-point register $f13. These two instructions correspond to the array 

reference A[i]. 

Assume now that ldt instruction is modified as shown in figure 5.1 (c), where 

register $19 is substituted with the constant register $28 to access memory.  Before 

executing the loop, register $28 is set to a constant address which points to a memory 

address with preloaded data values that remain invariant throughout execution. The 

following ldt instructions within the loop will also use register $28 to access memory 

but with different offsets 8, 16 etc. that are multiples of a single word, to point to 

DO i = 1, N 

  ... = A[i]  

  ... = B[i+1] 

  ... 

ENDDO 

 original code 

 (a)  

 lda  $19,    8($19) 

 ldt $f13,     ($19)  ; ... = A[i] 

 ldt $f14, 8192($19)  ; ... = B[i+1]  

 assembler code 

 (b)  

 

 

lda  $19, 8($19)                lda  $19,    0($19) 

ldt $f13,  ($28)                ldt $f13,     ($19) 

ldt $f14, 8($28)                ldt $f14, 8192($19) 

changing memory changing address 

access instructions increment instruction 

 (c)  (d) 

 Figure 5.1: Assembler transformations to predict potential performance 
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their own constant memory locations. Thus, the assembler instruction ldt $f14, 

8192($20) corresponding to the access to the array B will be further transformed to 

ldt $f14, 8($28). 

The new transformed code has all the same instructions; the same number of 

computations is performed and data dependencies are preserved between instructions 

operating on registers, but now addresses referenced by each instruction ldt are 

constant over the whole loop execution. Consequently, the memory footprint of 

reference A[i] is reduced from N x 8 bytes to just 8 bytes. Considering the minimum 

cache size is around 8 Kbytes, and that the number of references is significantly less 

than a 1000 within do-loops, the memory footprint after transformation will almost 

always fit in cache and then only induce as many compulsory misses as the number 

of array references in a loop, which is negligible. 

Another way of transforming the assembler code to remove cache misses also 

exists. If the increment of the address register $19 is set to zero as shown in figure 

5.1(d), then throughout the loop iterations the ldt instruction will load floating point 

register $f13 with the same data referenced by the base address of the array A. This 

technique gives the same performance prediction, as the first one. However, it 

requires a complex analysis of all instructions dealing with index calculations, and of 

dependencies between them and the memory access instructions. Moreover, it is 

platform and compiler dependent. For this reason, it has been abandoned in this 

research in favour of the first technique, which can be used with any language and 

can be easily ported to different platforms. 

Naturally, once the code has been transformed as above, it no longer executes 

correctly.  Therefore, a copy is made of each program segment of interest at the 

assembler level and modified as described above.  First, the instrumented segment is 

executed and then the original segment is executed to enable normal program 

execution. However, the instrumented segment can still modify variables so that the 

program may not run correctly afterwards.  For this reason, backup and restore 

procedures for saving and restoring all modified registers are added before and after 

the instrumented segment respectively. For example, consider a subroutine calc2 

from the SPEC benchmark swim and the transformed assembler code as shown in 

figure 5.2 where calc2_prep_ is the backup procedure, calc2_tr_ is the instrumented 
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segment, calc2_restore_ is the restore procedure, calc2_ is the original segment and 

br is the assembler instruction for branch and return. calc2_prep copies a minimal set 

of the data values accessed by the original segment into a new data area to be used by 

the modified program segment. In addition, all register values are saved and later 

restored. The transformed routine calc2_tr_ is modified to refer to a greatly reduced 

number of data values residing in a special data area so that the number of cache 

misses is close to zero. Once it is executed, the registers are restored to their earlier 

values in calc2_restore_. Finally, the original segment calc2_ is executed. After 

profiling the modified program on subroutine level with high precision using 

hardware counters, the execution time of the transformed segment calc2_tr_ will be 

the lower bound execution time of the original segment calc2_. 

In the next section, a transforming algorithm for predicting performance is 

described in detail. Its implementation on two platforms is also presented and is 

evaluated on a wide range of programs. 

5.3 Performance prediction algorithm 

Figure 5.3 outlines the algorithm used to determine the lower bound of the 

execution time. During the first step, the original program is profiled to select 

sections of this program that dominate the execution time, typically loop nests. 

During the second step, the program is instrumented and calls after each memory 

reference are inserted to record data values referred to by the first execution of each 

load/store instruction. During step three, the modified program is executed to collect 

and store all necessary data values. Step four is the main modification procedure. A 

... 

br calc2_prep_    # Preparing data for transformed       

                  # segment, and saving all registers 

 

br calc2_tr_      # Executing transformed segment 

br calc2_restore_ # Restoring registers 

calc2_:  ...      # Executing original segment 

... 
 Figure 5.2: Program modifications to ensure correct code execution after 

performance prediction transformation 



 

99

  

duplicate copy of the appropriate routine is created. This copy is transformed so that 

all array references become scalar references, and the number of memory accesses is 

reduced to the smallest possible footprint whilst maintaining dependences and 

referring to valid data. Routines for saving and restoring registers are then inserted 

into the program. Finally, the entire program is executed and the necessary profile 

data is collected. 

5.3.1 Collecting data values 

The purpose of the technique is to minimise references to memory in order to 

determine a lower bound on execution time. A naive approach would be to simply 

replace all load/store operations with NOOPs. However, this would alter the 

scheduling of the program and more importantly cause a large number of exceptions 

due to arithmetic on non-initialised register values. Alternatively, all load and store 

operations could refer to one initialised memory location, which would be 

permanently in L1 cache after the first reference. Although reducing floating-point 

exceptions, this will make every memory operation dependent on each other, 

radically changing the behaviour of the program. Therefore, an approach proposed 

here is to run the original program, obtain the values of the data referred to by each 

memory operation on its first execution, and then to transform all those operations to 

always refer to these constant values.  This dramatically reduces the footprint of the 

program since an array reference traversing N elements of an array will now only 

1. Profile original program and select the segments of interest   

2. Instrument program segments to collect run-time data values and addresses 

3. Run instrumented program 

4. Transform program:  

o create copies of each segment 

o allocate memory for preset values  

o transform instructions with memory access inside each segment  

so that they reference to preset values, analysing and keeping data 

dependencies 

5. Profile transformed program 

 Figure 5.3: Performance prediction algorithm 
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refer to the first element. This also reduces the likelihood of introduced exceptions as 

all memory operations reference to their own locations with the appropriately 

initialised values.  

Obtaining the required data is achieved by inserting a jump to a data collection 

subroutine after each memory operation. Before jumping to the collection routine, 

the instruction number is pushed onto the stack, together with the memory location 

referred to, as shown in figure 5.4 (a), where instruction_no is simply the location in 

memory of the particular load/store instruction. Within the collection subroutine, the 

memory location and its value referred to in the original memory operation are saved 

to two arrays. Addr contains the instruction_no of the memory instruction plus the 

memory address referred to while value contains the actual value referred to i.e. 

Mem[address]. Only the first data value referred to by an instruction is stored and 

therefore an additional check array is used.  

instruction_no: load/store dest_reg, Mem[address] 

 push instruction_no  

 push address 

 br collect 

 code modification to collect data values 

 (a)  

if check[instruction_no] == 0 then 

 check[instruction_no] = 1  

 addr[next].ins_no = instruction_no 

 addr[next].add = address 

 value[next] = Mem[address] 

 next = next + 1 

else  

 Mem[instruction_no+word_size] = NOOP // overwrite 1st push 

 Mem[instruction_no+2*word_size] = NOOP // overwrite 2nd push 

 Mem[instruction_no+3*word_size] = NOOP // overwrite branch  

endif 

 data collection procedure with self-modifying code 

 (b)  

Figure 5.4: Data collection for performance prediction transformation 
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The data collection routine that obtains all the necessary data is shown in figure 

5.4 (b). Its major drawback is that the additional overhead of jumping to a subroutine 

on every memory access is prohibitively expensive. In some cases, it increased the 

execution time by a factor of 20, which can be unacceptable for large applications. 

To overcome this problem, self-modifying code is introduced. This code overwrites 

the original push and subroutine jump instructions with NOOPs (no operation 

instructions) once data has been collected for the first execution of any instruction. 

Thus, instead of jumping to the collection routine each time a load/store is executed, 

it only takes place once, increasing the execution time of the instrumented program 

for obtaining runtime data no more than 10% from the original execution time in all 

experiments.  

5.3.2 Removing cache misses 

The new technique maps all array references into scalar ones, reducing the 

memory footprint and the number of misses. The algorithm for this transformation is 

presented in figure 5.5. First, the number of instructions with memory access is 

counted (instr_num) in the assembler code for each selected program segments with 

the number seg. Then, memory is allocated with the address addr_preset[seg] and 

the size instr_num * word_size to keep preset data values for the transformed 

program to ensure correct code execution. Further, each instruction with memory 

access within the selected program segment is transformed to reference preset data 

with address addr_preset[seg] + instr * word_size. The transformed code has the 

same instructions and the same number of calculations is performed. However, all 

for each selected program segment (seg): 

• count number of instructions with memory access (instr_num) 

• allocate memory with address addr_preset[seg] 

and size instr_num *  word_size to keep preset data 

for each instruction with memory access (instr) within the program segment: 

• transform this instruction so that it references preset data 

with address addr_preset[seg] + instr *  word_size 

  Figure 5.5: Performance prediction transformation algorithm for removing 
cache misses 
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references within the selected program segment are constant during program 

execution so that the memory footprint of all references is considerably reduced in 

comparison with the original program.  

5.3.3 Preserving data dependences 

Obtaining a realistic lower-bound execution time requires preserving the 

properties of the original program in the transformed one. The algorithm for the 

performance prediction transformation, shown in figure 5.5 preserves the number 

and the type of all instructions, and the data dependencies between instructions 

operating on registers in the new code. However, it also removes all data 

dependencies between instructions with memory access since they refer to different 

locations in the specially allocated memory for preset data values. 

In order to maintain the same data dependence structure of the original program, 

it should be ensured that if two memory access instructions reference the same 

memory location in the original code, they should reference the same memory 

location with preset data values in the transformed code. In case of dynamically 

allocated memory, addresses are not available at a compile time. However, the data 

collection procedure described in section 5.3.1 obtains run-time addresses and data 

values for all instructions with memory access. Comparing these run-time addresses 

allows one to detect instructions referencing the same memory location. Therefore, 

they can be further modified to reference the same memory location during 

performance prediction transformation.  

The proposed technique for preserving data dependencies has two potential 

drawbacks. First, it cannot track and preserve dynamic dependencies, i.e. those data 

dependencies that are changing during the program execution. Second, it cannot 

preserve inter-iteration dependencies between instructions with memory access, i.e. it 

preserves data dependencies only for the first iteration of the loop. A partial solution 

to these problems is to obtain the lower bound of the execution time twice, with and 

without preserved dependencies. If the execution times are similar, then there is no 

influence of data dependencies on the particular program performance and, therefore, 

lower bound execution time is valid. If there is a considerable difference, then the 

obtained execution time is not guaranteed to be the lower bound. However, in all 
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experiments presented in this chapter, the difference in lower bound execution times 

with and without preserved data dependencies between instructions with memory 

access is less than 1%. This can be explained by the fact that calculations are 

performed on the same registers in both the original and transformed programs. 

Therefore, data dependencies are preserved between instructions even if dynamic 

addresses are different in the transformed program. 

5.3.4 Ensuring correct code execution 

Once all array references of the selected segments of the analysed code are 

transformed into scalar references, the program does not execute correctly and may 

even crash due to the use of undefined array values by its unchanged segments. 

Therefore, a copy of each program segment of interest is created at the assembler 

level and modified as described above.  First, the instrumented segment is executed 

and then the original segment is executed to enable normal program execution. The 

instrumented segment does not modify program variables as it access only specially 

allocated memory with preloaded data, but it still modifies registers so that the 

program does not yet run correctly.  For this reason, backup and restore procedures 

for saving and restoring all registers are added before and after the instrumented 

segment respectively. Figure 5.6 presents an algorithm that ensures correct code 

execution. Three procedure calls are embedded before each selected segment. The 

for each selected program segment: 

• duplicate this segment to be instrumented  

during performance prediction transformation 

• embed calls to the following procedures  

before the selected program segment: 

o procedure for saving the state of all registers and initialising 

the memory with preset data to be used by the transformed 

segment 

o procedure with the  transformed program segment 

o procedure for restoring the state of all registers  

 Figure 5.6: Algorithm to ensure correct execution of the transformed code 
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first procedure saves the state of all registers and initialises the memory with preset 

data. This data is used in the second procedure that is the copy of the original 

program segment transformed for the performance prediction. The third procedure 

restores the state of all registers. 

5.3.5 Array indirection and control flow 

There is a potential problem when applying the performance prediction 

transformation to the programs with array indirections or arbitrary control-flow. 

Array indirections frequently cause problems for static analysis due to compile-time 

unpredictability. However, since the values for all indirections are gathered during 

step 2, these values are saved and referred to later in the modified form of the 

program. Hence, indirection or other complex addressing such as tree structures do 

not cause difficulties. On the other hand, arbitrary control-flow does cause problems. 

A conditional within a loop whose value is dependent on an array element will be 

assigned to either true of false for the entire duration of the loop in the proposed 

approach. This is due to the first referenced value of the array being loaded each time 

for the entire loop. Currently, such references are left unmodified. Alternatively, the 

number of times a particular branch is taken may be recorded and replicated in the 

modified code to give a more accurate prediction. Such cases are the subject of the 

future research and are currently avoided. 

5.4 Implementation 

The performance prediction technique described above should be implemented in 

the code generation phase of a compiler in the ideal case. However, due to the 

inevitable lack of access to the internals of the processor vendors' compilers, this 

technique is implemented as a post code generation, standalone assembler 

modification transformation independent of high-level language. To show the 

portability across platforms with different instruction sets a complete toolset for the 

automatic analysis and instrumentation of codes has been developed for two 

platforms briefly described in section 4.2.2: Compaq Alpha and Intel Pentium. These 

are both superscalar processors with out-of-order execution and have two levels of 
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cache. However, the instruction sets of these processors are very different in 

structure and are based on RISC and CISC design philosophies, respectively. These 

designs are briefly described in section 2.1.1. 

5.4.1 Alpha platform 

Implementation of the performance transformation algorithm at assembler level 

requires changing instructions with memory access. The Alpha platform has a 

reduced instruction set where only load and store instructions can access memory 

and all other instructions operate on registers. Load and store instructions in the 

Alpha assembler have the following format: 

instruction_type  $data_register, offset($address_register) 

Instruction_type is the type of a load or store instruction such as ‘lds’ for loading 

long word, 'ldt' for loading quad word, 'sts' for storing long word and 'stt' for storing 

quad word, for example. $Data_register is any floating-point register within a range 

of $f0 .. $f31. $Address_register is any integer register with memory address within 

a range of $0 .. $30 (register $31 always contains the value 0). 

For performance prediction, the above instructions should be changed to 

reference preset data in the specially allocated memory. Compaq compilers leave 

register $28 free for other purposes. Therefore, this register is used to keep the base 

address of the memory with the preset data. It is initialised before executing the 

transformed program segment where all the instructions with memory access have 

their $address_register and offset replaced by the register $28 and by the appropriate 

offset as described in detail in section 5.3.1.   

5.4.2 Pentium platform 

Transforming the assembler code is different on the Pentium platform, as it uses 

a complex instruction set. References to memory can be embedded within most of 

the instructions in this instruction set, unlike the reduced instruction set where only 

load and store instructions can access memory. The memory referencing part of 

instructions with memory access on the Pentium assembler has the following format: 

word_type  PTR  immediate_address + offset1[address_register_expression] 
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where 'PTR' indicates that the instruction has a memory access; word_type is the 

type of the used word such as 'DWORD' for loading or storing double words or 

'QWORD' for loading or storing quad words, for example. The address part of the 

instruction may consist of an immediate address and its offset plus an 

address_register_expression that can be a complex linear expression such as 

register1+register2*const.  

To predict performance, the address part of the instructions should be changed to 

reference memory with preset data. Since immediate addresses are allowed in 

instructions on the Pentium platform, the address part is simply replaced to give the 

following expression: 

word_type  PTR  addr_preset[seg] + instr *  word_size 

where addr_preset[seg] is the immediate address of the memory with preset data and 

instr * word_size is the offset of the preset data for the particular instruction, 

described in detail in section 5.3.1. The techniques developed for the Pentium and 

Alpha platforms demonstrate that little platform specific modifications are required 

even for radically distinct ISAs. 

5.5 Experimental results 

The experiments for determining a lower bound on execution time are performed 

on both the Alpha and Pentium. The same programs are selected as in the previous 

chapter: matmul, sor and eight benchmarks from the SPEC’95 benchmark suite using 

reference datasets. The most time-consuming loops of these programs are selected 

for the performance prediction transformation. Due to architectural differences of the 

Alpha and Pentium platforms, the program execution also varies on these platforms. 

Therefore, the most time-consuming loops are not necessarily the same on both 

platforms. These program segments are further transformed to obtain a lower bound 

on execution time. The execution times of the original and transformed versions and 

their respective IPC (instruction per cycle) are measured using a high precision 

profiler and hardware counter support. These figures and the potential speed-up for 

each program segment are presented in table 5.1 for the Alpha platform and in table 

5.2 for the Pentium platform.  
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The results obtained demonstrate large variations in potential performance 

improvement among various program segments of the examined applications. Most 

of the programs on both platforms contain both loops with a very high potential 

speed-up and those with negligible potential. For example, loop main_1 from the 

matmul kernel has a high potential speed-up of 9.4 on the Alpha platform. On the 

same platform, loops main_5 from the tomcatv benchmark, sweep_2 from the su2cor 

Program: Procedure and 
loop number: 

Original 
time:

Original 
IPC:

Transf. 
time

Transf. 
IPC: 

Speedup:

matmul main_1 31.1 0.3 3.3 2.5 9.4
sor main_1 48.4 0.5 28.6 0.8 1.7
tomcatv main_1 28.9 1.0 12.3 2.4 2.3
 main_2 8.4 0.5 4.8 1.0 1.8
 main_3 19.3 0.3 4.8 1.6 4.0
 main_4 10.0 0.8 2.4 3.3 4.2
 main_5 11.5 0.6 2.4 2.2 4.8
swim calc1_1 19.9 1.0 9.3 2.3 2.1
 calc2_1 25.0 1.1 9.4 2.9 2.7
 calc3_1 24.0 0.9 6.5 3.2 3.7
su2cor adjmat_1 3.9 1.4 1.6 3.4 2.4
 bespol_1 3.6 2.4 2.6 3.5 1.4
 matadj_1 4.0 1.4 1.7 3.4 2.4
 matmat_1 10.8 1.2 4.0 3.4 2.7
 sweep_2 3.5 0.6 0.7 3.1 5.0
mgrid Psinv_1 22.0 1.9 18.6 2.3 1.2
 resid_1 43.4 1.9 34.9 2.3 1.2
 rprj3_1 7.4 1.0 3.7 1.9 2.0
applu buts_1 16.0 0.7 6.4 1.7 2.5
 jacu_1 12.9 0.9 5.2 2.3 2.5
 rhs_3 3.9 1.5 2.4 2.4 1.6
 rhs_4 4.1 1.5 2.6 2.3 1.6
turb3d dfct_1 19.6 0.8 5.9 2.6 3.3
 dfct_2 11.0 2.0 6.6 3.4 1.7
 Trans_1 8.1 2.6 7.8 2.7 1.0
apsi hyd_1 4.2 0.5 1.3 1.5 3.2
 Leapfr_2 3.2 0.5 0.7 2.5 4.6
 radb4_1 1.0 3.3 1.0 3.3 1.0
 radb4_2 3.3 2.5 3.3 2.5 1.0
 radf4_2 2.1 2.5 2.1 2.5 1.0
 trid_1 4.0 0.6 2.8 0.9 1.4
 trid_2 3.8 0.5 2.3 0.9 1.7
 ucrank_1 2.0 2.0 1.9 2.0 1.0
wave5 parmvr_1 1.4 1.0 1.1 1.3 1.3
 parmvr_3 8.2 0.8 3.7 1.8 2.2
 parmvr_4 4.9 2.1 2.6 3.0 1.9
 parmvr_5 1.1 1.3 1.1 1.3 1.0
 parmvr_11 4.5 1.0 1.8 2.6 2.5
 Table 5.1: Original and lower-bound execution times with IPCs (Alpha 

platform) 
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benchmark and leapfr_2 from the apsi benchmark have a potential speed-up close to 

5. On the other hand, loops psinv_1 and resid_1 from the mgrid benchmark, trans_1 

from the turb3d benchmark, radb4_1, radb4_2, radf4_2 and ucrank_1 from the apsi 

benchmark and parmvr_5 from the wave5 benchmark have a negligible potential 

performance improvement. 

 

Table 5.2: Original and lower-bound execution times with IPCs (Pentium 
platform) 

 

Program: Procedure and 
loop number: 

Original 
time:

Original 
IPC:

Transf. 
time

Transf. 
IPC: 

Speedup:

matmul main_1 83.9 0.1 6.2 1.6 13.5
sor main_1 48.9 0.3 13.0 1.2 3.8
tomcatv main_1 47.4 0.4 21.5 1.2 2.2
 main_2 13.4 0.4 3.7 1.4 3.6
 main_3 32.5 0.1 11.3 0.5 2.9
 main_4 25.6 0.1 3.2 1.6 8.0
 main_5 24.3 0.1 1.8 1.4 13.5
swim calc1_1 41.7 0.4 25.3 0.7 1.6
 calc2_1 40.7 0.3 13.7 1.1 3.0
 calc3_1 48.8 0.2 9.3 1.4 5.2
su2cor adjmat_1 14.7 0.3 3.5 1.2 4.2
 bespol_1 15.8 0.2 2.9 1.1 5.4
 matadj_1 15.7 0.3 3.5 1.1 4.5
 matmat_1 37.7 0.3 8.5 1.2 4.4
 sweep_2 9.8 0.1 0.7 1.4 14.0
 sweep_3 2.0 0.1 1.7 0.1 1.2
 sweep_4 3.1 0.5 2.8 0.7 1.1
mgrid psinv_1 49.8 0.4 26.3 0.9 1.9
 resid_1 105.0 0.4 47.7 1.0 2.2
 rprj3_1 11.8 0.2 3.3 1.0 3.6
applu buts_1 34.7 0.5 15.5 1.2 2.2
 jacu_1 29.3 0.3 10.3 1.0 2.8
 rhs_2 6.7 0.5 4.5 0.9 1.5
 rhs_3 6.9 0.5 4.5 0.9 1.5
 rhs_4 7.2 0.5 4.4 0.9 1.6
turb3d dfct_1 31.7 0.2 7.6 1.6 4.2
 dfct_2 10.5 0.9 7.7 2.0 1.4
 fftz2_1 46.6 1.6 45.1 1.6 1.0
 trans_1 8.7 1.2 8.7 1.2 1.0
apsi dtdtz_1 4.6 0.1 1.0 0.6 4.6
 dvdtz_1 4.9 0.2 1.1 0.6 4.5
 leapfr_2 5.0 0.1 0.5 1.2 10.0
 trid_1 5.2 0.3 4.9 0.3 1.1
 trid_2 4.9 0.1 4.5 0.1 1.1
 ucrank_1 3.8 0.7 3.6 0.8 1.1
wave5 parmvr_1 4.1 0.1 4.1 0.1 1.0
 parmvr_3 14.7 0.2 3.0 1.2 4.9
 parmvr_4 15.3 0.3 5.2 0.9 2.9
 parmvr_5 4.5 0.1 4.5 0.1 1.0
 parmvr_11 8.1 0.3 2.0 1.6 4.1
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The potential speed-up can be used to drive further optimisations. The 

performance prediction technique can provide information about whether a loop is 

memory bound, i.e. when data is retrieved from memory slower than it can be 

processed, or not. In this way, it is similar to the static optimisation technique 

proposed by Carr and Kennedy and described in detail in section 3.2.1. However, the 

new performance prediction technique proposed in this chapter considers all the 

hardware and program run-time parameters and is precise.  

When a loop has a high potential speed-up, it is memory bound and can hence 

benefit from further memory optimisations. If the potential speed-up is negligible, 

the loop is either balanced or is compute bound, i.e. the rate of data retrieval from 

memory is faster than its processing rate. In this case, this loop will not benefit from 

memory optimisations. This can help to reduce the search space for iterative 

compilation by removing those loops from consideration that do not have potential 

speed-up as described in the next chapter. Compute-bound loops can benefit from 

optimisations that improve ILP such as software pipelining and loop unrolling, for 

example. However, ILP optimisations are beyond the scope of this research. 

Experiments performed on the Pentium platform show that loops with high 

potential speed-up are similar on both Alpha and Pentium platforms. This is 

explained by the fact that the execution time of memory bound loops where memory 

accesses dominate depends primarily on the memory design that is similar on both 

architectures. For example, loops main_1 from the matmul kernel, main_5 from the 

tomcatv benchmark, sweep_2 from the su2cor benchmark and leapfr_2 from the apsi 

benchmark have high potential speed-ups as on the Alpha platform, though to a 

different extent due to differences in the memory bandwidth of these architectures. 

The potential speed-up of compute-bound loops should also be negligible on both 

platforms as it does not depend on the memory access time and cache misses. Thus, 

loops trans_1 from the turb3d benchmark, ucrank_1 from the apsi benchmark and 

parmvr_5 from the wave5 benchmark have a potential speed-up close to 1 on both 

platforms and are compute bound.  All other loops have different potential speed-ups 

on both architectures as they heavily depend on both the processor architecture and 

the memory design. For example, loops psinv_1 and resid_1 from the mgrid 

benchmark have relatively high potential speed-ups of 1.9 and 2.2 respectively on the 
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Pentium platform while these loops have a negligible potential speed-up on the 

Alpha platform.  

It should also be noted that the IPC of the transformed loops varies considerably 

on both architectures and is not the ideal one (which is 4 for Alpha and 3 for 

Pentium). Therefore, it is not possible to obtain the lower bound execution time 

simply by multiplying the number of executed instructions and the ideal IPC for the 

targeted machine. 

Figure 5.7 shows the overall potential performance improvement and the 

execution time improvement after iterative compilation with the basic search strategy 

described in chapter 4 for each program on both processors. It demonstrates that 

although it is not guaranteed that the lower bound of the execution time can be 

achieved through selected transformations, performance improvements of some 

programs are close to the predicted potential improvements after iterative 

compilation with the basic search strategy. Besides, it shows that iterative 

compilation even with only three memory transformations is an efficient 

optimisation technique. For example, sor on the Alpha platform and matmul on both 

platforms achieve considerable performance improvements close to the potential 

ones. Thus, the lower bound execution time can be used as a realistic criterion to 

drive and stop optimisation process.  

Though it is possible to achieve the potential performance improvement for small 

kernels with simple loop structures due to easy, straightforward and efficient 

memory optimisations of such code, it is not the case for larger complex applications. 

For the Alpha platform, performance improvements of only three SPEC benchmarks 

- swim, mgrid and turb3d are relatively close to the potential ones. The performance 

improvements of all other benchmarks though considerable are still far from the best 

ones. This can be explained by the limited number of transformations used for 

iterative compilation. For example, these transformations do not tackle compulsory 

misses and memory bandwidth problem that can be efficiently optimised using 

prefetching as described in section 3.1.5 but is out of the scope of the thesis.  

Differences between potential performance improvement and improvement after 

iterative compilation are even more dramatic on the Pentium platform. There are big 

gaps in potential  and achieved performance  improvement for all SPEC benchmarks. 
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As in the case of the Alpha platform it can partly be explained by the complex loop 

structures of those programs and by lower efficiency of the selected transformations 

but more importantly are the differences in architectures of those two platforms. The 

Pentium platform has a slower memory system than the Alpha platform and therefore 

the potential for the improvement is higher when all cache misses are removed. 

However, CISC architectures have inherently higher instruction and memory 

latencies than RISC architectures. Therefore, the outcome of optimisations is smaller 

on the Pentium platform than on the Alpha platform. Nevertheless, it does not mean 
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(b) Pentium platform 

Figure 5.7: Overall potential and iterative performance improvement (%) 
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that the lower bound cannot be achieved as matmul achieved the potential 

performance improvement after iterative compilation on the Pentium platform, for 

example. To achieve this performance other optimisations should be considered and 

the influence of various transformations on each other should be analysed, which is 

the topic of future research. Therefore, performance prediction technique can also be 

used to analyse the efficiency of various optimisation techniques and transformations 

for the given programs and architectures. 

5.6 Performance validation 

To fully validate the fact that the instrumentation only affects memory behaviour 

and that the lower bound can effectively be interpreted, the following experiment is 

performed using a full processor simulator. The Alpha 21264 processor is modelled 

using the SimpleScalar tool described in section 3.3.2. This model is also modified in 

such a way that its cache is perfect, i.e., all memory requests hit in the first-level 

cache. Further, both the original swim program from the SPEC’95 benchmark and its 

transformed version for the performance prediction are executed on this simulator 

with normal and perfect cache. Since the performance prediction transformation 

removes all cache misses, the performance of the transformed program on the 

simulator with normal cache should be nearly identical to the performance of the 

original program on the simulator with perfect cache. Results presented in table 5.3 

confirm that instrumentation barely affects the overall program behaviour. The IPC 

of the transformed program run on the simulator with either normal or perfect cache, 

3.02, is near to the one of the original program when simulated with perfect cache, 

which is equal to 2.98. Results presented in table 5.4 show the number of cache 

accesses and misses for the original program and its transformed version run on the 

simulator with normal cache. These results also confirm that performance prediction 

transformation removes most of the L1 cache misses and most of the L2 cache 

accesses (large L2 cache miss ratio for the transformed code is not important since 

the total number of L2 cache accesses in the transformed program is negligible in 

comparison with the original program). 
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5.7 Comparison with existing techniques 

Many existing optimisations or performance prediction techniques, described in 

detail in chapter 3, attempt to predict and reduce the number of cache misses. It may 

be argued that information about the number of cache misses obtained through 

hardware counters can either guide optimisations or predict performance with less 

effort. Such techniques can attempt to determine the overhead due to memory access 

time directly using the information about cache misses obtained by hardware 

counters, subtract this from the original time to obtain the lower bound on execution 

time. These techniques may work well on old in-order-execution processors by using 

the following formula for CPU execution time:  

CPU execution time = (CPU clock cycles + memory stall cycles) * Clock cycle 

However, modern superscalar processors with non-blocking caches and out-of-order 

execution can considerably overlap CPU time and memory stall time, invalidating 

this formula. Furthermore, the impact of memory access can be severely 

underestimated by hardware counters. The following example illustrates this 

statement. Consider matmul shown in figure 5.8 (a). This kernel is executed on the 

Pentium platform and is profiled by the VTune tool [Int03b] using hardware 

 Original program: Program transformed for 
performance prediction:

IPC (simulator  
with normal cache): 

2.42 3.02

IPC (simulator  
with perfect cache): 

2.98 3.02

 

Table 5.3: IPC of the original and transformed programs obtained using the 
simulator with normal and perfect caches 

 Original program: Program transformed for 
performance prediction:

Number of L1 cache accesses: 295,705,805 298,213,871
Number of L1 cache misses: 7.2% 0.0%
Number of L2 cache accesses: 2,123,885 1,993
Number of L2 cache misses: 72.4% 61.62%
 

Table 5.4: Cache behaviour of the original and transformed programs 
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counters. The performance prediction technique is then applied to this kernel. 

Finally, it is optimised using iterative compilation with the basic search strategy 

described in chapter 4. The execution time, the number of data memory references 

and the miss ratio for L1 and L2 caches are shown in table 5.5 (a) for the original 

matmul and for its transformed and optimised versions. These results show that the 

original kernel exhibits a high number of cache misses on both cache levels. The 

performance prediction technique shows how this program would behave when all 

cache misses are removed. Iterative compilation with the basic search strategy is 

capable of eliminating most of the cache misses for this kernel so that its optimal 

execution time is close to the predicted lower bound time as expected.  

Another kernel shown in figure 5.8 (b) is synthetically generated from matmul. It 

is profiled on the Pentium platform using VTune tool. This kernel performs more 

calculations but on the same array references so that the overall number of data 

references and cache misses is the same. These figures are shown in table 5.5 (b), 

where a slight difference in the number of cache misses is determined by the 

hardware counter precision. Moreover, this kernel is also generated in such a way 

that its execution time is nearly the same as that of the original matmul, meaning that 

in both cases the memory accesses dominate the execution and all calculations are 

      DO I=1, N 
       DO J=1, N 
        DO K=1, N 
         A(I,J)=A(I,J)+B(I,K)*C(K,J) 
        END DO 
       END DO 
      END DO 
 

original matmul 

(a)  
      DO I=1, N 
       DO J=1, N 
        DO K=1, N 
         A(I,J)=A(I,J)+B(I,K)*C(K,J)+(B(I,K)+C(K,J))*(B(I,K)-C(K,J))  
        END DO 
       END DO 
      END DO 

synthetically generated kernel 

(b)  

 Figure 5.8: Original matmul and synthetically generated kernel 
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performed in parallel with memory stalls. In this case, optimisation techniques based 

on hardware counters, would expect the resulting optimised code for the modified 

matmul to have the same execution time as the optimised version of the original 

matmul. However, the performance prediction technique gives a potential lower 

bound on execution time for the new kernel approximately three times higher then 

that of the original kernel. This is validated by iterative compilation - 19.5 s. vs 7.6 s. 

Hardware counters techniques may also attempt to predict the lower bound on 

execution time using the following formula for the in-order processor [HP96]: 

Memory access overhead = Data references * (HitRateL1 * HitTimeL1 +  

MissRateL1 * (HitRateL2 * HitTimeL2 + MissRateL2 * HitTimeMain Memory)) 

For the above example, there are 1.3*109 data references and the average hit times is 

measured as follows: HitTimeL1 = 1.5 ns; HitTimeL2 = 8 ns; HitTimemain Memory = 152 

ns. Note that these figures depend on the processor and system configuration. After 

 Execution 

time: 

Number of 

data memory 

references: 

L1 cache  

miss ratio: 

L2 cache 

Miss ratio: 

Original kernel: 86.2 s. 1.3E9 0.452 0.448 

Transformed kernel for 

performance prediction: 

6.2 s. 1.3E9 0.000 0.000 

Optimised kernel after 

iterative compilation: 

7.6 s. 1.3E9 0.013 0.006 

original matmul 

(a)  
 Execution 

time: 

Number of 

data memory 

references: 

L1 cache  

miss ratio: 

L2 cache 

Miss ratio: 

Original kernel: 86.7 s. 1.3E9 0.445 0.447 

Transformed kernel for 

performance prediction: 

18.8 s. 1.3E9 0.000 0.000 

Optimised kernel after 

iterative compilation: 

19.5 s. 1.3E9 0.009 0.004 

synthetically generated kernel 

(b)  

 Table 5.5: Example demonstrating the advantage of the proposed performance 
prediction technique over the existing ones that are based on counting the 

number of cache misses 
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substituting the values from table 5.4 for the original matmul, the memory overhead 

is: 

Memory access overhead = 1.3*109 * ((1-0.452)*1.5 + 0.452*((1-0.448)*8 + 

0.448*152))*10-9 = 43.7 s. 

Using the simplified equation above leads to CPU computation time of 86.2 – 43.7 = 

42.5 s. If all cache misses are removed so that all accesses are to L1 cache only, the 

memory stall obtained from the above formula is 2 s. Thus the lower bound 

calculated solely from hardware counters is 42.7 s + 2 s = 44.7 s. However, this is 5.9 

times higher than the time of the highly tuned matmul and its lower bound predicted 

by technique presented in this chapter (44.7 s. versus 7.6 s.) and is 2.3 times higher 

than the lower bound of the synthetically generated kernel (44.7 s. versus 19.5 s). 

Therefore, the performance prediction technique described in this chapter provides a 

more realistic lower bound on the execution time. Furthermore, iterative compilation 

with the basic search strategy is capable of eliminating most of the cache misses for 

the modified matmul as well as for the original matmul so that their execution time 

are close to the predicted ones. This result demonstrates the advantage of using the 

performance prediction technique to obtain the lower bound execution times. 

Although, the lower bound execution time for the last kernel could be predicted 

using simulation, it will be thousands of times slower than the proposed performance 

prediction technique. Furthermore, the new method is superior to current techniques 

by being able to predict a lower bound on execution time for a particular application 

on a target platform without architectural knowledge of this platform and with a 

minimal amount of knowledge about the instruction set of this platform. 

5.8 Summary 

This chapter describes a new technique for the fast evaluation of the lower bound 

on execution time of program segments assuming that most cache misses have been 

removed. It is based on assembler modification and is accurate as all instructions are 

the same in the transformed code but load and store instructions refer to constant 

addresses. Data dependencies are preserved and the program is actually run on the 

targeted machine thus taking into account all system and architecture parameters. 

The performance prediction technique is validated on a cycle accurate simulator. 
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However, it is significantly faster than simulation since the execution time of the 

instrumented program is at most twice the execution time of the original program 

compared with a 500 to 2000 times slowdown for simulation based techniques. It 

also demonstrates that a majority of existing optimisations or performance prediction 

techniques that attempt to predict and reduce the number of cache misses are no 

longer valid on modern superscalar processors with non-blocking caches and out-of-

order execution.  

Though this technique does not guarantee whether or not the lower bound of the 

execution time can be achieved through transformations, it can determine program 

segments which have a memory problem and which are candidates for memory 

optimisations. The following chapter investigates the use of this lower bound 

calculation in predicting the performance improvement and in reducing the 

transformation space for advanced iterative compilation approaches to program 

optimisations. 
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Chapter 6 
 

Search Space Reduction 
 

This chapter extends iterative compilation beyond the basic search strategy 

described in chapter 4 by using the performance prediction technique presented in 

chapter 5 with a random search strategy. This dramatically reduces the number of 

iterations needed from thousands to less than a hundred and still achieves 

considerable performance improvements. Thus, iterative compilation becomes a 

realistic optimisation approach not only for the small kernels but also for a broad 

range of applications. The results obtained are compared with the basic search 

strategy and with other existing optimisation methods. Finally, a distinct method that 

can reduce the iterative compilation time by using smaller datasets during program 

optimisation is briefly considered. 

6.1 Introduction 

The two previous chapters describe an iterative optimisation technique that 

outperforms current commercial compilers and introduce a technique for determining 

a lower bound on execution time of a program. However, the compilation time for 

the iterative search is excessively high (thousands of iterations) making it usable only 

when the lifetime of a program is much higher than the time spent during its 

optimisation. Therefore, the goal is to dramatically reduce the number of iterations 

without sacrificing performance. 

This chapter describes a technique to significantly reduce compilation times with 

only 1-3% reduction in performance. It is achieved by using performance prediction 

to remove loops that do not have any potential speed-up from the iterative search, 

and by using a new random search strategy that investigates only a few random 

transformation factors instead of all possible ones. 
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6.2 Using performance prediction 

The performance prediction technique, described in chapter 5, determines a lower 

bound on execution time for arbitrary sections of a program. In practice, if used 

before applying a time-consuming iterative search for the best transformations, it can 

reduce the search space by selecting only those sections of the program that have the 

potential to be improved. This technique is fast. It needs only one preliminary run to 

collect various run-time information about a program that is only 10-15% slower 

than the execution time of the original program and a single run of the transformed 

code that is at most twice as slow as the original program. This time is negligible in 

comparison with the time needed to complete the iterative optimisation process, thus 

ensuring that there is no overall slowdown using this technique.  

To demonstrate the use of the performance prediction technique, matmul is 

analysed on the Pentium platform and results are presented in table 6.1 (a). The 

original time of this kernel is 83.9 s. and the predicted lower bound is 6.2 s. This 

means that there is a great potential for this kernel to be improved and therefore it 

should be further optimised. Iterative compilation is capable of improving the 

performance of the original kernel considerably by 92.6% after approximately 1600 

 Execution 
time:

Original kernel: 83.9s.
Original kernel transformed for performance prediction: 6.2 s.
Optimised kernel after iterative compilation 
(approximately 1600 iterations):  

6.8 s.

Optimised kernel transformed for performance prediction: 6.4 s.

(a) matmul 

 Execution 
time:

Original kernel: 48.9 s.
Original kernel transformed for performance prediction: 13.0 s.
Optimised kernel after iterative compilation 
(approximately 1600 iterations):  

41.1 s.

Optimised kernel transformed for performance prediction: 13.6 s.

(b) sor 

Table 6.1: Example demonstrating the use of the performance prediction 
technique in iterative compilation (Pentium platform) 
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iterations. The execution time of the optimised kernel is 6.8 s. that is close to the 

lower bound. Assume now, that the analysed code is already optimised. Performance 

prediction technique can be used to detect such cases. For example, applying this 

technique to the optimised kernel after iterative compilation provides a lower bound 

execution time of 6.4 s, which gives a performance improvement of approximately 

6%. Therefore, there is little potential for this code to be further optimised and it can 

be excluded from consideration. 

Although the prediction technique suggests which sections of the program have a 

potential to be improved, it does not guarantee that the lower bound execution time 

will be achieved through optimisation. To demonstrate this issue, consider the results 

for sor shown in table 6.1 (b). The original time of this kernel is 48.9 s. and the lower 

bound time is 13.0 s., which means that is 73.4% of the potential performance 

improvement. However, the time achieved after iterative compilation is 41.1 s. that is 

about 16.0% improvement. Such a big gap for sor on the Pentium platform is 

explained in section 5.5 and is briefly due to higher instruction and memory latencies 

on CISC architectures that demonstrate a high potential for improvement but are 

harder to achieve through selected optimisations than say on the Alpha platform. 

Nevertheless, it does not mean that the lower bound cannot be achieved. For 

example, matmul achieved the potential performance improvement after iterative 

compilation on the Pentium platform. Other optimisations such as prefetching should 

be considered, for example, to achieve this performance, but are beyond the scope of 

this thesis. Therefore, the performance prediction technique can be used for 

identifying those sections of the program that have a potential for improvement after 

memory optimisations and for excluding those loops from the iterative search that do 

not, thereby reducing the search space for iterative compilation. 

6.3 Random search strategy 

Using the performance prediction technique reduces the search space by selecting 

only those loops for further iterative compilation that have a potential for 

improvement. However, the most time consuming part of the iterative search strategy 

is applying all possible transformation factors within the chosen range.  
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To tackle this problem, new search algorithms should be used that apply fewer 

transformation factors. Kisuki et al. evaluates five search algorithms on three 

1. profile original program 

2. run performance prediction technique 

3. choose set of arrays and loops that dominate the execution time  

 and have the potential for the improvement 

4. apply data transformations: 

o apply array padding N times with a random padding factor (1..Na)  

for all global arrays 

o run program variant and record the best execution time 

o select the best transformation (minimal execution time) 

5. apply loop transformations: 

 for each selected loop nest: 

for each loop from this nest: 

if loop is not innermost and is within a perfect nest: 

o apply loop tiling N times with a random tiling factor (1.. Nt) 

  for the loop nest 

o run program variant and record the best execution time 

if loop is innermost: 

o apply loop unrolling N times with a random unrolling factor  

 (1..Nu) without tiling 

o run program variant and record the best execution time 

if the best tiling factor is found for the enclosing iterators  

within the loop nest: 

o choose best tiling transformation 

o apply loop unrolling N times with a random unrolling factor  

 (1..Nu) for the innermost loop 

o run program variant and record the best execution time 

select the best transformation for the loop nest 

(either loop unrolling or a combination of both loop tiling and loop 

unrolling) 

Figure 6.1: Random search strategy algorithm 
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benchmarks in [KKO+00]: genetic search, simulated annealing, pyramid or grid 

search, window search and random search. The grid or pyramid search strategy 

defines a top level grid over the search space from the basic strategy. Each point on 

this grid is ordered into a priority queue and is evaluated. The grid can be further 

redefined around the best points that minimise program overall execution time. The 

window search strategy defines windows over the search space. At first, there is only 

one window that covers the entire space. During iterative compilation, a number of 

samples is taken and ordered into a priority queue. Smaller windows are further 

defined around the best points and evaluated again. The random search strategy is the 

simplest one out of all presented here and picks transformation factors randomly 

during a given number of iterations. 

Simulated annealing is a search algorithm for a minimum in any general system 

using a rough analogy with a physical process of heating and then slowly cooling a 

metal into a minimum energy crystalline structure. During iterative compilation, the 

aim of this algorithm is to minimise the execution time of a program. At first, a point 

is selected randomly from the search space and all its neighbouring points are 

inspected. The system is subsequently moved to points with lower execution time. 

However, from time to time it is allowed to jump to a point with higher execution 

time to avoid potential traps in the local minima. 

Genetic search is also used to find the minimum execution time and is based on 

an analogy with evolution of living organisms. At first, an initial population 

consisting of 20 programs with random parameters is created. Second, a bit 

representation of tile and unroll factors is created and a crossover point is determined 

for a number of program variants. Further, the upper and the lower halves of this bit 

representation or “chromosomes” are concatenated. During the mutation phase, the 

remaining bits are flipped and the new population of programs is evaluated. Only 20 

programs with the minimum execution time are left in the new population and the 

rest is deleted. 

The evaluation of all these strategies shows that iterative compilation is capable 

of achieving high levels of optimisation in all cases. Furthermore, there is no 

significant difference in their efficiency – all the obtained speed-ups are within 5% of 

each other on average. However, there is a difference in the number of iterations to 
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obtain maximum speed-ups. Grid search is the slowest to reach the minimum of the 

execution time as the original grid is defined over the whole search space. Simulated 

annealing and random search strategies are the fastest and, finally, genetic and 

windows search strategies are in between. The results from this paper demonstrate 

that only a small fraction of the original search space is needed (0.03 to 0.05%) to 

reach 90% of the maximum speed-up after the basic search strategy.  

Due to the simplicity and efficiency of the random search strategy, a new 

modified algorithm is proposed here and presented in figure 6.1. It differs from the 

algorithm presented in chapter 4 by using the performance prediction technique and 

by using random factors, which is enough to reduce the number of iterations by up to 

two orders of magnitude. Selecting the same transformation factor is obviously 

wasteful and is avoided. Both algorithms are able to optimise not only small kernels 

but real large applications as well, unlike other iterative compilation methods 

described above. 

To demonstrate the advantages of the random search over the basic one described 

in chapter 4, matmul is optimised on the Pentium platform using both these 

strategies. The results presented in table 6.2 show the basic search strategy achieves 

92.6% performance improvement after 1599 iterations. On the other hand, applying 

the random search strategy achieves similar result of 91.7% improvement. However, 

 basic  
search 

strategy 

random 
search 

strategy 

Execution time of matmul: 83.9 s. 
Performance prediction time for matmul: 6.2 s. 
Execution time of the optimised matmul 
after iterative compilation: 

6.8 s. 7.5 s. 

Performance improvement  
after iterative compilation: 

91.9% 91.1% 

Number of iterations needed: 1599 20 
 

Maximum array padding factor Na = 64 
Maximum loop tiling factor Nt = 512 

Maximum loop unrolling factor Nu = 512 
 

Number of random tries for the random search strategy N = 5 
 Table 6.2: Comparison of the basic and random search strategies (matmul, 

Pentium platform) 
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it needs 80 times fewer iterations to achieve this result. In other cases, performance 

improvement can be lower, but the number of iterations needed to achieve it varies 

from 20 to 80 that is two orders of magnitude less than after using the original basic 

search strategy.  

6.4 Experimental results 

The random search strategy is evaluated in a similar manner to the basic search 

strategy described in chapter 4. All applications are evaluated on both the Alpha and 

Pentium platforms. To compare results with static and dynamic optimisations of the 

best state-of-the-art commercial compilers the following three compiler options are 

used: 

Opt.1) maximum internal optimisations with data and loop transformations 

disabled; 

Opt.2) maximum internal optimisations with data and loop transformations 

enabled; 

Opt.3) feedback-assisted optimisations. 

All applications are first profiled to choose the subroutines that dominate 

execution time. Within each chosen subroutine, all loop nests are selected and the 

performance prediction technique is applied as described in chapter 5 to eliminate 

those loops from the search space that have a negligible execution time or have a 

little potential for improvement after applying memory optimisations of less than 10-

15%, for example. Table 6.3 shows that there is a significant difference between the 

total number of loops in a program and the number of loops that have been selected 

for optimisation. This is due to the fact that SPEC benchmarks consist of a large 

number of loops, but not all of them dominate the execution time or have any 

potential for further improvement. Since most of the SPEC FP benchmarks are 

memory bound, only about 15% of loops that dominate execution time have been 

excluded from the search space after the performance prediction technique. All 

arrays referenced within the chosen loops are considered further. The maximum 

array padding factor, loop tiling factor and loop unrolling factors are the same as in 

the case of the basic search strategy: Na = 64, Nt = 512 and Nu = 512, respectively. 

The difference between this search strategy and the basic search strategy described in 
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chapter 4 is in trying only N random factors for each transformation instead of 

checking the whole range of all possible factors. If the number of tries is too high, 

the overall number of iterations is close to the one of the basic iterative search and 

the performance improvement is close to the improvement after basic search 

strategy. If the number of tries is too small, the overall number of iterations is small 

as well. In this case, the probability of finding the best transformation factors is low 

and the performance improvement may be negligible. After considering the results 

from the paper [KKO+00] and aiming to perform less than a maximum of one 

hundred iterations on the optimisation process to make iterative compilation a 

realistic approach for a broad range of applications, the number of random tries N for 

each transformation factor is chosen to be 5 for all kernels and SPEC benchmarks.  

Table 6.4 presents the execution time improvements achieved after applying 

iterative  compilation  with the  random search  strategy relative  to Opt.1,  Opt.2 and  

Opt.3. Table 6.5 and figure 6.2 compare the performance improvements after 

iterative  compilation  with  the  basic  and  random  search  strategies and present the  

 

Application: Total number of loops: Number of selected loops 

for the random search 

strategy: 

matmul 6 2

sor 5 2

tomcatv 16 5

swim 24 6

su2cor 117 4

mgrid 46 5

applu 168 5

turb3d 70 6

apsi 144 5

wave5 362 15

 
Table 6.3: Total number of analysed loops and the number of selected loops for 

the random search strategy 
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number of iterations needed to achieve these performance improvements for both 

strategies.  

Execution time improvements: Application: Number of 
iterations: Over Opt.1 Over Opt.2 Over Opt.3 

matmul 20 79.2% 69.8% 69.8% 

sor 20 11.2% 11.2% 11.2% 

average (kernels) 20 45.2% 40.5% 40.5% 

tomcatv 80 20.2% 23.3% 22.2% 

swim 50 43.3% 33.6% 33.6% 

su2cor 50 24.8% 14.1% 14.7% 

mgrid 40 15.5% 14.8% 10.0% 

applu 55 15.1% 4.4% 5.9% 

turb3d 45 27.6% 39.3% 33.9% 

apsi 65 11.5% 8.7% 9.0% 

wave5 80 23.4% 13.7% 9.9% 

average 
(benchmarks) 

58 22.7% 19.0% 17.4% 

(a) Alpha platform 

Execution time improvements: Application: Number of 
iterations: Over Opt.1 Over Opt.2 Over Opt.3 

matmul 20 91.7% 91.5% 91.6% 

sor 20 15.6% 15.6% 15.6% 

average (kernels) 20 53.7% 53.6% 53.6% 

tomcatv 80 2.4% 2.1% -0.5% 

swim 50 17.9% 18.4% 17.9% 

su2cor 50 6.5% 6.2% 5.7% 

mgrid 40 12.9% 12.9% 13.8% 

applu 55 0% -2.1% -3.5% 

turb3d 45 8.8% 8.0% 8.2% 

apsi 65 22.2% 21.7% 23.9% 

wave5 80 17.3% 16.0% 15.7% 

average 
(benchmarks) 

58 11.0% 10.4% 10.2% 

(b) Pentium platform 

Table 6.4: Execution time improvements (%) after iterative compilation with 
the random search strategy over Opt.1, Opt.2 and Opt.3 
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Random search strategy Basic search strategy  

Performance 

improvement: 

Number of 

iterations:

Performance 

improvement: 

Number of 

iterations:

matmul 79.2% 20 80.1% 1599

sor 11.2% 20 28.6% 1599

average (kernels) 45.2% 20 54.4% 1599

tomcatv 20.2% 80 29.6% 7738

swim 43.3% 50 45.1% 6205

su2cor 24.8% 50 26.5% 9280

mgrid 15.5% 40 22.5% 14905

applu 15.1% 55 16.0% 27180

turb3d 27.6% 45 30.1% 5694

apsi 11.5% 65 13.0% 10813

wave5 23.4% 80 24.2% 7744

average 

(benchmarks) 

22.7% 58 25.9% 11195

(a) Alpha platform 
Random search strategy Basic search strategy  

Performance 

improvement: 

Number of 

iterations:

Performance 

improvement: 

Number of 

iterations:

matmul 91.7% 20 92.6% 1599

sor 15.6% 20 16.0% 1599

average (kernels) 53.7% 20 54.3% 1599

tomcatv 2.4% 80 4.8% 7738

swim 17.9% 50 18.0% 6205

su2cor 6.5% 50 7.4% 9280

mgrid 12.9% 40 13.0% 14905

applu 0% 55 4.8% 27180

turb3d 8.8% 45 9.1% 5694

apsi 22.2% 65 22.5% 10813

wave5 17.3% 80 17.4% 7744

average 

(benchmarks) 

11.0% 58 12.1% 11195

(b) Pentium platform 
Table 6.5: Execution time improvements (%) and number of iterations needed 

after iterative compilation with the random and basic search strategies over 
Opt.1 
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(b) Pentium platform
Figure 6.2: Execution time improvements (%) after iterative compilation with 
the random search strategy and comparison with the basic search strategy and 

compiler optimisations 
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As in the case of iterative compilation with the basic search strategy, the random 

search strategy is also capable of achieving high performance improvements on 

kernels with a few loops and arrays. Moreover, the random search strategy needs 

only 20 iterations to obtain considerable performance improvements in contrast with 

1599 iterations needed for the basic search strategy. There is less than 1% difference 

between performance improvements of matmul for both search strategies on two 

platforms. Figure 4.11 from chapter 4 explains this result. It shows that graphs with 

changes in execution time during each iterative step for matmul on both platforms 

are relatively smooth and therefore there is a high probability of choosing optimal 

transformation factors after only a few random tries. However, the performance 

improvement of sor drops considerably on the Alpha platform after the random 

search strategy by approximately 17% in comparison with the improvement after the 

basic search strategy. In contrast, the same benchmark has only a negligible 

reduction in the performance improvement on the Pentium platform. This can be 

explained  by   the  fact,   that  the   impact  of   transformations  is   greater  and   the  

performance improvements are higher on the Alpha platform than on the Pentium 

platform due to architectural features as demonstrated in section 4.5. Hence, the drop  

in the overall performance is also higher on the Alpha platform. On average there is 

around 9% reduction in the performance improvement on the Alpha platform and 

less than 1% reduction on the Pentium platform for kernels after the random search 

in comparison with the basic search. Nevertheless, it is a considerable performance 

improvement and is achieved only after 20 iterations in comparison with thousands 

of iterations of the basic search. 

Performance improvements for SPEC benchmarks after iterative compilation 

with the random search strategy remain considerable and similar to ones after the 

basic search strategies on both platforms. For the Alpha platform, performance 

improvements vary between 11.5% and 43.3%. On the Pentium platform, applu is 

the  only  benchmark  that  does  not  have  any  performance  improvement  after the  

random search strategy that is explained by its complex structure and non-perfectly 

nested loops operating on five-dimensional matrices, which are hard to transform. 

Even using the basic search strategy, applu achieved only a small performance 

improvement of 4.8% after 27180 iterations. Therefore, using the random search 
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strategy with only 55 iterations is simply not enough to improve its performance. 

Nevertheless, all other benchmarks on the Pentium platform have significant 

performance improvements of up to 22.2%. Furthermore, the number of iterations 

needed to obtain such results is reduced considerably. It varies between 40 and 80 in 

contrast with the variation between 5694 and 27180 needed for the basic search 

strategy. On average, iterative compilation with the random search strategy 

performed well on both platforms with a small drop in performance improvement 

from 25.9% to 22.7% on the Alpha platform and from 12.1% to 11.0% on the 

Pentium platform. 

When compared to Opt.2 and Opt.3 that are static and feedback-directed native 

compiler optimisations respectively, the random search strategy achieves also 

slightly less performance improvement than after the basic search strategy. However, 

it is still considerable for most of the programs on both platforms with the exception 

of tomcatv and applu on the Pentium platform. These benchmarks have already 

negligible performance improvements after iterative compilation with the basic 

search strategy due to various reasons described in section 4.5, and the native 

compiler manages to slightly outperform the random search strategy. Nevertheless, 

on average the performance improvements are considerable of 19.0% and 17.4% 

over Opt.2 and Opt.3 respectively on the Alpha platform and of 10.4% and 10.2% on 

the Pentium platform. 

The experimental results obtained in this section show that using the performance 

prediction technique and the random search strategy dramatically reduces the number 

of iterations by about two orders of magnitude (370 times less in the case of mgrid) 

while still achieving considerable performance improvement comparable to the 

improvement obtained using the long basic search strategy. Besides, the random 

search strategy still outperforms the native compiler with either static or feedback-

assisted optimisations for most of the programs on both platforms without any 

knowledge  of  the  underlying  hardware  and  with  a  minimal knowledge about the  

program structure. Furthermore, the small number of iterations is needed to achieve 

such performance improvements demonstrates the possibility of using iterative 

compilation not only in narrow areas such as optimising kernels but also for 
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optimising general-purpose, time-consuming applications on rapidly evolving 

hardware. 

6.5 Comparison with existing techniques 

Although iterative compilation outperforms existing commercial compilers, it 

should also be compared against published state-of-the-art static techniques. Here it 

is compared to two well-known static optimisation techniques proposed by Lam et al. 

in [LRW91] and by Coleman and McKinley in [CM95]. Both techniques are briefly 

reviewed in section 3.2.3. These methods attempt to reduce conflict and capacity 

misses by using loop tiling.  

The algorithm for the first technique is presented in figure 6.3. It determines the 

largest square tile size that removes self-interference misses based on the periodicity 

in the addressing of a direct-mapped cache and the constant-stride accesses. This 

algorithm takes the matrix size N and the cache size C as the input and returns the 

largest tile size without conflict misses. The self-interference occurs between those 

array elements that are mapped into the same location in the cache and depends only 

algorithm FindB(N,C: integer) return integer; 

 addr, di, dj, maxWidth: integer; 

 

 maxWidth := min(N, C); 

addr := N/2; 

while true do 

 addr: = addr + C; 

 di := addr div N; 

 dj := abs((addr mod N) – N/2); 

 if di ≥ min(maxWidth, dj) then 

 return min(maxWidth, di); 

 maxWidth := min(maxWidth, dj); 

 end while; 

end algorithm; 

 Figure 6.3: Algorithm to compute the best tile size that removes self-
interferences (Lam et al.) 
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on the difference of their addresses. Therefore, for a given array Y[i,j], the algorithm 

attempts to find array words Y[di, N/2 ± dj] that are mapped to the same cache 

location. The returned largest best tile is the maximum of di and dj. 

The second technique presented in figure 6.4 determines rectangular tiles to 

remove both capacity and conflict misses based on making the working set of the 

loop nest smaller than the cache size and on minimising cross interference misses for 

the tiled nests. This technique assumes that the cache is direct-mapped. As an input, 

the algorithm has the cache size (CS), the line size (CLS) and the array column 

procedure TSS(CS, CLS, N, M) 

 Input:  CS: cache size,  CLS: cache line size, 

 N: column length, M: row length 

 Output:  tile size = bestCol * bestRow 

bestCol = oldCol =  N 

bestRow = rowSize = CS / N 

colSize = CS - bestCol * bestRow 

while (colSize > CLS & oldCol mod  colSize ≠  0 & rowSize < M ) 

 rowSize = computeRows (colSize) 

 tmp = colSize adjusted to a multiple of CLS 

 if ( WSet (tmp, rowSize) > WSet (bestCol, bestRow) 

 & WSet (tmp, rowSize) < CS 

 & CIR (tmp, rowSize) < CIR (bestCol, bestRow) 

 bestCol = tmp 

 bestRow = rowSize 

 endif 

tmp = colSize 

colSize = oldCol mod  colSize 

oldCol = tmp 

endwhile 

if necessary, adjust bestCol to meet the working set size constraint 

end TSS 
 

 

 
Figure 6.4: Algorithm to compute the best rectangular tile size (Coleman and 

McKinley) 
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dimensions (N and M). To avoid self interference, the algorithm defines sets of 

consecutive columns of the array whose starting position differ by N. It further 

calculates the number of complete columns that fit into cache. The Euclidean 

algorithm is used to generate all potential column dimensions relatively fast. Initially 

the tile column size is set to N and than it is decreased until additional columns incur 

no interference. The column sizes are always selected as multiples of the cache line 

size to take advantage of spatial locality. To minimise cross interference, the new tile 

size is selected in such a way that the size of the working set is larger than for the 

previous tile size but it still fits in the cache while the cross interference rate is lower 

for the new tile size. 

Both techniques can be applied to optimise blocked algorithms. Therefore, they 

are evaluated and compared with the developed iterative optimisation methods on the 

Alpha and Pentium platforms using two well-studied kernels with blocked 

algorithms: matmul and sor. The source codes of these kernels are presented in figure 

4.2. Table 6.6 show the tile sizes selected for matmul and sor by the above 

techniques and by iterative compilation with the basic and random search strategies. 

Since both the above techniques apply only loop tiling, iterative compilation is 

restricted to loop tiling to have a fair comparison. The tile sizes selected by the 

algorithms presented in this section vary across two platforms. However, these sizes 

are the same for the same kernels as both kernels have the same array size. 

Furthermore, iterative compilation selected completely different tile sizes for both 

programs on both platforms. 

Table 6.7 shows the performance improvements after applying the above 

optimisation algorithms to matmul and sor on the Alpha and Pentium platforms. 

These results show that Lam et al. and Coleman and McKinley algorithms perform 

reasonably well on matmul and considerably outperform the native compiler with 

both static and feedback-assisted optimisations on both platforms. This is explained 

by the fact that though matmul is a well-known kernel and is relatively easy to 

optimise  as  shown   in  detail  in  section  4.3,   the  native  compilers   appear  to  be  

concerned with avoiding degradation of performance after applying optimisations. 

Therefore, they either do not apply loop tiling or apply it with a small factor that 

generally does not degrade performance but improvements are also small. Hence, the 
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above static techniques have a greater potential to pick better tile size since the 

performance improvement graph as a function of tiling factors presented in section 

4.3.2 for  both platforms shows  large flat minimum  areas. Furthermore,  even if  the  

above static techniques fail to select the best blocking factor, they still gain 

considerable performance improvement. However, this is not the case for the sor, 

where both static optimisation algorithms and native compiler optimisations fail to 

achieve any performance improvement mainly due to assuming the use of the direct-

mapped cache that is not the case and by using approximations to count 

interferences. Nevertheless, iterative compilation with the long basic strategy and 

with only loop tiling transformation enabled still outperforms both the above static 

optimisations and the native compiler, while having no knowledge of the targeted 

platform and having a minimum knowledge of the application. Furthermore, iterative 

compilation with the random search strategy outperforms the above techniques after 

only 5 iterations. Finally, iterative compilation with the random search strategy and 

with all transformations enabled considerably outperforms all the above methods and 

thus is a superior platform-independent optimisation method that can be applied to a 

wide range of programs. 

 matmul sor 
Lam et al. optimisation algorithm 16x16 16x16 
Coleman and McKinley algorithm 512x16 512x16 
Iterative compilation, basic search strategy  
(only tiling, 512 iterations) 

8x8 4x4 

Iterative compilation, random search strategy  
(only tiling, 5 iterations) 

12x12 7x7 

(a) Alpha platform 

 matmul sor 
Lam et al. optimisation algorithm 8x8 8x8 
Coleman and McKinley algorithm 512x8 512x8 
Iterative compilation, basic search strategy  
(only tiling, 512 iterations) 

67x67 5x5 

Iterative compilation, random search strategy 
(only tiling, 5 iterations) 

39x39 3x3 

(a) Pentium platform 

Table 6.6: Comparison of tile size selection by 4 algorithms: Lam et al., 
Coleman and McKinley, iterative compilation with the basic and random 

search strategies. 
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6.6 Using smaller dataset 

Using the performance prediction technique and the random search strategy as 

described above dramatically reduces the optimisation time by reducing the number 

of iterations. Potentially, there is another distinct method for reducing the overall 

optimisation time by using smaller datasets for a program during iterative 

compilation so that each program variant consumes less time. After iterative 

 matmul sor 
Lam et al. optimisation algorithm 56.1% 0% 
Coleman and McKinley algorithm 51.3% 0% 
Native compiler static optimisations 31.2% 0% 
Native compiler feedback-assisted optimisations 31.2% 0% 
Iterative compilation, basic search strategy  
(only tiling, 512 iterations) 

65.6% 25.4% 

Iterative compilation, random search strategy  
(only tiling, 5 iterations) 

63.8% 4.1% 

Iterative compilation, basic search strategy  
(all transformations, 1599 iterations) 

80.1% 28.6% 

Iterative compilation, random search strategy  
(all transformations, 20 iterations) 

79.2% 11.2% 

(a) Alpha platform 

 matmul sor 
Lam et al. optimisation algorithm 67.9% 0% 
Coleman and McKinley algorithm 73.3% 0% 
Native compiler static optimisations 2.9% 0% 
Native compiler feedback-assisted optimisations 1.6% 0% 
Iterative compilation, basic search strategy  
(only tiling, 512 iterations) 

85.8% 5.8% 

Iterative compilation, random search strategy 
(only tiling, 5 iterations) 

85.4% 2.3% 

Iterative compilation, basic search strategy  
(all transformations, 1599 iterations) 

91.7% 16.0% 

Iterative compilation, random search strategy  
(all transformations, 20 iterations) 

91.2% 15.6% 

(a) Pentium platform 

Table 6.7: Execution time improvements (%) after static optimisation 
algorithms, after native compiler static and dynamic optimisations, after 

iterative compilation with loop tiling and after iterative compilation with all 
transformations enabled 



 

136

  

optimisation is finished, the best transformation parameters found are used for the 

program with the original dataset. However, the main problem with this method is 

that different datasets can change the behaviour of the program dramatically and, 

therefore, the set of transformation factors best for the program with the smaller 

dataset is not necessarily the best for the same program with the original dataset. To 

demonstrate this issue, table 6.8 presents the best transformation factors found after 

applying iterative compilation with the basic search strategy for the matmul kernel 

on the Alpha platform using three distinct datasets with array sizes of 256x256, 

512x512 and 1024x1024.  

Consider three optimisation cases. The first one is when the dataset with the array 

size of 256x256 is used during iterative compilation with the basic search strategy to 

optimise the matmul kernel that further uses the dataset with the array size of 

512x512. The second case is when the dataset with the array size of 512x512 is used 

to optimise the same kernel that further uses the dataset with the array size of 

1024x1024. The last case is when the dataset with the array size of 256x256 is used 

to optimise matmul that further uses the dataset with the array size of 1024x1024. 

For the first case, the best array padding factor is the same, but the best loop tiling 

factor is different. For the second case, the best array padding is different, but the 

best loop tiling factor is the same. For the third case, both best array padding and 

loop tiling factors are different. In all cases, the best loop unrolling factor that could 

reduce execution time is not found. This results show that the sets of transformations 

are indeed different for different datasets.  

Transformation: 
 
Dataset: 

array padding loop tiling loop unrolling 

256x256 1 not found not found 

512x512 1 16 not found 

1024x1024 2 16 not found 

 Table 6.8: Best transformation factors that reduce execution time, found after 
iterative compilation with the basic search strategy for matmul with different 

datasets on the Alpha platform 
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Table 6.9 compares performance improvements after iterative compilation with 

the basic search strategy for the matmul kernel on the Alpha platform when both 

original and smaller dataset are used during optimisation. This table shows that the 

performance improvement dropped considerably in the first case from 80.7% to 

38.7% and in the second case from 86.4% to 30.1%. However, the difference 

between performance improvements in the second case is negligible of 86.4% versus 

85.7%.  

Now, consider the iterative optimisation of the two SPEC benchmarks, swim and 

mgrid, with the basic search strategy using smaller training datasets to find good 

optimisation and then applying the resulting best optimisation to the actual reference 

data. Table 6.10 presents performance improvements for these benchmarks on both 

the Alpha and Pentium platforms. The results demonstrate that the outcome of the 

program optimisation with a smaller dataset also depends heavily on the platform 

used. For example, swim has a considerable performance improvement of 38.6% on 

the Alpha platform when using training dataset during optimisations while on the 

Pentium platform there was no any improvement. On the contrary, mgrid has a 

Dataset: Performance improvement 
(optimisation with the same 

dataset) 

Performance improvement 
(optimisation with the smaller 

dataset) 

 
512x512 

 
80.1% 

 

38.7% 
 

(256x256 dataset for 
optimisation) 

 
1024x1024 

 
86.4% 

 

85.7% 
 

(512x512 dataset for 
optimisation) 

 
1024x1024 

 
86.4% 

 

30.1% 
 

(256x256 dataset for 
optimisation) 

 
Table 6.9: Comparison of performance improvements after iterative 

compilation with the basic search strategy for matmul when the original and 
smaller datasets are used during optimisation on the Alpha platform 
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higher performance improvement on the Pentium platform than on the Alpha 

platform.  

These results show that the smaller datasets can be potentially used for 

optimising programs using iterative compilation, however the drop in performance 

improvement can be significant in some cases.  Therefore, more analysis is needed 

for the influence of different datasets on the program behaviour and optimisations 

such as in paper [EVD02] by Eeckhout et al, for example, where different datasets 

for a given program are analysed and various program-input pairs that are close to 

each other are selected to span the complete workload space. This is the topic of the 

future research. 

6.7 Summary 

This chapter presents methods to reduce the iterative search space dramatically, 

whilst still considerably outperforming current static optimisation methods and 

native compiler static and feedback-directed optimisations. First, performance 

prediction technique is used to remove those loops from the search space that have a 

negligible execution time or do not have a potential for further improvement. 

Second, a new search strategy is applied that tries only a small number of random 

factors for transformations instead of all possible ones. This reduces the number of 

iterations by two orders of magnitude without sacrificing performance much, thus 

making iterative compilation a realistic optimisation approach for a wide range of 

applications.  

The results are compared with the performance improvements obtained using the 

native compilers and two well-known static optimisation techniques by Lam et al. 

 Alpha platform Pentium platform 

swim 38.6% 0% 

mgrid 5.1% 9.6% 

 
Table 6.10: Performance improvements after iterative compilation with the 

basic search strategy for SPEC benchmarks when the training dataset is used 
during optimisation and then the best optimisation is applied to the reference 

data 
 



 

139

  

and Coleman and McKinley. Another method that reduces the iterative compilation 

time by using smaller datasets during program optimisation is also briefly examined. 

Experimental results show that this method can obtain considerable performance 

improvements on some datasets while gaining no speed-up on others. Therefore, it 

shows that there is a potential for reduction in compilation time but it requires further 

analysis of the influence of various datasets on program performance and is the topic 

of future research. 
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Chapter 7 
 

Conclusions 
 

This chapter briefly summarises the main results of this thesis, provides a critical 

review and proposes future work. 

7.1 Summary 

This thesis presented an automatic iterative compilation method for optimising 

numerical applications where memory latency is the dominant overhead. This 

platform-independent approach is based on feedback-directed program 

transformations. It is capable of outperforming considerably current well-known 

static and feedback-directed optimisations on large real applications. Moreover, 

iterative compilation never degrades program performance unlike other current 

methods that may degrade performance significantly. However, the major drawback 

of this method is the excessive compilation time where thousands of iterations are 

needed to achieve performance improvement. This thesis presented two techniques to 

reduce this time. First, a simple, fast and accurate performance prediction technique 

has been presented, that is capable of obtaining the lower bound on execution time if 

all cache misses were to be removed by transforming all program array references 

into scalars yet ensuring correct code execution. This technique can be used to 

considerably reduce the search space of iterative compilation by removing those 

loops from it that do not have any potential for improvement. It can also help 

programmers detect program sections that have a memory problem and therefore 

have to be optimised. Second, a random search strategy has been developed. This 

strategy tries only a small number of random factors for each transformation instead 

of all possible ones thus reducing the number of iterations by two orders of 

magnitude without significantly sacrificing performance.  

A complete software toolset for automatic program analysis, transformations and 

optimisations has been created. It currently supports two distinct platforms: the 

Compaq Alpha with Digital Unix (RISC architecture) and the Intel Pentium with 
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Microsoft Windows (CISC architecture). The influence of array padding, loop tiling 

and loop unrolling on program performance has been analysed in detail on these two 

platforms. Furthermore, 2 kernels and 8 large SPEC benchmarks have been analysed 

and optimised using the developed iterative compilation strategy. Considerable 

performance improvements have been achieved in most of the cases in comparison 

with native state-of-the-art compilers and with well-known static optimisation 

techniques.  

Therefore, the proposed iterative compilation approach with performance 

prediction and random search becomes a realistic platform-independent optimisation 

approach for a wide range of applications.  

7.2 Critical review and future work 

One of the drawbacks of the current implementation of iterative compilation 

presented in this thesis is that it is applied to programs with the same dataset size and 

with no conditional dependencies on the data values.  To overcome this problem, 

program can be optimised several times for some typical datasets with the most time 

consuming branches taken. Further, conditional checks on the dataset can be 

embedded into the final program to choose different optimised versions. This will be 

the subject of future research. 

The iterative optimisation method currently uses only three program 

transformations: array padding, loop tiling and loop unrolling. However, other 

transformations exist that can considerably improve performance: software 

pipelining, prefetching, loop distribution and fusion, for example. This will be 

implemented in the future. Since the above transformations can be used to optimise 

programs for ILP, they may be used for a wide range of programs, not only 

numerical applications with a memory problem.  

The current implementation of iterative compilation uses source-to-source 

program transformations that can potentially interfere with the internal compiler 

optimisations and thus reduce the performance improvements. Therefore, the subject 

of future research is to analyse these interferences and to implement program 

transformations on the assembler level, preferably inside the compiler.  
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Though all the developed techniques are platform and language independent, the 

current software implementation is limited to two platforms and supports only 

Fortran transformations. In the future, other languages will be supported such as C, 

C++, Fortran 90 or even Java where iterative compilation engine could be embedded 

into just-in-time compiler to optimise programs at run time in the background. New 

platforms will be also supported in the future such as various DSPs or EPIC 

architectures.  

One of the drawbacks of the performance prediction technique is that it is 

currently unable to fully handle programs with branches whose outcome depends on 

array values. This is the matter of the ongoing research and potentially can be 

handled by recording the frequency of the branch taken or by excluding these 

instructions from the prediction transformation.  

The performance prediction technique provides a lower bound of the program 

execution time if all cache misses are removed. It will be combined with the memory 

and cache throughput so that it could not only predict the potential performance 

improvement but it could drive transformations to balance the calculations and 

memory access within a loop. It can work in a similar way to that described in 

[CK94] and [CG97] but is more precise and platform-independent as it does not 

require any approximations and simulations.  

The performance prediction technique will be useful in analysing and optimising 

programs and can be implemented inside a production compiler as a profiling or 

feedback-directed optimisation option. 

Finally, search strategies for iterative compilation will be improved to reduce 

compilation time even further by using current static and dynamic approaches to 

predict best transformation parameters and then to use them as a basis for a guided 

search strategy. The possibility to apply multiple transformations for various 

program sections in one step will be investigated as it can also reduce search time. In 

order to predict the overall iterative compilation time a set number of iterations will 

be used that can be spent on optimising the whole program. These iterations should 

be redistributed between sections of the program in such a way, that more iterations 

are used for the parts of the program where the potential for the improvement is 

higher.  
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Appendix A 
 

Description of platforms 

A.1 Alpha platform 

Processor: Digital Alpha 21264 

Core frequency: 500 MHz 

Bus frequency: 200 MHz 

L1 data cache 

   size: 64 KB 

   associativity: 2-way 

   line size: 64 bytes 

L1 code cache 

   size: 64 KB 

   associativity: 2-way 

   line size: 64 bytes 

L2 cache 

   size: 2048 KB 

   associativity: direct-mapped 

   frequency: 200 MHz 

   line size: 64 bytes 

   bus width: 128 bits 

Main memory: 512 MB 

OS: Digital Unix V4.0E (Rev. 1091) 

Fortran: Digital Fortran 77 Driver V5.2-10 

 Digital Fortran 77 V5.2-171-428BH 

C: DEC C V5.8-009 

Java: Sun JDK 1.1.6-2 
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A.2 Pentium platform 

Processor: Intel Pentium III E 

Core frequency: 650 MHz 

Bus frequency: 100 MHz 

L1 data cache 

   size: 16 KB 

   associativity: 4-way 

   line size: 32 bytes 

L1 code cache 

   size: 16 KB 

   associativity: 4-way 

   line size: 32 bytes 

L2 cache 

   size: 256 KB 

   associativity: 8-way 

   frequency: 650 MHz 

   line size: 32 bytes 

   bus width: 256 bits 

Main memory: 192 MB 

OS: Windows 2000 Professional (SP3) 

Fortran: Intel Fortran 6.0 Build 020321Z 

C: Intel C 6.0 Build 020321Z 

Java: Sun JDK 1.1.8 
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