

Iterative Compilation
and Performance Prediction
for Numerical Applications

Grigori G. Fursin

Doctor of Philosophy

Institute for Computing Systems Architecture
School of Informatics

University of Edinburgh

2004

I

Abstract

As the current rate of improvement in processor performance far exceeds the rate

of memory performance, memory latency is the dominant overhead in many

performance critical applications. In many cases, automatic compiler-based

approaches to improving memory performance are limited and programmers

frequently resort to manual optimisation techniques. However, this process is tedious

and time-consuming. Furthermore, a diverse range of a rapidly evolving hardware

makes the optimisation process even more complex. It is often hard to predict the

potential benefits from different optimisations and there are no simple criteria to stop

optimisations i.e. when optimal memory performance has been achieved or

sufficiently approached.

This thesis presents a platform independent optimisation approach for numerical

applications based on iterative feedback-directed program restructuring using a new

reasonably fast and accurate performance prediction technique for guiding

optimisations. New strategies for searching the optimisation space, by means of

profiling to find the best possible program variant, have been developed. These

strategies have been evaluated using a range of kernels and programs on different

platforms and operating systems. A significant performance improvement has been

achieved using new approaches when compared to the state-of-the-art native static

and platform-specific feedback directed compilers.

II

Acknowledgements

I would like to thank my supervisor Dr. Michael O’Boyle for the overwhelming

support during all the hard years of this research and for providing a great working

environment. I would also like to thank Prof. Nigel Topham for his important

guidance at the beginning of the project, Prof. Olivier Temam, Dr. Peter Knijnenburg

and members of the MHAOTEU project for the collaboration and fruitful

discussions.

I am grateful to Monika, Dyane and Margaret for their great administrative

support.

I would like to thank Shun, Bjoern, Tom and Tim for the interesting discussions

during lunch breaks.

I am grateful to all my friends who helped me to switch off my work occasionally

and relax, particularly to Viki, Laura, Ernest, Joe, Annemieke, Pille, Paulo, Aghlab,

Gaurav, Melissa, Hachemy, Katarina, Ghassan, Takeshi, Emilio, Atif, Yannos, Lucia

and all my partners in sport activities.

Finally, special thanks to Eglantine and Georgios for keeping me out of the

misery during difficult times, and to my parents and brother Leonid for the moral

support.

III

Declaration

I declare that all the research and developed software presented in this thesis is

my own, unless stated otherwise in the text. Some of the material used in this thesis

has been published in the following papers:

[FOT+04] G. Fursin, M. O’Boyle, O. Temam, and G. Watts. Fast and accurate

method for determining a lower bound on execution time.

Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004.

[FBK03] G.G. Fursin, M.F.P. O’Boyle, and P.M.W. Knijnenburg. Evaluating

Iterative Compilation. Accepted for publication in “Springer Lecture

Notes in Computer Science”.

[FBK02] G.G. Fursin, M.F.P. O’Boyle, and P.M.W. Knijnenburg. Evaluating

Iterative Compilation. Proceedings of Languages and Compilers for

Parallel Computing (LCPC’02), pages 305-315, 2002.

[FOT+01] G. Fursin, M. O’Boyle, O. Temam, and G. Watts. Fast and accurate

evaluation of memory performance upper-bound. Proceedings of

Compilers for Parallel Computers (CPC’01), pages 163-171, June

2001.

January, 2004

IV

Contents

ABSTRACT ... I
ACKNOWLEDGEMENTS .. II
DECLARATION... III
CONTENTS ... IV

LIST OF FIGURES ... VII
LIST OF TABLES.. IX

CHAPTER 1. INTRODUCTION .. 1
1.1 The problem .. 1

1.2 Contributions... 3

1.3 Thesis structure ... 4

CHAPTER 2. BACKGROUND .. 6
2.1 Processor architecture ... 6

2.1.1 Processor design evolution.. 6

2.1.2 Pipelining .. 9

2.1.3 Superscalar processors .. 12

2.2 Memory hierarchy... 14

2.2.1 Memory design evolution ... 15

2.2.2 Locality and cache design ... 16

2.3 Compiler technology... 19

2.3.1 Introduction to compiling.. 20

2.3.2 Code optimisations.. 21

2.4 Summary .. 23

CHAPTER 3. MEMORY HIERARCHY OPTIMISATIONS25
3.1 Program transformations... 25

3.1.1 Introduction... 25

3.1.2 Loop tiling... 31

3.1.3 Array padding.. 33

3.1.4 Loop unrolling... 35

3.1.5 Other transformations ... 37

V

3.2 Static analysis and optimisations .. 39

3.2.1 Improving ILP... 39

3.2.2 Data locality analysis and optimisations ... 42

3.2.3 Reducing conflict misses... 49

3.2.4 Reducing compulsory misses.. 51

3.3 Dynamic analysis .. 52

3.3.1 Profiling .. 52

3.3.2 Simulating ... 55

3.4 Dynamic optimisations ... 58

3.4.1 Feedback-assisted and iterative compilation... 58

3.4.2 Adaptive compilation .. 61

3.5 Summary ... 62

CHAPTER 4. ITERATIVE COMPILATION..63
4.1 Introduction... 63

4.2 Experimental framework... 65

4.2.1 Software architecture .. 65

4.2.2 Platforms and applications .. 67

4.3 Impact of program transformations... 70

4.3.1 Array padding.. 70

4.3.2 Loop tiling... 73

4.3.3 Loop unrolling... 75

4.4 Basic search strategy ... 78

4.5 Experimental results.. 82

4.6 Summary ... 91

CHAPTER 5. PERFORMANCE PREDICTION ...93
5.1 Introduction... 93

5.2 Motivation and example.. 95

5.3 Performance prediction algorithm .. 98

5.3.1 Collecting data values ... 99

5.3.2 Removing cache misses .. 101

5.3.3 Preserving data dependences... 102

5.3.4 Ensuring correct code execution ... 103

VI

5.3.5 Array indirection and control flow.. 104

5.4 Implementation ... 104

5.4.1 Alpha platform .. 105

5.4.2 Pentium platform... 105

5.5 Experimental results.. 106

5.6 Performance validation ... 112

5.7 Comparison with existing techniques ... 113

5.8 Summary ... 116

CHAPTER 6. SEARCH SPACE REDUCTION..118
6.1 Introduction... 118

6.2 Using performance prediction... 119

6.3 Random search strategy .. 120

6.4 Experimental results.. 124

6.5 Comparison with existing techniques ... 131

6.6 Using smaller dataset .. 135

6.7 Summary ... 138

CHAPTER 7. CONCLUSIONS ..140
7.1 Summary ... 140

7.2 Critical review and future work .. 141

APPENDIX A. DESCRIPTION OF PLATFORMS143
A.1 Alpha platform ... 143

A.2 Pentium platform.. 144

BIBLIOGRAPHY ...145

VII

 List of Figures

Figure 2.1: Von Neumann processor architecture... 7

Figure 2.2: Instruction execution on non-pipelined and pipelined processors............ 10

Figure 2.3: Instruction execution on a pipeline when stall occurs.............................. 11

Figure 2.4: Memory hierarchy in current computing systems 18

Figure 3.1: Abu-Sufah’s transformation of imperfectly nested loop to a perfect

loop nest. ... 29

Figure 3.2: Data transformation theory examples... 31

Figure 3.3: Loop tiling example.. 32

Figure 3.4: Generalised version of loop tiling .. 33

Figure 3.5: Intra-variable and inter-variable array padding examples........................ 34

Figure 3.6: Loop unrolling example.. 35

Figure 3.7: Generalised version of loop unrolling .. 36

Figure 3.8: Software pipelining versus loop unrolling ... 38

Figure 3.9: Software prefetching example for inner product calculation 39

Figure 3.10: Unroll-and-jam transformation example .. 40

Figure 3.11: Algorithm for calculating loop cost (McKinley et al.) 46

Figure 3.12: Loop cost for matrix multiplication kernel (McKinley et al.) 47

Figure 4.1: Software architecture of the optimising suite ... 66

Figure 4.2: Source code of matmul and sor kernels.. 69

Figure 4.3: Execution time for varying array padding factors (matmul) 71

Figure 4.4: Execution time for varying array padding factors (swim)........................ 72

Figure 4.5: Execution time for varying loop tiling factors applied to the most time

consuming loop (matmul) ... 74

Figure 4.6: Execution time for varying loop tiling factors applied to the three most

time consuming loops (swim) ... 75

Figure 4.7: Execution time for varying loop unrolling factors applied to the most

time consuming loop (matmul) ... 76

Figure 4.8: Execution time for varying loop unrolling factors applied to the three

most time consuming loops (swim) .. 77

Figure 4.9: Basic search strategy algorithm.. 79

VIII

Figure 4.10: Execution time improvements (%) of Opt.2 and Opt.3 over Opt.1........ 85

Figure 4.11: Execution time improvements (%) after iterative compilation with

the basic search strategy, Opt.2 and Opt.3 over Opt.1.............................. 88

Figure 4.12: Changes in execution time during each iterative step (matmul) 90

Figure 5.1: Assembler transformations to predict potential performance 96

Figure 5.2: Program modifications to ensure correct code execution after

performance prediction transformation... 98

Figure 5.3: Performance prediction algorithm.. 99

Figure 5.4: Data collection for performance prediction transformation 100

Figure 5.5: Performance prediction transformation algorithm for removing cache

misses .. 101

Figure 5.6: Algorithm to ensure correct execution of the transformed code 103

Figure 5.7: Overall potential and iterative performance improvement (%).............. 111

Figure 5.8: Original matmul and synthetically generated kernel.............................. 114

Figure 6.1: Random search strategy algorithm ... 121

Figure 6.2: Execution time improvements (%) after iterative compilation with the

random search strategy and comparison with the basic search strategy

and compiler optimisations ... 128

Figure 6.3: Algorithm to compute the best tile size that removes self-interferences

(Lam et al.) .. 131

Figure 6.4: Algorithm to compute the best rectangular tile size (Coleman and

McKinley) ... 132

IX

List of Tables

Table 4.1: Description of applications .. 68

Table 4.2: Application execution times after internal compiler optimisations (best

times are highlighted).. 84

Table 4.3: Execution time improvements (%) after iterative compilation with the

basic search strategy over Opt.1, Opt.2 and Opt.3.................................... 87

Table 5.1: Original and lower-bound execution times with IPCs (Alpha platform). 107

Table 5.2: Original and lower-bound execution times with IPCs (Pentium

platform).. 108

Table 5.3: IPC of the original and transformed programs obtained using the

simulator with normal and perfect caches... 113

Table 5.4: Cache behaviour of the original and transformed programs.................... 113

Table 5.5: Example demonstrating the advantage of the proposed performance

prediction technique over the existing ones that are based on counting

the number of cache misses... 115

Table 6.1: Example demonstrating the use of the performance prediction

technique in iterative compilation (Pentium platform) 119

Table 6.2: Comparison of the basic and random search strategies (matmul,

Pentium platform) ... 123

Table 6.3: Total number of analysed loops and the number of selected loops for

the random search strategy.. 125

Table 6.4: Execution time improvements (%) after iterative compilation with the

random search strategy over Opt.1, Opt.2 and Opt.3.............................. 126

Table 6.5: Execution time improvements (%) and number of iterations needed

after iterative compilation with the random and basic search strategies

over Opt.1.. 127

Table 6.6: Comparison of tile size selection by 4 algorithms: Lam et al., Coleman

and McKinley, iterative compilation with the basic and random search

strategies.. 134

Table 6.7: Execution time improvements (%) after static optimisation algorithms,

after native compiler static and dynamic optimisations, after iterative

X

compilation with loop tiling and after iterative compilation with all

transformations enabled .. 135

Table 6.8: Best transformation factors that reduce execution time, found after

iterative compilation with the basic search strategy for matmul with

different datasets on the Alpha platform... 136

Table 6.9: Comparison of performance improvements after iterative compilation

with the basic search strategy for matmul when the original and

smaller datasets are used during optimisation on the Alpha platform 137

Table 6.10: Performance improvements after iterative compilation with the basic

search strategy for SPEC benchmarks when the training dataset is used

during optimisation and then the best optimisation is applied to the

reference data .. 138

1

Chapter 1

Introduction

This chapter briefly describes the research area, the contributions and the

structure of this thesis.

1.1 The problem

Considerable progress has been made in processor technology in the last 30

years. Early processors were simple 4/8-bit in-order execution chips with working

frequencies of several megahertz, supporting only direct-addressed memory of

several hundred kilobytes. Currently, however, they are complex 32/64-bit devices

working at gigahertz frequencies with the support of out-of-order parallel multiple

instruction execution, value prediction, speculation and virtual memory support. The

sole motivation behind these advances is to make the processor perform

computations faster. Naturally, the amount of data to process has also grown. This

data is kept in main memory and is accessed by the processor as and when needed.

One of the major problems in current computing systems is that the memory

cannot supply data to the processor immediately on request due to its physical size

and the speed of signal propagation. This leads to a mismatch between processor and

memory performance. It was observed that while microprocessor performance has

improved by approximately 55% per year since 1987, memory performance has only

improved by 7% per year [HP96]. This leads to the processor-memory bottleneck; no

matter how fast the processor is, the overall performance of the computing system is

limited by the speed of memory.

The most common solution to this problem is based on the introduction of

intermediate smaller, but faster layers of memory, known as cache memory, between

the processor and main memory [Smi82]. Caches are designed to exploit program

locality [MB76] and are based on the two following observations: a) a memory

location recently referenced is likely to be referenced again soon and b) a memory

location adjacent to a referenced location is likely to be referenced soon. In practice,

2

however, programs may not exhibit this property. In this case, the task of

restructuring of the data layout in memory or transforming the program to exploit

locality has to be performed either manually by the programmer or automatically by

the compiler.

Modifying the program manually is tedious, time consuming and requires a good

knowledge of the underlying hardware. Furthermore, if the program needs to be

ported to a new platform, it has to be optimised once again to reflect the new

hardware parameters, which may require many man-hours and hence is economically

expensive. Conversely, compilers attempt to solve this problem by utilising static

models of different platforms and transforming the code to match the particular

hardware platform. Nevertheless, due to the complexity of the memory and processor

architecture and for reasons of tractable analysis, compilers have to assume a

significantly simplified machine model. In addition to this, the lack of important run-

time information such as loop bounds and branches taken, means that compiler

memory optimisations often fail to achieve performance improvements.

One of the techniques introduced to reflect the importance of run-time

information is profile-directed compilation [PH90]. It is a dynamic optimisation

process, which is performed in two steps. In the first step, the optimised program is

instrumented and executed to collect certain run-time parameters. In the second step,

the program is optimised according to the information obtained. Yet, most current

profile-directed optimisations attempt to improve instruction cache use or enable

better branch prediction whilst ignoring data cache usage, which may not improve

the overall program performance if a memory bottleneck is present.

A further weakness of current techniques is the inability to determine the

potential benefit from an optimisation. Performance prediction techniques are usually

based on a simplified hardware model and are inaccurate, or based on simulators that

are extremely slow, sometimes by several orders of magnitude in comparison with

the original program execution time. Alternatively, hardware counters can be used,

but they often mispredict performance on current superscalar out-of-order execution

processors. For example, a program may generate many cache misses that will be

detected by hardware counters. This will lead to an assumption that memory

optimisations are beneficial for this program, but memory access delays may be

3

hidden by other calculations performed in parallel and in this case memory

optimisations will fail in gaining performance. However, knowing the potential

performance improvement before optimising the code is important for judging the

amount of effort worth expending.

1.2 Contributions

Three major contributions to the above problems are presented in this thesis. An

iterative feedback assisted optimisation approach is presented. It is based on

searching for the best possible program transformations in a large optimisation space.

Unlike other search optimisation techniques that use some heuristics to analyse and

optimise small kernels, it can successfully optimise large applications by applying

transformations in a smart phase order to cut down the search space. This approach,

while being slow and requiring thousands of runs of the transformed program,

achieves a considerable performance improvement over state-of-the-art compilers.

Considering that the set of transformations used in this approach is specially chosen

to be the same or smaller than in used compilers, it demonstrates that current

optimisers fail to find the best possible transformations statically.

A new performance prediction technique for estimating the lower bound on

program execution time is then presented. This is a dynamic, reasonably fast and

accurate approach, based on transforming all array references into scalar references

to remove cache misses, and profiling the new code.

Finally, an approach for reducing the iterative compilation time dramatically is

presented. It uses the performance prediction technique to detect sections of the

program that may potentially benefit from optimisations and applies a random

iterative transformation search to those sections. This can reduce the number of

iterations by two orders of magnitude in comparison with the basic iterative search,

thus making iterative compilation a superior and realistic option over the current

static or profile-directed optimisations.

The developed techniques have been implemented inside a cross-platform

toolset, evaluated on two distinct RISC and CISC platforms using a variety of

kernels and benchmarks and compared with the current native state-of-the-art

compilers.

4

1.3 Thesis structure

This thesis has the following structure. Chapter 2 surveys various processor

designs and advances in the semiconductor technology. It describes and analyses

techniques for exploiting instruction level parallelism such as pipelining and multiple

instruction issue with out-of-order execution. This chapter further presents the

evolution of the memory hierarchy and describes various cache designs that exploit

locality to reduce memory access time. It also contains an introduction to basic

compilation and optimisation techniques.

Chapter 3 presents related work on memory optimisations. It starts with

introducing formal notations for describing loops and data accesses, and then

presents models to unify and ease program transformations and data locality analysis.

This is followed by a description of various static methods for analysing and

improving cache utilisation for a broad range of programs. This chapter concludes by

presenting multiple dynamic techniques for profiling and optimising program

performance.

Chapter 4 describes a new platform-independent iterative optimisation approach

that is able to outperform current state-of-the-art commercial compilers with both

static and feedback-directed optimisations enabled. This chapter analyses the

influence of array padding, loop tiling and loop unrolling transformations on the

program performance in detail, and examines the reasons why static optimisation

approaches often fail in improving performance or can even degrade it. Experimental

results show considerable performance improvements after using this iterative

approach for two kernels and eight SPEC benchmarks on two platforms. However,

the major drawback of iterative compilation is its excessive optimisation time.

Thousands of executions of program variants are often needed, which may not be

tolerable for general-purpose computing. Therefore, the two following chapters

present techniques to reduce iterative compilation time.

Chapter 5 presents a new performance prediction technique that can provide

information about whether program segments have the potential for performance

improvement or not. This platform-independent technique transforms the original

program at the assembler level in such a way that the new program behaves as if

5

there were no cache misses occurring. Profiling the original and transformed

programs and comparing the difference in the execution time shows the potential for

performance improvement. This technique is reasonably fast and accurate as no

simulations are involved and no approximations are used. It is compared to other

existing methods and it is shown that many of these methods, which are based on

counting the number of cache misses, give inaccurate predictions on modern

superscalar processors with out-of-order execution. Performance prediction can

reduce the iterative compilation search space by removing loop nests that do not have

any potential for performance improvement from the search.

Chapter 6 presents a new iterative compilation approach that combines

performance prediction and random search, thus considerably reducing the search

space. Using this optimisation technique reduces the number of program executions

to less than a hundred while still obtaining considerable performance improvement.

This makes iterative compilation a realistic approach for general-purpose

optimisation. A comparison with other techniques is presented at the end of this

chapter. Finally, chapter 7 summarises the results achieved and outlines future work.

6

Chapter 2

Background

This chapter briefly surveys trends in processor design; describes memory design

evolution and summarises basic compiler technology. It starts with a short

description of the first microprocessor architecture followed by a review of major

hardware design changes to improve its performance. These changes are possibly

due to the advances in semiconductor technology and the gradually increasing

number of transistors on the chip. Pipelined superscalar processors with out-of-order

execution to exploit instruction level parallelism are discussed. The evolution of

memory design to improve the speed of data access is further presented and various

cache designs to exploit program locality are described. Finally, basic program

compilation and optimisation methods are discussed.

2.1 Processor architecture

It is important to know the architecture of the platform in order to effectively

optimise programs so that all platform specific features are used in the best possible

way. Therefore, this section describes the architecture of the modern processors used

in this thesis and presents the major techniques used to improve their performance. It

briefly surveys processor evolution and describes pipelining and parallel out-of-order

execution of instructions.

2.1.1 Processor design evolution

The history of microprocessors dates back to 1971 when the world’s first

microprocessor, the Intel 4004, was introduced [FHM+96]. The major difference

between this processor and other computing devices was that all its components were

assembled on a single semiconductor chip. The design of this processor is shown in

figure 2.1. It is based on the von Neumann architecture [BGN63] that uses the same

storage for both data and instructions, fetching and executing instructions one by

7

one. It consists of registers that contain temporal data and memory addresses, a

functional unit or ALU (arithmetic and logic unit) that performs mathematical

operations and a CU (control unit) that fetches an instruction, decodes it according to

the instruction set and controls its execution. Typically, instruction execution in a

von Neumann processor occurs in five stages: fetching the instruction, decoding the

instruction, loading data from memory or register, performing an operation and

storing the result in a register or memory. Thin arrows in figure 2.1 show the

propagation of the synchronisation clock signal. Thick arrows in this figure represent

wide bus connections consisting of more then one signal that interconnect all

processor components. The processor also communicates with external devices such

as memory using external data/code, control and address buses.

The Intel 4004 has a simple design by today’s measures. It processes data in 4

bits, has sixteen 4-bit general-purpose registers, can address up to 4 KB of data

memory and has a clock speed of 108 KHz. Nevertheless, most of its components

can still be found in current mainstream SISD (single instruction single data)

computing systems, according to Flynn’s computer architecture classification

[Fly72]. Other types of computing systems such as SIMD (single instruction multiple

data) and MIMD (multiple instruction multiple data) are used in parallel machines

 Data/code Control Address Clock

Figure 2.1: Von Neumann processor architecture

ALU

CU

Address
registers

Data
registers

8

and surveyed in [Dun90], however, they are beyond the scope of this thesis. SISD

computers are further classified by their instruction set. If they support a large

number of complex instructions covering as many operations as possible, they are

called CISC (complex instruction set computer) computers. If they support a minimal

instruction set covering only the most commonly used instructions, they are called

RISC (reduced instruction set computer) computers. Differences between these

architectures are described further in section 2.1.2.

Since the introduction of the first microprocessor, all further design changes have

been to improve the processor performance due to the ever-increasing demand for

faster data processing. A relatively straightforward way to speed up a processor is to

make transistors, which are the basic blocks of the chip, smaller and faster, enabling

more transistors to be placed on the single chip and increasing the processor clock

speed. One of the Intel’s founders, Gordon Moore, made a prediction in 1965 that the

number of transistors on the chip would double every 18 months [Moo65]. This

prediction, referred to as Moore’s law, has been surprisingly accurate: while Intel’s

4004 microprocessor had 2300 transistors and had a clock speed of 108 kHz, today’s

processors may have hundreds of millions of transistors on a chip and can operate at

gigahertz frequencies such as Intel’s Itanium 2, for example [MN03]. Furthermore,

this allows the speeding up of the processor by increasing the processor data width

and by enabling the addition of full integer and floating-point arithmetic.

Research on increasing the chip density continues. However, it faces many

obstacles. One of the major problems is that current designs are approaching the

physical limit of semiconductors where classical physics laws are no longer

applicable and quantum effects are to be considered, as shown in [Llo00] and

[Fra02]. Therefore, promising technologies such as nano and molecular ones are

being developed [Lun02], [BDG02]. Another key problem of current semiconductor

technology is the increase in the chip power dissipation that has grown from just a

few watts in the first microprocessors to more than one hundred watts for some

processors such as the Intel Itanium 2 [Int03a], for example. This power is dissipated

as heat and requires special cooling systems. Otherwise, the processor may become

inoperable or can even be physically destroyed. Thus, a new research direction in the

area of low power electronics has appeared, aimed at designing power aware

9

computer architectures to reduce power consumption. Major methodologies of the

low power design are introduced in the book [RP96].

2.1.2 Pipelining

The previous section described those advances in semiconductor technology that

allow the placing of large amounts of transistors on a chip and make it possible to

explore different designs to speed up microprocessors. Burger and Goodman present

speculations in [BG97] about various potential processor designs when a one billion

transistor chip is available. However, the scope of this thesis is mainstream SISD

processors. Therefore, the following sections present design changes to extend and

speed up von-Neumann architecture microprocessors.

One of the most significant changes in processor design came from the

understanding that the execution of instructions can be overlapped in time. This

potential for overlapping instructions is called ILP (instruction-level parallelism).

One of the first techniques to exploit ILP comes from the observation that instruction

execution stages in von-Neumann architectures, described in the previous section,

are potentially independent for different instructions. The technique for overlapping

the execution of different stages of instructions is called pipelining [RL77]. This

name appeared due to the analogy with pipelines when a continuous stream of

instructions passes the processor and each part of the processor simultaneously

executes different stages of different instruction in the stream. Figure 2.2

demonstrates this technique and shows the execution of two instructions on non-

pipelined and pipelined processors with five abstract execution stages.

This technique was first implemented in the IBM’s Stretch computer in 1959 as

described in [Blo59]. However, implementing a pipeline in the first CISC

microprocessors had been problematic due to the variable number of cycles for each

instruction execution [HP96]. RISC architectures overcome this problem. These

architectures and their advantages over CISC architectures are presented in [PD80].

Briefly, RISC architectures have a minimal instruction set consisting of the most

commonly used instructions and simplified hardware that enables pipeline

implementation, optimised for the fastest possible execution with a reduced number

of cycles per instruction. The first implementations consisted of five main stages

10

[HP96]: fetching, decoding, instruction execution, accessing memory and writing

data back to register, variations of which can still be found in most of the current

processors. One of the costs for such architectures is a more complex programming

target, unlike CISC processors where the complex instruction set is aimed at easing

programming. This resulted in the development of special automatic compiler

techniques described in section 2.3.

One of the main problems that degrade the high potential performance of

pipelined processors happens when the instruction is stalled in the pipeline and so are

all the following instructions. This situation is called a hazard and may occur in three

cases [HP96]. The first hazard type is called data hazard and arises when one of the

instructions in the pipeline depends on the results of a previous instruction. In this

case, the execution of this instruction has to be delayed until the dependence is

resolved. Figure 2.3 shows an example of the behaviour of the pipeline when the

abstract stage S3 of the second instruction depends on the results of the first

instruction. Three possible types of data dependences exist in this hazard [RL77]. A

RAW (read after write) dependence arises when an instruction attempts to read from

a source before an earlier instruction writes into it so that it gets an old value. It is

often referred to as a true dependence. A WAR (write after read) dependence arises

when an instruction writes to a source before an earlier instruction reads it so that the

earlier instruction gets a new value. A WAW (write after write) dependence arises

when an instruction writes to a source before an earlier instruction writes into it so

instruction 1

instruction 2

non-pipelined processor

instruction 1

instruction 2

pipelined processor

 time

Figure 2.2: Instruction execution on non-pipelined and pipelined processors

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

11

that writes are performed out of order. WAR dependencies are often referred to as

anti-dependencies and WAW ones as output dependencies. It is possible to minimise

data hazard stalls or even eliminate some of them on a hardware level by a

forwarding technique, when the result of the current instruction is forwarded

immediately to all processor units that may potentially need it [HP96]. Another way

to reduce data stalls is by better instruction scheduling to improve pipeline

performance as shown in section 2.3.

The second hazard type is called structural hazard and occurs when the same

processor functional unit such as the ALU is used in more than one stage of the

pipeline and several instructions need it at the same time. This may happen when for

example the ALU is used for both data and address calculations. In this case, two

subsequent instructions that have some data calculations and memory access may

attempt to use the ALU at the same pipeline stages that will cause a stall. However, it

can be solved by duplicating the functional units to allow all possible combinations

of instructions in the pipeline without structural hazard stalls and is based on the

trade-off between the cost and the speed of the processor.

The last hazard type is called a control hazard and arises in branch instructions,

when a decision has to be made as to whether or not to take the branch, but the

information on which it is based is not yet available. One of the simplest solutions to

cope with this problem is to continue fetching instructions after the branch and if the

branch is taken, all the fetched instructions are cleared and the fetch is restarted from

instruction 1

instruction 2

no stalls

instruction 1

instruction 2

 stalls occur

 time

Figure 2.3: Instruction execution on a pipeline when stall occurs

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

12

the new address. However, if the branch is always taken, the pipeline will be always

flushed after this instruction, thus, considerably degrading performance. To prevent

such situations, a branch prediction table is used. It stores information about whether

the particular branch was taken or not so that when this instruction is executed again,

the processor will continue executing the instruction in the pipeline from the

predicted address. Nevertheless, it can be potentially problematic to predict the

outcome of the branch on the first occurrence or when the condition for the branch

changes frequently. In this case, software methods for program analysis and branch

prediction are used in cooperation with hardware methods. It is shown in section 2.3

and chapter 3.

One of the measures of how well the instructions are overlapped is CPI (clock

cycles per instruction). It can be used to analyse the effectiveness of the pipeline for

the particular program. Ideally, if all data and control stalls are eliminated it is

possible to achieve the maximum performance of one cycle per instruction.

However, further potential improvement in performance is possible by fetching more

than one instruction in parallel and is discussed in the following section.

2.1.3 Superscalar processors

The CPI of the pipelined microprocessor is always limited by 1. However, it is

possible to further improve performance if the microprocessor has the capability of

issuing more than one instruction simultaneously and execute them in parallel. In this

case, the CPI is not limited and can be far less then 1. Processors that have a

pipelined architecture but are enhanced with a multiple-issue capability, are called

superscalar microprocessors and described in detail in books [Joh91] and [HP96].

The straightforward design change to enable pipelined processors executing

instructions in parallel would be to duplicate functional units and to add issue logic

to fetch two or more instructions simultaneously. However, the main challenge in the

design of the superscalar processor is to cope with those instructions that have

dependencies without stalling the processor.

Instruction dependencies are classified into three types. The first type called

“data dependencies” occurs when simultaneously issued instructions are data

dependent and therefore cannot be executed in parallel. It corresponds to the RAW

13

data dependence in the processor pipeline. The second type called “name

dependencies” or “storage conflicts” arises when the same registers or memory

locations are used by simultaneously issued instructions. It corresponds to WAR and

WAW data dependencies in the pipeline. The last type called “control dependencies”

occurs when there is a branch instruction among simultaneously issued instructions.

The simplest way to cope with these hazards would be to stall the processor until

all of them are resolved, however, it can considerably degrade performance.

Nevertheless, it is possible to overcome data hazards by better static compiler

scheduling, as shown in section 2.3 and chapter 3, or by dynamic scheduling where

the processor rearranges the order in which instructions are executed. It enables the

processor to look ahead of the instructions with dependence or resource conflicts and

execute further independent instructions instead of stalling. This approach is

implemented by inserting a buffer called an “instruction window” between the

decode and execute stages. In this case, the processor places instructions into this

window and then issues those instructions that do not have any dependencies and

thus can be executed. This can result in the out of order issue of instructions from the

buffer and therefore processors that use this approach are referred to as processors

with out-of-order execution.

 Overcoming WAR and WAW hazards is possible by providing additional

buffers, called reservation stations, that fetch operands of the decoded instructions as

soon as they are available, and by renaming the same destination registers with the

names of different reservation stations. This technique, called register renaming, can

therefore eliminate name dependencies between instructions.

Preventing the processor from stalling on branch instructions can be achieved by

using speculation techniques, where the execution of the instructions following the

branch continues even if it has not been decided whether this branch is taken. A

branch-prediction buffer can assist the speculation by keeping information about

whether this branch was taken or not last time. However, if the branch is wrongly

predicted during out-of-order instruction execution and the program continues

executing, it can generate incorrect results. Therefore, special speculation status bits

are attached to instructions and registers. The use of these bits allows the processor to

14

mark all instructions that are executed after the branch, so that if the branch

prediction failed, the results of the wrongly executed instructions can be discarded.

Finally, it should be noted, that there are ways, other than superscalar techniques,

that can execute instruction in parallel, thus, utilising ILP and improving

performance. There are systems consisting of multiple processors, processing vector

data, using multi-threading. However, this thesis considers only the mainstream

scalar processors where there are two major alternative designs to superscalar

microprocessors. These are the VLIW (very long instruction word) approach [Fis83]

and the EPIC (explicitly parallel instruction computing) [SR00].

Unlike superscalar processors, where the performance is improved by dynamic

rescheduling of instructions, VLIW processors use a single instruction that explicitly

specifies several concurrent operations independent from each other. They have a

simplified hardware without dynamic scheduling or dependencies resolutions thus

relying on compilers and other software methods to pack and schedule instructions.

Furthermore, the code produced is generally not portable across different

architectures and thus, is not used for general-purpose computing. However, it is

popular in DSP (digital signal processing) applications where most of the execution

time is spent in small kernels that are relatively easy to analyse for dependencies and

to optimise on the assembler level for the specific DSP processor.

The EPIC approach combines some features of VLIW and superscalar

processors. It relies on the compiler to extract instruction level parallelism and to

schedule independent instructions statically as in the case of VLIW. However, it is

also similar to a scalar processor with a sequential instruction set that allows

programs to be portable among various processor implementations. This approach is

used in Intel’s IA-64 processors, as described in [HMR+00], [MN03] and [Int03a].

2.2 Memory hierarchy

The previous section concentrated on how to improve the processor performance.

However, the overall computer performance depends not only on the processor speed

but also on the speed of all components. One such component is the memory system.

This section describes memory design evolution, locality and cache classifications.

15

2.2.1 Memory design evolution

Computer memory is used as storage for program code and data. It is one of the

key computer components and influences the overall computer performance by

taking the burden of supplying data steadily to the microprocessor. The simplest

design of the computer system would be if all data is kept and processed in the same

non-volatile memory. In practice, however, it is not feasible because permanent

memory devices such as tapes or magnetic and optical disks are generally slow. The

economical and electronic trade-off in this technology is that it is possible to build

fast but small or large but slow memory systems. Therefore, a memory hierarchy,

based on speed, size and cost is used. It was first introduced in the Atlas computer

that was developed at the University of Manchester [KE62].

A typical memory hierarchy contains registers inside the processor, which are

small in number but provide immediate access; reasonably fast and large main

memory for storing both program code and data; and finally some slow permanent

storage. Scheible surveys various hardware memory designs in [Sch02]. Main

memory is often referred to as RAM (random access memory) because any word in

such memory can be accessed in random order. There are two basic types of RAM:

SRAM (static random access memory) and DRAM (dynamic random access

memory). The difference between these two types is in the hardware implementation.

Dynamic memory has a simple design and needs to be refreshed periodically so as

not to loose data, thus, making this memory cheap but relatively slow. Static memory

has a more complex design without the need to be refreshed, thus working faster than

DRAM. However, it is physically larger and more expensive. Therefore, DRAM is a

common choice for main memory.

Advances in semiconductor technology improve the main memory size and

transfer speed by placing more transistors with higher density on the chip.

Furthermore, it is also possible to improve DRAM performance by changing

memory and interface design. Some of those designs are surveyed in [Sch02].

Briefly, one of the techniques is to make the bus that connects the processor and

memory wider so that more data can be sent to the processor within each cycle.

Another technique, called interleaving, is based on separating memory into several

independent banks and allowing access to multiple data at the same time without

16

conflicts. Synchronous DRAM (SDRAM) can speed up sequential memory access by

matrix interconnection topology. Finally, two recent competing technologies are

Rambus DRAM (RDRAM) and Double Data Rate DRAM (DDR DRAM). RDRAM

provides a new interface with a packet-based protocol that allows overlapped

memory transactions. DDR DRAM uses a technique where data is transferred

between processor and memory on both the rising and the falling edges, thus,

doubling memory speed without any increase in clock frequency [CJD+01].

2.2.2 Locality and cache design

The previous section described advances in the hardware design of main memory

to improve its speed. Nevertheless, the gap between processor and memory

performance is widening exponentially [HP96]. One of the most commonly used

techniques to solve this problem is based on placing small and fast intermediate

storage between the main memory and the registers within the processor [Smi82].

This small storage is called cache memory and is used to keep frequently used data

and code closer to the processor so that it can access them faster.

Cache memory exploits locality. There are two types of locality – spatial and

temporal. Spatial locality means that a memory location adjacent to a referenced

location is likely to be referenced soon. Temporal locality means that a memory

location recently referenced is likely to be referenced in the nearest future. Whenever

the processor requests an item of data from memory, it first checks whether this data

can be found in cache. If data is not in cache, a cache miss occurs. In this case, data

is fetched from slow main memory to the processor and is simultaneously placed into

cache. If the program exhibits temporal locality so that the processor requests the

same data later, a cache hit occurs and this data is only fetched from the fast cache,

thus, considerably reducing the overall memory access time. To exploit spatial

locality, a fixed-size block of adjacent data to the requested data is also fetched from

main memory to cache on a cache miss. Therefore, if the processor requests this

adjacent data later, it is fetched directly from the cache, speeding up execution of the

program.

When data is moved to the cache, the location within the cache is determined by

its original address and the cache organisation. The cheapest and simplest

17

organisation is used in direct-mapped caches, where each memory location can be

mapped to one unique location in cache using the modulo function:

Address cache = Address main memory MOD Size cache

However, the major drawback of this cache type is the reduced capability for

exploiting locality. This happens when new data is fetched to an already allocated

place in cache, so that old data has to be replaced even if it can be potentially used in

the near future. In contrast, fully associative caches allow data to be placed anywhere

in cache. However, this cache organisation is more complex and expensive as the

cache now keeps not only the data but also its corresponding address. It needs to

have fast logic for finding this data by comparing the requested address with all the

stored addresses in the cache simultaneously (associatively). Therefore, due to

economical reasons set-associative caches are used. They consist of a number of sets

so that the memory location is first mapped to the set using a module function in the

same way as direct-mapped caches. Data can then be placed anywhere within the set.

If there are n possible locations in the set where data can be placed, the cache is

called n-way set associative. When the set is full, some data should be replaced. Two

most commonly used replacement strategies are random, where data is replaced

randomly within the set and LRU (least-recently used) strategy, where data accesses

are recorded and the least used data is replaced, thus, attempting to exploit temporal

locality.

The above methods are used to speed up data reads from memory because in

practice they dominate memory access. However, memory writes can also

considerably degrade the overall performance. There are two main cache policies for

cache behaviour when a data write occurs. The simplest policy is “write through”

where data is written to both cache and main memory, however, it usually stalls the

processor until the operation is finished. One solution is not to stall the processor by

introducing a write buffer that allows overlapping processor execution with writing

to memory. Another policy is called “write back”. This policy allows data to be

written back to the cache without writing it to memory first. Only when this data is to

be replaced in cache due to other memory requests, is it written to main memory.

This policy better exploits temporal locality, but the cache organisation is more

complex and needs to control data synchronisation between cache and main memory.

18

Since the gap between processor and memory speed continues to grow and the

amount of data to process grows as well, the memory hierarchy continues to alter as

shown in figure 2.4. Multilevel caches are introduced to accommodate the increasing

gap between the speed of the main memory and the cache, so that the closer the

cache is to the processor the smaller and faster it is.

Virtual memory allows the processing of larger amounts of data than the main

memory size. It uses main memory as a cache for larger storage such as the hard

drive by dividing it into pages so that when the memory access occurs it is mapped to

a specific page. If a page is not in memory, a page fault occurs and this page is

loaded into the main memory from the hard drive or other storage. Since the cost of a

page fault is high due to the access to the relatively slow devices, a fully associative

policy is usually used so that pages can be placed anywhere in main memory. When

main memory is full, the least recently used page is replaced. To speed up the

mapping of physical addresses to virtual addresses, a page table or TLB (translation

look-aside buffer) is used. It caches the physical addresses of recently used pages

and, thus, provides a fast translation from virtual to physical addresses.

An important characteristic that shows the cost of memory behaviour is the cache

miss rate, which is the percentage of the memory accesses that result in cache misses.

There are three sources of misses: compulsory, capacity and conflict. Compulsory

Figure 2.4: Memory hierarchy in current computing systems

Registers

Cache level 1

Cache level N

Main memory

Hard drive storage

19

misses occur when data is brought to the cache for the very first time. Capacity

misses occur due to the limited cache size so that when it is full, some data that is

still in use nevertheless has to be replaced. Conflict misses occur in direct-mapped or

set-associative caches when too many main memory lines are mapped to the same

cache set so that some data, later accessed, has to be discarded.

Reducing cache misses means reducing the number of costly accesses to main

memory and therefore potentially speeding up the program execution. Many different

techniques have been proposed to reduce data traffic between main memory and the

cache. Software methods to analyse program behaviour and reduce cache misses are

surveyed in chapter 3. Hardware methods are out of the scope of this thesis and the

most common of them are described in [HP96]. Briefly, they are based on making

the block size larger to bring more data from main memory on the cache miss thus,

reducing compulsory misses. Reducing conflict misses is possible by increasing the

associativity of the cache or by using different designs such as column-associative

caches [AP93], skewed-associative caches [BS95], victim caches or by using

randomised cache placement [TG99]. However, it should be noted that while

reducing cache miss rate improves the performance of the in-order processors, where

each cache miss causes the stall, it does not necessarily improve the performance of

current out-of-order execution processors due to the potential overlapping of memory

access with executing other instructions instead of stalling. This is examined in detail

in chapter 5.

2.3 Compiler technology

The compiler is an important software component of any computing system,

responsible for translating user program into machine code. This section contains a

brief survey of compiler technologies and describes major compiler optimisations to

produce faster code for superscalar processors with out-of-order execution, excluding

memory optimisations, which are described in chapter 3.

20

2.3.1 Introduction to compiling

Early computers were programmed directly using binary machine code.

However, this process is not only tedious and time consuming, but also requires a

good knowledge of the underlying computer hardware. Moreover, binary code is

difficult to analyse and modify if any further changes are necessary. Furthermore,

such codes are generally not portable to new architectures. Therefore, an assembly

language is used instead. It translates program source code containing computer

instructions into machine code. The assembler usually has some basic support for

data structures and subroutines making it easier to develop and modify programs.

However, it still requires knowledge of the particular architecture instruction set and

is not portable between different platforms.

This problem has been solved by introducing high-level computer languages and

their respective compilers. High-level languages are usually designed for some

particular classes of problems and are platform independent allowing programmer to

write compact portable programs. Compilers, however, are typically platform

dependent and translate programs written on the high-level language into the

assembly language or machine code of the targeted architecture. One of the earliest

languages and compilers developed for scientific applications was Fortran. It is not

only still in use today, but it also became a standard for numerical programs

[PTV+92]. Fortran compilers use mature technology that has been developed over

many years and is now capable of producing high quality fast code for a variety of

platforms.

Compilers transform source code into machine code through different stages. The

common stages are lexical, syntax and semantic analysis that form the compiler

front-end. Code optimisation and machine code generation constitute the compiler

back-end. These stages are described in detail in [ASU86].

Briefly, the compiler front-end is responsible for checking that the program is

correct lexically, syntactically and semantically. It constructs an abstract intermediate

representation of the program. This intermediate representation removes

redundancies in the application and contains only unique machine-independent

information about the original program. This simplifies the retargeting of the

compiler for different languages and platforms so that only the compiler front-end is

21

changed for a new language and the compiler backend is changed for a new platform.

The code optimisation stage remains intact. The code optimisation stage is

responsible for improving the quality of the intermediate code so that faster and

smaller machine code will be produced. This stage will be described in more detail in

section 2.3.2 and in chapter 3. Finally, the compiler back-end is responsible for

producing assembly or machine code from the program intermediate representation

for the target platform. During this stage, registers are allocated and certain platform-

specific optimisations, such as instruction scheduling, are performed. It is described

in the next section.

2.3.2 Code optimisations

Using high-level languages helps the programmer to abstract from the underlying

machine architecture, to have an easier and simpler development process and to write

compact portable programs. However, this means that the compiler has a major role

in producing fast and efficient target machine code automatically. This is not a trivial

task because potentially many variants of the machine code exist for the same

program. Hence, the task of the compiler is to find and produce the best version of

the machine code for any given program. This process is called program

optimisation.

Program optimisations are performed via program transformations that can

improve speed and/or size of the final machine code without changing the behaviour

and meaning of the program [ASU86]. These transformations are applied at different

compiler stages and can either be platform independent, when properties of the

targeted machine are not taken into consideration, or platform dependent when

various platform parameters are taken into account.

Before optimising any program, the compiler has to perform control flow

analysis and data flow analysis. Control flow analysis is usually performed in the

front-end of the compiler where the intermediate representation of the program is

generated. It divides the whole program into basic blocks that have only one entrance

and one exit, and produces a control flow graph that shows how the basic blocks are

interconnected. This helps the compiler identify loop structures and other parts of the

program that can be further legally transformed.

22

Data flow analysis is performed on the intermediate representation of the

program. It examines the flow of data in the whole program, producing information

about each variable, such as where this variable is first defined, how it is used in

basic blocks and finally where it is redefined. This is a complex process that requires

examining all control paths of the program but simplifies further data dependence

analysis and program optimisation.

Once the control and data flow graphs are available, the compiler starts

optimising the program. First, machine independent optimisations are performed.

These include transformations such as code motion, code inlining, common

subexpression elimination and copy propagation transformations [ASU86]. Briefly,

the code motion transformation moves invariant statements within a loop outside,

thus, eliminating redundant computation and speeding up the overall execution of the

program. Code inlining is used to remove the call statement overhead by merging

small and frequently called subroutines with the caller. This transformation can

speed up the program but it can also increase the size of the program if there is more

than one place where the subroutine is called. Finally, both global common

subexpression elimination and copy propagation are used to avoid repetitive

computations, thus, improving code performance as well as code size.

The final compiler stage is to allocate register and memory resources to the

program and to generate and schedule machine instructions from the program

intermediate representation. It is not a trivial task, as the compiler has to take into

account various machine parameters in order to produce the fastest possible code for

the particular architecture. This stage is beyond the scope of this thesis and is

described in detail in [ASU86] and [GH88].

Briefly, during the register allocation phase, the compiler has to determine which

values should be placed in registers based on the data flow and dependence analysis.

The major difficulty of this task is that there is a limited number of hardware

registers. The main objective is to reduce the number of memory accesses giving a

potential performance improvement. Various methods for register allocation are

presented in [ASU86] and [Tou02].

During the instruction scheduling phase, the compiler has to produce and

optimise the instruction sequence in such a way that data and control dependencies

23

are not violated and that the program’s ILP is exploited without introducing

processor stalls [SCD+97]. Though most modern processors have an automatic

support for deriving program ILP at run time, it is limited because the processor can

analyse ahead only those instructions that reside in the instruction window at a time.

Compilers have the advantage of analysing the whole program and scheduling

instructions for the pipeline globally and in some cases predicting branches using

static information from the data flow and dependencies analysis. Furthermore, to

exploit features of modern superscalar processors with out-of-order execution the

compiler can perform various machine dependent optimisations.

Loop unrolling and software pipelining are two major transformations that can

improve scheduling of the program and better exploit ILP. Loop unrolling replicates

the loop body multiple times, thus, reducing the number of loop branch checks. This

is one of the transformations used in the research for this thesis and thus, is reviewed

in more detail in chapter 3. Software pipelining transforms a loop in such a way that

each instruction of the new loop is assembled from instructions belonging to

different iterations of the original loop, thus, allowing the overlapping of multiple

instructions without data dependencies. It is described in detail in [BGS94].

One of the difficulties compilers face in this phase is the lack of precise

information about the hardware of the targeted machine. Hence, simplified machine

models are used that reduce the potential for exploiting ILP. This is discussed in

detail in chapter 3.

2.4 Summary

The evolution of the processor design is surveyed in this chapter starting from the

description of the internal structure of the world’s first microprocessor, the Intel

4004. Advances in the semiconductor technology allowing higher transistor density

per chip are discussed and followed by the brief analysis of various design changes

to improve the processor performance. CISC and RISC processor architectures are

compared and pipelining technique implementation for both architectures are

discussed. Multiple issue techniques and out-of-order instruction execution for

exploiting instruction level parallelism are presented. This is followed by the

discussion of various hazards on superscalar processors that can considerably

24

degrade the performance and the hardware solutions used to overcome them. The

need for memory hierarchy to accommodate the widening gap between the speed of

the processor and the memory is outlined. The main memory designs are briefly

surveyed, which is then followed by the introduction of caches that exploit locality to

further reduce memory access time. The most common cache organisations are

analysed. Finally, this chapter finishes with the introduction to the compiling

technology and with the description of basic optimisations excluding memory

analysis and optimisations that are discussed in the next chapter.

25

Chapter 3

Memory hierarchy optimisations

This chapter surveys existing work related to the research of this thesis. It

reviews various program transformations that can improve memory performance by

reducing data traffic between the processor and the memory and primarily focuses on

loop tiling, array padding and loop unrolling, though other transformations are also

briefly reviewed. It discusses certain program representations and issues concerning

the legality of transformations. Various static techniques for analysing data reuse and

locality and for obtaining the number of cache misses within a program are further

presented. It is followed by a survey of static algorithms for transforming programs

to improve data locality and reduce conflict and compulsory misses. A review of

program dynamic analysis is then presented. It obtains various run-time parameters

that are not available statically by means of profiling or simulations. This run-time

information can be used during dynamic optimisations such as in feedback assisted,

iterative or adaptive compilation, as described in the last section of this chapter.

3.1 Program transformations

This section describes various transformations and their effect on program

performance. This includes major loop and data transformation used in the research

of this thesis such as loop tiling, array padding and loop unrolling. Other

transformations such as software pipelining and prefetching are also briefly

described. Examples of mathematical notations for the representation of loops and

arrays to ease dependence analysis and automatic application of those

transformations are presented.

3.1.1 Introduction

The aim of new hardware designs of computing systems that target numerical

codes is faster execution of a broad range of programs. Those programs are generally

26

developed for older platforms that do not reflect new design features, and are ported

to a new hardware without major changes due to economical reasons. Therefore,

there are two major ways to improve the performance of the unchanged program: by

analysing and rescheduling the stream of instructions dynamically by the processor

or by analysing and transforming the program statically by the compiler. The first

way of scheduling instructions by the processor is limited as the processor can only

analyse several instructions at a time and does not see the whole program behaviour

as discussed in section 2.3.2. On the contrary, a compiler can analyse the whole

program and adapt it to a new computing system using program transformations,

even if the original algorithm is unchanged.

The aim of program transformations is to reorder operations in a program to

improve performance without changing the meaning of the program. Program

transformations that remove redundancies and improve scheduling were first

introduced in this thesis in section 2.3.2. This section focuses on memory

transformations that are used to overcome the increasing gap between the speed of

the processor and the main memory, by improving data locality and minimising the

number of non-local memory accesses.

Memory transformations are divided into two groups: loop and data

transformations. Loop transformations modify loop iteration order in an attempt to

achieve better data locality, without changing the meaning of the original program.

The emphasis on loop structures is due to an observation that programs spend most

of their execution time in loops. Data transformations modify the layout of array data

in the memory with the same aim of achieving better locality.

Bacon et al. [BGS94] survey various loop and data transformations and describe

their influence on program locality and performance. This thesis focuses on three

transformations: loop tiling, unrolling and array padding. These transformations have

been selected due to their potential to considerably improve performance. They are

described in detail in the following sections 3.1.2, 3.1.3 and 3.1.4.

Transformations such as loop unrolling and array padding are relatively easy to

analyse and implement, while others, such as loop tiling, require thorough

dependence analysis and can be difficult to implement inside the automatic

27

optimising compiler. Therefore, linear algebraic models to represent loop and data

structures are used to enable automatic optimisations.

One of the first significant papers that uses a mathematical model to unify

various transformations is [WL91b] by Wolf and Lam. It describes a matrix model

for transformations and incorporates dependence vectors to check the validity of

transformations within the same framework. It provides the theory for the automatic

analysis of the validity of standalone or even compound transformations and enables

the data locality analysis, as is shown in further sections of this chapter. However,

the loop transformation theory of this paper is limited by unimodular transformations

such as loop interchange, reversal and skewing for the perfectly nested loops.

Briefly, this model represents a loop nest as a finite convex polyhedron and each

iteration in this loop nest is described as an index vector p
r . Data dependencies

restrain the execution order of the iterations and can be represented as dependence

vectors d
r

. Loop transformations map original iterations into new ones and can be

represented as matrices T . When loop transformation is applied, new iteration and

dependence vector is found as the matrix-vector multiplication, that is pTp
rr

=new ,

dTd
rr

=new . If a compound transformation, consisting of several transformations

NTTT ,...,, 21 has to be applied, the final matrix of the compound transformation is

found as a consecutive multiplication of all matrices Nnew TTTT ...21= . Finally, a new

transformation is legal if the transformed code can be executed sequentially, or in

mathematical terms, if all transformed dependence vectors are lexicographically

positive. The definition of a lexicographically positive vector d
r

 is the following:

)0 : and 0 (: if ≥<∀<∃ ji dijdi .

The following example, taken from [WL91b], demonstrates the use of the loop

transformation theory:

for I1: = 1 to N do

 for I2: = 1 to N do

 a[I1, I2] := f(a[I1, I2], a[I1+1, I2-1]);

The dependence vector of this double nested loop is (1,-1) and the iteration vector is

(ji,). Consider that in the first case the loop interchange transformation has to be

applied and in the second case a compound transformation consisting of the loop

28

interchange and the loop reversal transformations has to be applied. The matrix of

the loop interchange transformation is ⎥
⎦

⎤
⎢
⎣

⎡
=

01
10

T and the matrix of the loop reversal

transformation is ⎥
⎦

⎤
⎢
⎣

⎡−
=

10
01

T . When loop interchange is applied, the new

dependence vector ⎥
⎦

⎤
⎢
⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=

1
1

1
1

01
10

newd is lexicographically negative.

Therefore, this transformation is not legal for this code. However, when the

compound transformation of the loop interchange and the loop reversal is applied,

the new dependence vector ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡−
=

1
1

1
1

01
10

1
1

01
10

10
01

newd is

lexicographically positive. Hence, this compound transformation can be legally

applied to the above code.

Analysing data dependencies for large programs can be a complex and slow

process and can be hard to implement inside a production compiler. The Banerjee

test [Ban88], based on the Intermediate Value Theorem, is commonly used to detect

all the dependencies between variables within a given region of the program. A faster

method for determining data dependence relationships based on an integer

programming algorithm is introduced by Pugh in [Pug91]. To speed up the analysis,

an Omega test is used. This method allows one to determine if an integer solution

exists to a set of linear equalities and inequalities.

Another important issue, which arises after applying some particular

transformations, such as loop tiling, is that loop bounds have to be transformed as

well. Calculating new loop bounds can be performed directly by transforming all

inequalities derived from the loop nest, as proposed originally by Wolf and Lam in

[WL91b]. However, it may potentially contain excessive maxima and minima

computations in the new loop bounds that can degrade overall performance. To

overcome this problem, Ancourt and Irigoin introduce several algorithms in [AI91]

that optimise minima and maxima computations in the loop bounds using integer

linear system methods.

Li and Pingali extend unimodular transformation theory in [LP92] by using non-

singular matrices for transformations. In this loop transformation framework called

29

Λ -transformations, some new transformations can be used, in addition to all

unimodular transformations that are included as a sub-case. One such transformation

is loop skewing, which non-singular transformation matrix is ⎥
⎦

⎤
⎢
⎣

⎡
=

20
01

T . In

addition, integer lattice theory is used to generate efficient code. This paper also

contains a proof that any transformation, which can be represented by an integer non-

singular matrix, can be composed using four basic transformations: permutation,

skewing, reversal and scaling.

To expand the loop transformation theory on non-perfectly nested loops, Xue

suggests converting an imperfectly nested loop to a perfect loop nest in [Xue97a] by

using Abu-Sufah’s Non-Basic-to-Basic-Loop transformation. This allows one to

apply unimodular transformations and extract data dependencies in the usual manner.

Figure 3.1 demonstrates an example from this paper for transforming an n-deep non-

 do x1 = L1 , U1
S1a : H1a (x1)
 do x2 = L2 , U2
S2a : H2a (x1 , x2)
 . . .
 do xn = Ln , Un
Sn : Hn (x1 , . . . , xn)
 . . .
S2b : H2b (x1 , x2)
S1b : H1b (x1)

(original loop)

 do x1 = L1 , U1
 do x2 = L2 , U2
 . . .
 do xn = Ln , Un

S1a : if x2 = L2 ∧ . . . ∧ xn = Ln then H1a (x1)
S2a : if x3 = L3 ∧ . . . ∧ xn = Ln then H2a (x1 , x2)
 . . .
Sn : Hn (x1 , . . . , xn)
 . . .
S2b : if x3 = U3 ∧ . . . ∧ xn = Un then H2b (x1 , x2)
S1b : if x2 = U2 ∧ . . . ∧ xn = Un then H1b (x1)

(transformed loop)

 Figure 3.1: Abu-Sufah’s transformation of imperfectly nested loop to a perfect
loop nest.

30

perfectly nested loop to a perfectly nested loop. This approach has two major

drawbacks. The first one is that the Non-Basic-to-Basic-Loop transformation is not

always legal and the issue of legality is discussed in this paper. The second one is

that the innermost loop contains an excessive amount of “if” statements that can

degrade performance considerably, particularly on pipelined processors with out-of-

order execution, as discussed in sections 2.1.2 and 2.1.3.

To unify various loop transformations and to extend their applicability to

arbitrary loop nests, affine partitioning was proposed by Lim and Lam in [LL97].

Originally, this paper suggested using affine partitions to maximise parallelism and

minimise synchronisation for multiprocessor computing systems. Later, this method

was extended to optimise data locality for uniprocessors in [LLL01] by Lim et al.

Briefly, this model uniquely identifies all operations by the loop index values of the

enclosing loops. It expresses all possible combinations of various transformations

using affine transforms that are created for each operation to map old index values

into new ones. Depending on the task, various search algorithms are used to find the

optimal affine transform for maximising parallelism or improving data locality.

Feautrier provides some additional details about solving affine scheduling efficiently

in [Fea92].

Besides loop transformations, data transformations can also benefit from the

mathematical representation. O’Boyle and Knijnenburg introduce a single framework

in [OK99] that unifies various non-singular data transformations. It allows one to

perform compound transformations in one step, using matrix representation for

arrays and transformations in a similar way to the framework proposed by Wolf and

Lam in [WL91b]. For example, if J is the iteration vector and there is an access to

an array A(i+j, j) inside a two-nested loop, then the subscripts of this array can be

written as an affine mapping ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=+

0
0

10
11

j
i

uUJ . Data transformation in this

model consists of a non-singular matrix A and a shift vector a and its application to

the array access results in a new access, where AUU'= and aAuu' += . It should be

noted that data transformations affect all accesses to the particular array globally,

unlike loop transformations that are local for the loop nest.

31

Figure 3.2 demonstrates data skewing transformations for the array A and the

respective transformation matrices and shift vectors. The advantage of this

framework is that it unifies and eases the analysis and application of data

transformations, and can be easily implemented inside production compilers.

Finally, an approach to combine loop and data transformations that can achieve

better results than if those transformations are used separately, is presented by

Kandemir et al. in [KCR+98]. This paper proposes an integrated compiler framework

that combines both loop and data transformations for optimising data locality for

numerical codes. The following sections contain further information about three

transformations that are used in the research of this thesis: loop tiling, array padding

and loop unrolling.

3.1.2 Loop tiling

Loop tiling (blocking) is a transformation that is used to improve cache reuse

within a loop nest, by dividing the iteration space of the nest into fixed-size blocks.

do i = 1, n
 do j = 1, n
 A(2*i,i+j) = i+j
do i = 1, n
 do j = 1, n
 A(2*i,j) = B(i+j)

 (original access to array A)

⎥
⎦

⎤
⎢
⎣

⎡
=

11
01

A , ⎥
⎦

⎤
⎢
⎣

⎡
=

0
0

a

 (transformed access to array A after array skewing)

 Figure 3.2: Data transformation theory examples

⎥
⎦

⎤
⎢
⎣

⎡
+

=⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
ji

i
j
i 2

0
0

11
02

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

0
0

,
11
02

uU

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
j
i

j
i 2

0
0

10
02

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

0
0

,
10
02

uU

⎥
⎦

⎤
⎢
⎣

⎡
=+=⎥

⎦

⎤
⎢
⎣

⎡
==

0
0

,
13
02

aAuu'AUU'

⎥
⎦

⎤
⎢
⎣

⎡
=+=⎥

⎦

⎤
⎢
⎣

⎡
==

0
0

,
12
02

aAuu'AUU'

do i = 1, n
 do j = 1, n
 A(2*i,3*i+j) = i+j
do i = 1, n
 do j = 1, n

 A(2*i,2*i+j) = B(i+j)

32

This transformation can be used in cases where the data footprint of the original loop

nest, which is defined as the amount of data touched within this loop nest, is bigger

than the cache size. In this situation, if the tile size is chosen to fit the new data

footprint into cache, it can result in better data reuse inside the new loop structure.

Wolfe describes various practical examples of loop tiling and discusses issues of

the legality of this transformation in [Wol89]. A simple example of tiling a 2-nested

loop from this paper is shown in figure 3.3. It demonstrates how the iteration space is

divided into blocks of size SS*SS to improve data locality.

Xue uses a mathematical formulation similar to the one introduced in section

3.1.1 to analyse the effects of the tiling transformation on data dependencies and to

ease the dependence test for the legality of the transformation [Xue97b]. Figure 3.4

presents a generalised version of the loop tiling for the m-dimensional loop nest with

tile factor of B. Loop tiling decomposes this m-dimensional loop nest into 2m-

original loop nest: transformed loop nest:

 do IT = 1, N, SS

 do JT = 1, N, SS

do I = 1, N do I = IT, MIN(N, IT+SS-1)

 do J = 1, N do J = JT, MIN(N, JT+SS-1)

 A(I,J) = A(I,J) + B(I,J) A(I,J) = A(I,J) + B(I,J)

 C(I,J) = A(I-1,J) * 2 C(I,J) = A(I-1,J) * 2

 end do end do

end do end do

 end do

 end do

iteration space iteration space

of the original loop: of the transformed loop:

Figure 3.3: Loop tiling example

33

dimensional loop nest, so that the innermost m loops iterate within a block, thus,

improving data locality.

Finally, it should be noted that it is also possible to tile imperfectly nested loops.

More information about the tiling of imperfectly nested loops can be found in paper

[AMP00].

The major question before applying loop tiling transformation is how to choose

the tile size to improve the performance of the code. Data locality analysis and

analysis of conflict cache misses are used to derive this information and are

discussed in section 3.2.

3.1.3 Array padding

Array padding modifies the program data layout to remove cache conflict misses

that occur due to a limited cache set associativity, as briefly described in section

2.2.2. This transformation has two types: inter- and intra-variable padding. Inter-

variable padding changes the base addresses of arrays, and intra-variable padding

inserts dummy data locations between the columns of arrays. Rivera and Tseng

describe both types and present an analysis and heuristic to apply this transformation

in [RT98].

original loop nest: transformed loop nest:

do i1 = 1, N do ii1 = 1, N, B

 do i2 = 1, N do ii2 = 1, N, B

 … …

 do im = 1, N do iim = 1, N, B

 S(i1, i2, …, im) do i1 = ii1, N, min(N, ii1+B-1)

 do i2 = ii2, N, min(N, ii2+B-1)

 …

 do im = iim, N, min(N, ii3+B-1)

 S(i1, i2, …, im)

 Figure 3.4: Generalised version of loop tiling

34

Figure 3.5 (a) presents an example for inter-variable padding from this paper.

Unit-stride consecutive accesses to arrays A and B have a potential for spatial

locality. However, if the cache is direct-mapped and if these arrays are situated in

memory at such addresses that every access to A(i) and B(i) is mapped to the same

cache line, then every reference will generate a cache conflict miss, thus, degrading

performance. To solve this problem and ensure cache reuse, inter-variable array

padding is used. It changes the base address of the array B in such a way that

references to A(i) and B(i) are mapped to different cache locations. The array base

real S, A(N), B(N) real S, A(N), DUM(PAD), B(N)

do i = 1, N

 S = S + A(i)*B(i)

Memory: Memory:

array A array B array A DUM array B

Cache Cache

(a) Inter-variable padding

real A(N,N), B(N,N) real A(N+PAD,N), B(N,N)

do i = 2, N-1

 do j = 2, N-1

 B(j,i) = (A(j-1,i)+A(j,i-1)+A(j+1,i)+A(j,i+1))/4

Memory: Memory:

A(N,1) A(N,2) A(N+PAD,1) A(N+PAD,2)

Cache Cache

(b) Intra-variable padding
 Figure 3.5: Intra-variable and inter-variable array padding examples

35

address can be changed directly on assembler level, or indirectly on source level, by

inserting some dummy array DUM between arrays A and B.

Similar situations may occur in cases of multidimensional arrays. Figure 3.5(b)

shows an example of stencil computation from the same paper [RT98]. Memory

references to the 2-dimensional array A in this example have a potential for spatial

and temporal reuse. However, if the column size of array A is a multiple of the cache

size, all columns of this array will map to the same cache lines and will generate

cache misses. Therefore, inter-variable padding is applied by inserting some dummy

locations between array columns to avoid their mapping to the same cache lines.

Finally, a generalised version of intra-padding with a PAD factor for array A(N1, N2,

…), as used in the research of this thesis, is A(N1+PAD, N2, …).

The major questions before applying array padding are how to detect conflicting

array references and how to choose the size of the dummy array to reduce conflict

misses. The data layout analysis and optimisations are presented in section 3.2.

3.1.4 Loop unrolling

Loop unrolling is used primarily to improve instruction level parallelism and

reduce loop overhead by replicating the body of the loop a number of times and

replacing the loop step with this number. In addition, loop unrolling can also improve

data locality and register usage by reducing the number of memory accesses and is

therefore within the scope of memory optimisations. Dongarra and Hinds briefly

describe this transformation and show its effect for various unrolling factors on two

original loop: loop unrolled twice:

 do i = 2, n-2, 2

 a[i] = a[i] + a[i-1] * a[i +1]

do i = 2, n – 1 a[i+1] = a[I+1] + a[i] * a[i+2]

 a[i] = a[i] + a[i-1] * a[i+1] end do

end do if (mod(n-2,2) = 1) then

 a[n-1] = a[n-1] + a[n-2] * a[n]

 end if
 Figure 3.6: Loop unrolling example

36

subroutines in [DH79]. Bacon et al. analyse loop unrolling in more detail in

[BGS94]. Figure 3.6 presents an example from this paper and shows an original

sample loop and unrolled loop with a factor of two.

This example demonstrates that the loop overhead that consists of the increment,

test and branch operations, is 2 times less than in the original loop. Moreover,

reducing the number of branches can reduce the number of control dependencies and

thus improves program performance on modern pipelined processors with out-of-

order execution, as discussed in sections 2.1.2 and 2.1.3. This example also

demonstrates how data or register locality can be improved: array references A[i] and

A[i+1] are used twice in the unrolled loop, thus, reducing the number of memory

accesses from 3 to 2 per iteration. It should also be noted that the if statement at the

end of the unrolled loop, in this example, is needed when it is not known at a compile

time whether the total number of iterations in the loop is a multiple of the unrolling

factor or not. If it is not an exact multiple then this code is needed to process the

original loop: unrolled loop (u - unroll factor):

do i = 1, n do i = 1, n, u

 S1(i) S1(i)

 S2(i) S2(i)

 … …

end do S1(i+1)

 S2(i+1) loop body replicated

 … u times

 S1(i+u-1)

 S2(i+u-1)

 …

 end do

 do j = i, n

 S1(j) processing all

 S2(j) remaining

 … elements

 end do

 Figure 3.7: Generalised version of loop unrolling

37

remaining elements. However, it is also possible to generalise loop unrolling using

two loops, as shown in figure 3.7, where an additional loop is needed to process all

remaining elements.

Finally, it should be noted that applying unrolling is always legal for a single

loop. However, the major question is how to choose the best unrolling factor to

improve performance. This is discussed in section 3.2.1.

3.1.5 Other transformations

There are many other transformations besides loop tiling, array padding and loop

unrolling that can potentially improve program performance. Many of these

transformations are described in detail by Bacon et al. in [BGS94]. They are omitted

here, except for two highly related transformations. These transformations are

software pipelining and prefetching and are briefly described further.

Software pipelining, as well as loop unrolling, is a technique for improving

instruction level parallelism. Similar to hardware pipelining, described in section

2.1.2, software pipelining transforms a loop in such a way that each iteration of the

new loop contains instructions from several different iterations of the original loop.

This transformation requires a start-up code before the loop to fill up the software

pipeline and an additional code after the loop to process the remaining elements of

the loop. Software pipelining exploits the ILP across different loop iterations, thus,

allowing instructions from successive iterations to execute in parallel. Software

pipelining and loop unrolling can both achieve better scheduling for the inner loop,

but in a different way: loop unrolling tackles branch and counter update overhead

whilst software pipelining attempts to reduce the time when the inner loop is not

running at a peak speed. Figure 3.8 presents two graphs from [BGS94] that show

how operations are overlapped in the inner loop after loop unrolling and software

pipelining. The shaded area in these graphs shows when the loop is not running at the

peak speed. For loop unrolling, this happens during each iteration, whilst for

software pipelining it happens only at the beginning and the end of the loop.

Originally, software pipelining was intended to be used on VLIW platforms as

described by Lam in [Lam88]. However, it was later noticed that loops on RISC and

38

other platforms could also benefit from this transformation. Allan et al. generalised

and thoroughly analysed this transformation in [AJL+95].

Software prefetching [CKP91] is a technique that can reduce the number of

compulsory misses by inserting prefetch instructions into the code to bring data into

the cache before it is needed. In this case, when data is accessed it is already in the

cache and thus, reduces potential stalls. This technique can considerably improve

program performance. However, inserting more instructions can potentially degrade

performance. Therefore, analysis is needed to determine whether the code will

benefit from the software prefetching. It is important to find the best places where to

insert prefetch instructions in code and the amount of data to be brought into cache.

Mowry et al. and VanderWiel et al. describe and analyse various techniques to apply

software prefetching in [MLG92] and [VL00] respectively. Figure 3.9 presents a

simple software pipelining example from the last paper. A compulsory cache miss

occurs in the original loop at every fourth iteration, assuming a four-word cache

block. Therefore, a basic approach to prefetching is to fetch data from the main

memory to the cache one iteration before this data is needed.

The following section will describe static analysis and code optimisations that

use loop tiling, array padding and loop unrolling.

loop unrolling:

overlapped
operations

 time
software pipelining:

overlapped
operations

 time

Figure 3.8: Software pipelining versus loop unrolling

39

3.2 Static analysis and optimisations

The previous section described transformations used in the research of this thesis

that can improve the program instruction level parallelism or data locality. The major

question is how to choose the transformation parameters to achieve the best

performance. Therefore, this section surveys work on the static analysis of

applications for data locality and ILP. It also reviews static methods for choosing the

transformation parameters to improve data reuse and reduce cache misses.

3.2.1 Improving ILP

Program optimisations that improve instruction level parallelism are out of the

scope of this research. However, some of them can also improve cache performance

as in the case of loop unrolling. It can reduce the number of memory accesses as

described in section 3.1.4 and thus, is examined further.

This section briefly reviews existing work on selecting unrolling factors for loops

to minimise execution time. Carr and Kennedy describe a technique for

automatically choosing the best unrolling factor for a transformation called unroll-

and-jam in [CK94]. This transformation consists of two transformations: loop

unrolling and loop fusion. First, loop unrolling is applied to an outer loop and then

original loop:

for (i = 0; i < N; i++)

 ip = ip + a[i]*b[i];

loop after software prefetching

for (i = 0; i < N; i++){

 fetch(&a[i+1]);

 fetch(&b[i+1]);

 ip = ip + a[i]*b[i];

}

 Figure 3.9: Software prefetching example for inner product calculation

40

loop fusion is applied to bring inner loops together, as shown in the example from

this paper in figure 3.10.

The authors propose an algorithm for automatically transforming a loop to

improve performance by optimising the ratio of memory operations to floating-point

operations. It is based on a static method of estimating the performance of a loop on

a targeted platform using a simple performance model that incorporates only a few

parameters of that platform, such as the number of floating-point and load operations

per cycle and the number of registers. The general idea of this method is to optimise

a loop in such a way that both memory accesses and floating-point operations are

performed at peak speed without delays.

Two characteristics are used to analyse and quantify the balance between loads

and floating-point operations: machine balance and loop balance. Machine balance is

a platform-dependent characteristic, defined as the following:

Machine balance (Mβ=) =
)(cycle / flopsmax
)(cycle / max words

M

M

F
M

=
= ,

where MM is the peak rate of data loads and FM is the peak rate of floating-point

operations. Loop balance is a characteristic of a specific loop, defined as the

following:

Loop balance (Lβ) =
)(flops ofnumber

) (referencesmemory ofnumber
F

M
=

= .

Comparing loop balance with machine balance allows one to analyse the

performance of a particular loop on a particular platform. The case when ML ββ <

original loop:

 DO 10 I = 1, 2*M

 DO 10 J = 1, N

10 A(I) = A(I) + B(J)

after unroll-and-jam of I by a factor of 1:

 DO 10 I = 1, 2*M, 2

 DO 10 J = 1, N

 A(I) = A(I) + B(J)

10 A(I+1) = A(I+1) + B(J)

Figure 3.10: Unroll-and-jam transformation example

41

means that the loop is compute bound, i.e. the rate of data retrieval from memory is

faster than its processing rate. The case when ML ββ > means that it is memory

bound, i.e. data is retrieved from the memory slower than it can be processed.

Finally, the loop is balanced on the target platform if ML ββ = . Therefore, to improve

performance with unroll-and-jam transformation, a non-linear integer optimisation

problem should be solved that improves the balance of the loop:

 objective function: min
0

ML ββ −

constraint: # floating-point register required ≤ register-set size

The last constraint is needed as the unroll-and-jam transformation can potentially

spill floating-point registers. Loop balances and register usage are calculated at

compile time as functions of Xi, that is the number of times the ith outermost loop is

unrolled + 1. Hence, to determine the best possible unrolling factor, the above

optimisation problem is solved to get a linear function of Xi and then the solution

space is searched in parallel with checking the register pressure.

The above method has been implemented in a Fortran source-to-source compiler.

The experimental results showed that in most of the cases hand optimisation was

unable to achieve a much better balance than this automatic technique. However, the

loop performance prediction model used in this method is very simple, based only on

a few parameters of a target platform, such as the number of registers and machine

balance. Hence, it may not predict performance correctly on current platforms, with

processors supporting out-of-order execution and with memory hierarchy. To

overcome this problem Carr and Guan propose an extension to this algorithm in

[CG97]. In the new method, the calculation of Mβ is the same, but the calculation of

Lβ reflects the observation that cache miss latency can be hidden in some platforms

by software prefetching or non-blocking caches. The architecture in this paper is

assumed to have a prefetch-issue buffer of the size 0≥MP and a prefetch latency of

0≥ML cycles. Therefore, the prefetch issue bandwidth is
M

M
M

L
PI = . Considering,

that for every LL cycles the innermost loop requires LP prefetches, then in the case

of M
L

L
L I

L
PI ≤= , the memory latency can be hidden, otherwise all prefetches

42

(LML LIP −) cannot be processed. This gives the final version of calculating the loop

balance:

L

h

m
LMLL

L
F

C
CLIPM ×−+

=

+)(
β ,

where
⎩
⎨
⎧

<
≥

=+

0 if 0
0 if

x
xx

x , Cm is the cost of a cache miss and Ch is the cost of a cache

hit. In addition, to compute the memory operation cost, data reuse is analysed. This

is described in the next section.

The modified method takes more parameters of the targeted platform into

consideration and is potentially more precise than the previous one. Finally, Sarkar

presents a similar algorithm in [Sar00], which uses a cost function that incorporates

unrolling factors for all loops. This algorithm automatically determines the best

unrolling factors for perfectly nested loops and generates more compact code than

the algorithm described in [CG97]. It enumerates a set of all profitable unroll vectors

during the optimisation process and computes the cost function for each of them.

Finally, the unrolling vector with the smallest cost function is selected.

3.2.2 Data locality analysis and optimisations

Data locality is an important characteristic of the program that describes the

program’s ability to effectively utilise the memory hierarchy. Analysing data locality

statically allows one to predict the memory behaviour and to find the potential for

utilising the cache hierarchy. It can be further used to apply transformations that

improve data locality and to speed up the program, as is shown in the next

subsections.

Most of the research in this domain is aimed at analysing data reuse that occurs

within loops. Wolf and Lam describe a mathematical formulation of reuse and

locality in [WL91a], based on the loop transformation theory that is briefly described

in paragraph 3.1.1 of this chapter. They propose an algorithm for improving the data

locality of a loop nest.

The authors of this paper stress a distinction between reuse and locality: if some

data is used in different iterations of a loop nest, it is reused in this loop nest.

43

However, reuse does not guarantee locality, since the data may be flushed out of the

cache by intervening iterations. Those iterations that can exploit reuse form a

localised iteration space. This iteration space can be characterised as localised vector

space to abstract from its bounds.

This paper describes four types of reuse: self-temporal reuse, when a reference

accesses the same word for different loop iterations; self-spatial reuse, when a

reference accesses a word in the same cache block for different loop iterations;

group-temporal reuse, when references accesses the same word and group-spatial

reuse, when references refer to a word in the same cache block. The following loop

nest is an example from this paper to demonstrate these types of reuse:

 for I1 := 1 to n do

 for I2 :=1 to n do

 f(A[I1],A[I2]);

Reference A[I1] from this loop nest has self-temporal reuse in the innermost loop and

reference A[I2] has self-temporal reuse in the outermost loop. Besides, reference

A[I1] has self-spatial reuse in the outermost loop and reference A[I2] has self-spatial

reuse in the innermost loop.

This paper uses the concept of uniformly generated references to quantify reuse

and locality, and underlines that non-uniformly generated references exhibit little

exploitable reuse. The definition of the uniformly generated references is the

following:

Let n be the depth of a loop nest, and d be the dimensions of an array A .

Two references)]([ifA
rr

 and)]([igA
rr , where f

r
 and gr are indexing

functions dn ZZ → , are called uniformly generated if

fciHif rrrr
+=)(and gciHig rrrr

+=)(

where H is a linear transformation and fcr and gcr are constant vectors.

The references to the same array and with the same H are further partitioned

into equivalence classes of references called uniformly generated sets. Consider the

following sample loop nest from this paper:

44

 for I1 := 0 to 5 do

 for I2 :=0 to 6 do

 A[I2+1] := 1/3 * (A[I2] + A[I2+1] + A[I2+2]);

References A[I2], A[I2+1] and A[I2+2] have the following indexing functions:

[] []010
2

1
+⎥

⎦

⎤
⎢
⎣

⎡
I
I

, [] []110
2

1
+⎥

⎦

⎤
⎢
⎣

⎡
I
I

 and [] []210
2

1
+⎥

⎦

⎤
⎢
⎣

⎡
I
I

.

These references have the same H = []10 and therefore belong to the same

uniformly generated set.

This paper further presents methods for quantifying four types of reuse within a

loop nest: self-temporal, self-spatial, group-temporal and group-spatial. For example,

a reference][ciHA rr
+ has a self-temporal reuse if iterations 1i

r
 and 2i

r
 access the

same data, that is ciHciH rrrr
+=+ 21 , or 0)(21

rrr
=− iiH . In this case, the reuse occurs

in the direction of vector rr , if 0
rr

=rH . The solution of this equation is a vector space

,ker HRST = called self-temporal reuse vector space. The condition for the reuse to

be exploited is the inclusion of direction vectors in the localised vector space. Other

types of reuse are quantified in a similar way.

Finally, this paper presents methods for calculating the number of memory

accesses per iteration for the innermost loop and introduces an algorithm for

improving locality. This algorithm uses loop interchange, reversal, skewing and

tiling to improve cache performance. It attempts to place outermost loops without

reuse and then tries to tile innermost loops to minimise the memory accesses per

iteration. This algorithm is evaluated using LU-decomposition, matrix-multiplication

and SOR benchmarks.

The method described above provides a practical solution for quantifying the data

locality of loop nests and for improving cache performance. However, it can use only

unimodular transformations and can be applied only to perfectly nested loops. Affine

partitioning is used to overcome this restriction, as described by Lim et al. in

[LLL01]. It allows transforming arbitrary loop nests and improving their data

locality. This paper generalises loop tiling and extends the data locality algorithm

presented in [WL91a]. The locality optimisations have been evaluated on a number

of kernels and speed-up has been achieved in each case.

45

Bodin et al. use the concept of “reference window” to optimise program data

locality in [BJW+92]. Reference window characterises “active” array elements that

have a reuse and therefore has to be kept in the cache. It is defined as following:

The reference window, W(t), for a dependence between two references to

array A, 21: SSA →∆ , at time t is defined to be the set of all elements of A

that are referenced by S1 before t that are also referenced after or at t by

S2.

Further, a cost and a benefit of a reference window are defined:

The cost of a reference window Cost(W) is defined as the maximum size of

the window over the time (the size of the window W is denoted W).

The benefit of a reference windowBen(W) is defined as the number of

accesses to main memory saved.

Consider the following loop from this paper, for example:

 DO 1 i1 = 1, N1

 S1 A(i1) = X(i1)

 S2 D(i1) = X(i1-3)

1 CONTINUE

This loop has the reference window WX = {X(i1-3), X(i1-2), X(i1-1)}. Its Cost(WX) = 3

and Ben(WX) = N1-3. If the reference window fits the cache, the data locality of a

loop nest is optimal. Otherwise, the window has to be reduced using loop nest

restructuring to fit it into lower levels of the memory hierarchy.

The size of the reference windows is further used to drive data locality

optimisations. Loop interchange and loop tiling are used to reduce the size of the

reference windows to fit into the cache. The practical optimisation algorithm

presented in this paper is evaluated on a number of hand-coded benchmarks and

speed-up is achieved in most of the cases. The major restriction of this algorithm

however, is that it can be applied only to perfect loop nests and it uses

approximations to express reference windows analytically in order to simplify

calculation.

McKinley et al. use a simplified cost model for computing temporal and spatial

reuse for loops and to improve data locality in [MCT96]. First, references within a

loop are placed into the specific reference groups. Reference groups consist of those

46

references that have group-temporal or group-spatial reuse. Then, the cost of the

reference groups and loops is calculated, as shown in figure 3.11.

First, RefCost calculates the number of cache lines used by the loop l for the

reference Refk. For loop-invariant references, RefCost is equal to 1. For consecutive

references, RefCost is equal to trip/(cls/stride), where trip is the number of iterations

in the loop, cls is the size of the cache line and stride is the loop step multiplied by

the coefficient of the loop index variable. For non-consecutive references, RefCost is

equal to trip. Finally, LoopCost calculates the total number of cache lines accessed

within the loop nest, when l loop is the innermost position. This function can be used

to guide loop nest transformation by interchanging loops in order to minimise the

number of accessed cache lines. Figure 3.12 presents an example from the paper for

calculating LoopCost for matrix multiplication kernel. Arrays C(I,J), A(I,K) and

INPUT:
 L = { l1, …, ln } a loop nest with headers lbl, ubl, stepl

 R = { Ref1, …, Refm } representatives from each reference group

 tripl = (ubl – lbl + stepl) / stepl

 cls = the cache line size in date items

 coeff(f, il) = the coefficient of the index variable il in the subscript f

 stride(f1, il, l) = stepl * coeff(f1, il)

OUTPUT:
 LoopCost(l) = number of cache lines accessed with l as innermost loop

ALGORITHM:

 LoopCost(l) =∑
=

m

k 1
RefCost(Refk(f1 (i1, …, in), …, fj(i1, …, in)), l)) ∏

≠lh

triph

RefCost(Refk, l) = 1 if ((coeff(f1, il) = 0) ∧∧ ... Invariant

 (coeff(fj, il) = 0))

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
),(,1 ll

l

ifstride
cls

trip
 if ((stride(f1, il, l) < cls) ∧ Unit

 (coeff(f2, il) = 0) ∧∧ ...

 (coeff(fj, il) = 0))

 trip1 otherwise None

Figure 3.11: Algorithm for calculating loop cost (McKinley et al.)

47

B(K,J) are invariant for the loops K, J and I respectively and therefore have

RefCost=1. The same arrays have n non-consecutive references for the loops J, K

and J again respectively and therefore have RefCost=n. Finally, these arrays have n

consecutive references for the loops I, I and J respectively and therefore have

RefCost=
4
1 n. The LoopCost function shows that this loop nest accesses minimum

number of cache lines when the loop I is the innermost.

Furthermore, an algorithm for improving data locality by combining loop

permutation, fusion, distribution and reversal is presented in this paper. It is a

relatively simple and inexpensive algorithm for minimising the cost function. It can

be applied to non-perfectly nested loops with complex subscript expressions. This

algorithm has been evaluated on a wide range of programs. It achieved a significant

performance improvement on several of these programs.

Finally, Ghosh et al. present an algorithm for calculating the cache misses

precisely for a loop nest using Cache Miss Equations in [GMM98]. Initially, a cache

set accessed by a reference RA at iteration i
r

is calculated as following:

{ JKI ordering }

DO J = 1, N

 DO K = 1, N

 DO I = 1, N

 C(I,J) = C(I,J) + A(I,K) * B(K,J)

 LoopCost (with cls=4)

Refs J K I

C(I,J)

A(I,K)

B(K,J)

n * n2

1 * n2

n * n2

1 * n2

n * n2

4
1 n * n2

4
1 n * n2

4
1 n * n2

1 * n2

Total 2n3 + n2
4
5 n3 + n2

2
1 n3 + n2

 Figure 3.12: Loop cost for matrix multiplication kernel (McKinley et al.)

48

)(___)(iRofAddressMemoryiMem ARA

rr
=

⎣ ⎦sRR LiMemiLineMemory AA /)()(_
rr

=

⎣ ⎦ ssRR NLiMemiSetCache AA mod/)()(_
rr

= ,

where Ls is the cache line size, Ns is the number of cache sets and)(iMem AR
r

is the

memory address accessed by RA at the iteration i
r

.)(iMem AR
r

can be computed by

analysing the subscript expressions of RA. Consider the matrix multiplication

example shown in figure 3.12. If the number of cache sets is 128, line size is 4, the

base address of the array C is 4192 and the number of elements per column of this

array is 32, then the cache set accessed by the reference C(j, i) is the following:

⎣ ⎦ 128mod4/)1324192(−++ ji

Then reuse is analysed for a loop nest and reuse vectors are generated in a similar

way to [WL91a], which is briefly reviewed above. Furthermore, misses are

quantified along the reuse vector and two types of CME equations are generated for a

particular reuse vector of a particular reference: cold miss equations and replacement

miss equations. Solutions to these equations represent a potential number of

compulsory and conflict misses respectfully. Finally, an algorithm is presented for

quantifying all the cache misses of a loop nest by combining multiple CMEs.

Cache Miss Equations allow a precise analysis of cache misses and use

mathematical analysis to determine solutions. This paper presents algorithms to find

optimal optimisations by solving CMEs before and after applying particular

transformation. However, solving all equations can be a potentially time consuming

process, slower than other approximate static methods described above. Vera and

Xue extend CME framework in [VX02] to analyse the cache behaviour of whole

programs that have regular computations and validates the accuracy of the method on

a number of real codes from SPEC’95 benchmark in comparison with cache

simulation for those codes. It also shows that for large programs, such as applu, the

whole analysis on Pentium III 933MHz takes about 128 seconds, which is about

three orders of magnitude faster than the cache simulator, but still slower than other

static methods.

49

3.2.3 Reducing conflict misses

Conflict misses occur due to the limited cache associativity, as described in

chapter 2. It is possible to considerably reduce conflict misses by increasing the

associativity of the cache on the hardware level. However, it is an expensive

solution. It is also possible to use software optimisations to considerably reduce

conflict misses, particularly by using array padding and loop tiling.

Temam et al. present a comprehensive analysis of cache interferences in

numerical loop nests in [TFJ94], which detect and compute the number of conflict

misses analytically. The method is based on introducing reuse and interference sets

and on counting the number of cache misses, when a disruption of locality occurs.

The paper shows that the algorithm is fast and reasonably precise by evaluating it on

a number of kernels. It also demonstrates that optimising codes for capacity misses

only may not be enough, as the conflict misses may be large and frequent.

Lam et al. analyse the influence of loop tiling (blocking) on cache performance in

[LRW91]. The authors describe methods for modelling cache interference and

provide algorithms for determining the overall cache miss rate as a combination of

three types of misses: intrinsic misses, self-interference misses (conflicts between

elements of the same array) and cross-interference misses (conflicts between

different variables). The input parameters for this algorithm are the matrix size N and

the cache size C. The output is the largest tile size that removes self-interference

misses. This algorithm is based on finding those array elements that are mapped to

the same location in the direct-mapped cache. For an array word Y[i,j] it attempts to

find another array word of the form Y[i + di,j + dj] that maps to the same location in

the cache of the size C. Finally, the returned best tile is the maximum of di and dj. It

is a relatively fast and simple method, which is easy to implement. However, it is

also imprecise and does not remove conflict misses that may occur between different

arrays. An additional approach to the above algorithm, for eliminating cache misses

by copying reusable non-contiguous data into contiguous area, is presented in this

paper and is called copy optimisation. For example, array tiles can be copied to some

temporary continuous arrays that do not exhibit cache conflicts.

Copying all array tiles into temporary arrays can also degrade performance when

the copying overhead is higher than the benefit from reducing conflict cache misses.

50

Therefore, Temam et al. extends this work and presents a compile-time technique in

[TGJ93] for selective data copying by analysing the cost and the benefit of

eliminating conflicts. Cross interferences are further categorised as internal and

external ones. Finally, an algorithm targeting each particular type of interference step

by step is presented and is manually evaluated on a number of benchmarks.

However, this algorithm may not be precise on modern processors where the cache

miss latency can be hidden by the execution of other instructions.

Coleman and McKinley present a Tile Size Selection (TSS) algorithm in

[CM95], based on the cache size and cache line size, to eliminate both capacity and

conflict misses. This algorithm uses rectangular tiles and attempts to determine the

best dimensions of these tiles without self-interference. First, potential row sizes to

fit in the cache are determined and potential column sizes are determined as

multiples of the cache line size to benefit from spatial locality. Finally, those

dimensions for the tile are chosen that minimise the number of cross-interference.

This algorithm is evaluated on a number of kernels and its accuracy is validated

using simulators. The rate of conflict misses is reduced considerably in most of

cases.

Rivera and Tseng improve the above algorithms and integrate intra-variable

padding in [RT99]. The algorithm for determining tile sizes is based on the one

proposed in [CM95], however, it is simpler and more accurate. Calculation of both

the height and width of the tile uses a recursive function and can be computed

simultaneously. In some pathological cases, frequent conflict misses can still occur

between tiles. In such cases, intra-variable array padding can solve the problem. It is

incorporated into a cost model with loop tiling so that for each padding parameter

from a small range, tile sizes are calculated and the ones that minimise conflict

misses are chosen. This algorithm is evaluated on matrix multiplication and LU-

decomposition for various matrix sizes and performance improvement is achieved in

most of the cases.

Finally, the paper [GMM98], briefly reviewed in the previous section,

demonstrates how to use Cache Miss Equations to automatically determine intra-

variable and inter-variable padding to reduce self- and cross-interferences. An

algorithm to determine optimal tiling parameters, which reduce conflict misses by

51

combining array padding with loop tiling, is further proposed. Its strong point is that

it provides precise information about cache misses. However, it is considerably

slower than all the above algorithms.

3.2.4 Reducing compulsory misses

Two previous sections concentrated on algorithms to remove capacity and

conflict misses. This section will only briefly review algorithms that use software

prefetching to reduce compulsory misses, as it is out of the main scope of the

research of this thesis.

The major challenge for designing algorithms for software prefetching is to

identify data that has to be prefetched and to determine when this data should be

prefetched. The potential problems are the software prefetching overhead and cache

disruption if prefetching instructions are not scheduled correctly.

Callahan et al. present a theoretical algorithm in [CKP91] to identify data that

should be prefetched, based only on the analysis of variables within the inner loops.

Its influence on performance and hit ratio is evaluated using a simulator. Methods for

reducing the overhead and for eliminating unnecessary prefetches are proposed. They

are based on the analysis of the dependence graph in an attempt to eliminate

prefetching data that already resides in the cache.

Mowry et al. describes a practical compiler algorithm for prefetching in

[MLG92]. It uses a similar framework for data locality analysis as in [WL91a] and

reviewed in section 3.2.2. This analysis allows one to determine accesses that may

cause cache misses to be candidates for prefetching. A loop splitting transformation

is used further to split the innermost loop into a prolog loop, steady state loop and

epilog loop. The first loop initialises the cache; the steady state loop executes the

original loop iterations and prefetches data for the further iterations; the epilog loop

finalises the execution of the last iterations. Software pipelining transformation,

briefly described in section 3.1.5, is applied to the split loops to ensure that there are

enough iterations before prefetched data is used. The algorithm has been evaluated

on a number of benchmarks and performance improvements have been achieved in

most of the cases. However, the restriction of this algorithm is that it can handle only

affine array accesses. It was also noted from experiments that conflict misses

52

exhibited in some programs could considerably suppress the benefit from software

prefetching.

Finally, VanderWiel and Lilja survey and compare various data prefetch

mechanisms and describe their drawbacks and benefits in [VL00].

3.3 Dynamic analysis

The two previous sections presented techniques to analyse a program cache

performance statically and described transformations that could improve the cache

behaviour of programs. Some of the techniques presented proved useful for a variety

of codes. However, most of these techniques are inherently imprecise as they use

simplified program models in order to be reasonably fast and tractable. Therefore,

they are usually restricted to specific types of loops and memory access patterns;

otherwise, they can be time consuming as in the case of CMEs. This section presents

dynamic techniques that attempt to overcome some of these problems, and are used

to analyse the program performance during execution or during simulation. The

major benefit of these methods is the access to run-time information, which is not

available at compile time. Dynamic analysis has its own advantages and restrictions,

and is not intended to replace static analysis. Instead, both static and dynamic

analysis can complement each other, as is shown in this and the following section

3.4.

3.3.1 Profiling

Profiling is a wide-spread technique for obtaining various run-time program

parameters during its execution. One of the simplest and basic techniques is a

procedure-level profiling when code is instrumented by adding calls to the

monitoring routines on the entry and the exit of each profiled procedure. After the

code is executed, the profiling information is gathered into the file that may be

further parsed to obtain the program execution time distribution. Such techniques are

easy to implement but overhead due to calls to the monitoring routines can be

excessively high. Besides, time measuring can be more complicated on time-sharing

platforms, since execution time of other processes needs to be accounted. Therefore,

53

sampling technique is often used on such systems. This technique samples the value

of the program counter with some interval and later obtains execution time

statistically from the distribution of the samples within the whole program. It is used

in such tools as gprof [GKM82], has a relatively small overhead and is useful in

determining parts of the program that dominate the execution time, thus, reducing

unnecessary analysis of the whole program. Unfortunately, procedure-level profiling

is insufficient to spot the problems inside the subroutines. This can be important in

cases when those subroutines contain multiple loop nests or irregular memory

accesses, which are difficult to analyse statically. Therefore, other tools are used that

can profile programs on a basic block level or on an instruction level.

Smith describes a tool called Pixie in [Smi91] that allows the collection of run-

time information about basic blocks of the program. This tool rewrites the executable

file and inserts additional instructions to count the number of executions of each

basic block. During the execution of the modified code, the run-time information is

captured and saved into data files. After the execution is finished, the tool analyses

the data files and produces a report about cycle counts within subroutines. This

information can be matched with the source code and can be used to determine the

bottlenecks within the procedure that should be further optimised. The major

problem of this method arises in profiling programs with a large number of small

basic blocks. In such cases, the number of inserted instructions can be overwhelming,

and, for example, can influence the behaviour of caches, thus, producing imprecise

cycle counts. Besides, this tool cannot provide information about stalls, which could

be useful for program optimisations. To overcome this problem, new methods are

used for profiling programs on an instruction level without their modification. These

methods are based on using processor hardware counters. These counters obtain run-

time information in parallel with the program execution and can dump this

information periodically to the collecting tool to be saved for further analysis. Such

methods do not influence the behaviour of the program and thus, can produce

accurate instruction-level profiles with a small overhead.

Anderson et al. describe the Digital Continuous Profiling Infrastructure (DCPI)

system that works on Alpha processors and uses their hardware performance

counters in [ABD+97]. It consists of two parts: a data collection subsystem and an

54

analysis subsystem. The data collection subsystem runs continuously on a platform

and collects profiles for unmodified executables or even for the entire system. It

samples performance counters for various events, such as cache misses or branch

mispredictions, periodically at a high rate (over 5200 samples per second on a

333MHz Alpha processor) with a low overhead (1-3% slowdown) and records them

in a database. The analysis subsystem produces accurate information about the

program based on the collected profile data at several levels: from the time spent in

subroutines to the number of stalls for each instruction within the subroutine.

Furthermore, it can provide an explanation for particular stalls in the program.

However, the major restriction of the DCPI tool is that it fails in attributing profile

data to the instructions on out-of-order execution processors.

Dean et al. present a tool called ProfileMe in [DHW+97] for instruction-level

profiling on out-of-order execution processors. Unlike DCPI that counts processor

events, ProfileMe samples instructions and collects information about stalls and

events within a pipeline. It can also collect information about parallel execution and

interaction of concurrent instructions. Besides, ProfileMe can provide information

not only about instructions retired from the pipeline, but also about instructions that

have been aborted due to speculative execution, thus, providing valuable information

for further optimisations. A special inexpensive hardware support is needed for such

profiling and is available in the latest Alpha processors. This is done by adding a few

ProfileMe registers for recording the processor state for a profiled instruction and by

passing a special ProfileMe tag through a pipeline to indicate profiling instructions.

Therefore, this tool enables accurate low-overhead instruction-level profiling on both

in-order and modern out-of-order execution platforms to provide feedback about

stalls in the pipeline and about useful concurrency and is useful to drive further

optimisations. Another tool, called VTune [Int03b], provides similar instruction-level

profile information on Pentium-based platforms.

The tools described above provide raw information about stalls in programs and

are able to identify bottlenecks in these programs. However, they do not provide

information such as the number of cache misses for a particular instruction, most

notably in the case of dynamically allocated memory, and the types of cache misses,

which could be useful for further memory performance optimisations. Therefore,

55

additional methods are needed to analyse the nature of cache misses using obtained

profile information.

Buck and Hollingsworth describe a technique for determining the number of

cache misses for a particular memory area that can be allocated statically or

dynamically in [BH00]. It uses hardware counters that can cause interrupts after a

number of cache misses and can report the address of the last cache miss. This

address is associated with the memory region defined by the program and the

corresponding counter is incremented. Therefore, this technique provides

information about program objects that have poor cache behaviour. The SPLAT tool,

described by Sánchez and González in [SG00], is able to identify the type of cache

misses by matching static information about program data locality provided by the

compiler with the run-time information provided by a profiler. It uses fast methods

for analysing data locality, described in section 3.2 of this chapter, and fast profiling

techniques, thus, providing information about cache misses with a low overhead.

Such information can be used further in choosing particular types of optimisation.

Finally, a tool called ATOM described by Srivastava and Eustace in [SE94]

should be noted. It is used for instrumenting programs on an Alpha platform to

obtain various precise run-time parameters and can be used for building customised

program analysis tools. It has its own macro language to define procedures, basic

blocks and instructions and can insert calls to auxiliary subroutines with register

value parameters on instruction or basic-block level, for example. The information

obtained can be stored in temporary arrays and can be dumped onto disk after the

execution of the program. This information can be further used by various analysis

tools. The ATOM tool is particularly useful in designing simulators, as described in

the following section.

3.3.2 Simulating

System simulators can assist in understanding the run-time behaviour of the

program and the influence of various architectural parameters on the program

execution. They are useful in cases where static information is unavailable and

profiled information is imprecise or not sufficient for successful optimisation. Such

tools contain a software model of the hardware and simulate the execution of the

56

program step by step. The major advantages of the simulation are that it provides the

opportunity to analyse and visualise the hardware state step by step during the

program execution; to test new hardware designs and validate performance and to

obtain various run-time parameters. However, its major drawbacks are high

execution time and resource consumption, and the need to have a precise system

model.

Burger et al. and Austin et al. describe a tool called SimpleScalar for computer

system modelling in [BAB96] and [ALE02]. This tool contains flexible software

models for different hardware to help designers test their ideas before building the

real system. These models include a dynamic program analyser, a branch predictor

simulator, a multilevel cache memory simulator and many others, and are

characterised by performance, flexibility and detail. The general trade-off for the

models is that the higher the detail level and flexibility, the lower the performance.

The SimpleScalar tool supports multiple platforms and has a visualisation module

capable of displaying the processor pipeline stages for each instruction. This tool is

useful in detecting and analysing various software and hardware bottlenecks. The

high level of detail and accuracy makes it possible to simulate the behaviour of

complex out-of-order execution superscalar processors and cache memories to

analyse the cache hit rate, memory access latency or even calculate power

dissipation, for example.

Trace-driven simulation is another approach that creates streams of instrumented

instructions, which are further used in hardware or software timing models. During

the execution of those instruction streams, traces with various parameters are

collected. Since these traces can be large, a trace reduction mechanism is used to

make them smaller. Finally, the obtained traces are processed to derive useful

information. Uhlig and Mudge survey and compare, in detail, over 50 trace-driven

simulation tools with the emphasis on memory design in [UM97]. These tools record

sequences of memory references and attempt to predict memory-system

performance. They are characterised by the detail and accuracy of simulation and

how traces are collected and reduced.

Both execution- and trace-driven simulations are generally accurate. However,

they require excessive simulation times and computer resources. For example, the

57

simulators reviewed in [UM97] had a slowdown in the range of 45 to 6250 times

compared to the execution time of the original program. Another statistical approach

for modelling the performance of superscalar processors, that is both fast and

reasonably accurate is presented by Noonburg and Shen in [NS97]. The main idea of

this method is to calculate the probability of being in a particular processor state. The

processor model consists of blocks or components that have one input and one

output, and are interconnected between each other. Therefore, each component has

and input and output instruction flow. This flow can be limited by various

restrictions, such as the bandwidth of the connection or by being blocked by some

components. The processor state is represented as a vector that describes instructions

in each component. Finally, a state distribution is computed using Markov chains.

This paper presents several simple processor models and compares the performance

obtained, using the above method, with the simulated performance. The results

demonstrate that the statistical approach can be reasonably accurate (within 2% in 3

benchmarks and within 10% for Livermore loops) and is considerably faster than

execution- or trace-driven simulations.

To complete this section about simulation techniques, some examples of their

usage are further presented. McKinley and Temam analyse and quantify the loop nest

locality of different benchmarks in [MT96] by simulating the cache and by using the

ATOM tool to obtain information about data accesses. The intra- and inter-nest

locality are measured and quantified in a similar way as described in section 3.2.2.

Though the simulation process was excessively slow, it made it possible to obtain

precise information about the number of cache misses and their types for loop nests.

The analysis of the obtained data questioned some common assertions such as

“spatial reuse is the dominant form of reuse” and that “capacity misses occur more

frequently than conflict misses, and both are significant sources of misses”. For

example, it was found that spatial and temporal reuse are generally balanced and that

group-conflict misses dominate intra-nest misses. Besides, this paper confirmed

another common assertion that most reuse occurs within a nest rather than across

nests. However, it also shows that most of the misses occur across nests. Such results

can help in designing or modifying cache systems and can be useful for program

optimisations.

58

Lebeck and Wood describe a cache profiling tool, called CPROF in [LW94].

This tool is a uniprocessor cache simulator and visualiser that allows one to detect

the number and type of cache misses on the source-line level. It can further suggest

program transformation such as padding, loop fusion, blocking and others to improve

performance. This tool is evaluated on a number of SPEC benchmarks and

performance improvement is achieved in most of the cases.

Van der Deijl et al. present a Cache Visualisation Tool (CVT) in [VKT+97] that

visualises the cache operations step by step. This tool uses a cache simulator to

produce detailed analysis of the cache behaviour for various code structures and can

be used to analyse the influence of different program transformation on this

behaviour. Besides, it is possible to study the effect of cache designs on program

performance by changing cache parameters of the simulator. Therefore, this tool can

be useful for hardware and software optimisations. Finally, Yu et al. describe a

technique for visualising the cache behaviour and reuse distances for the whole

program as a compact pattern in [YBH01]. This information can be further used for

global program optimisations.

3.4 Dynamic optimisations

The previous section presented various dynamic methods to analyse the run-time

behaviour of the program. This section describes techniques that use the obtained

run-time information to tune the code for better performance during feedback-

assisted compilation, or to optimise the program on the fly as during adaptive

compilation. It completes the review of the major analysis and optimisation methods

related to the research presented in this thesis.

3.4.1 Feedback-assisted and iterative compilation

When run-time information for a program is obtained, it is possible to better

optimise this program using information that was unavailable during the compilation

stage. An optimisation process that instruments and executes a program for the

particular dataset to obtain run-time information and then uses this information to

59

automatically re-optimise the program is called feedback-assisted compilation. This

process is also known as feedback-directed or profile-guided optimisation.

Chang et al. describe a 2-step compiler system in [CMH91] that automatically

profiles a program and then optimises this program using profile information. The

profiler can identify frequently used program paths and can obtain run-time

information about branches taken, loop bounds, etc. This information can further

help to improve program performance. For example, it can be used to improve the

accuracy of branch prediction and therefore improve performance on modern

pipelined superscalar processors that have high penalty for branch misprediction. It

can also be used to group frequently executed sequences of basic blocks together to

improve instruction cache utilisation and reduce the number of branch instructions.

Besides, various other optimisations such as loop unrolling, loop invariant code

removal and dead code removal, for example, can produce better quality code taking

run-time information into consideration. This paper presents algorithms for applying

the above optimisations using profile information. These algorithms are evaluated on

a range of benchmarks and performance improvement is achieved in all cases.

Currently, most modern compilers include profile-guided optimisations. Cohn

and Lowney describe an implementation of the feedback-directed optimisations in

the Compaq compilers for an Alpha platform in [CL99]. Profiles are obtained using

either pixie or DCPI tools, which are described in section 3.3.1. Then various

optimisations such as inlining, loop restructuring transformations, register allocation,

code layout, and branch prediction are preformed and speed-ups are achieved for a

number of benchmarks. Finally, Smith reviews various techniques and tools for the

feedback-directed optimisations in [Smi00], discusses further challenges and

suggests some ways to overcome them.

Current feedback-directed compilation techniques generally optimise the

program to improve ILP. However, they do not target the memory bottleneck

problem since run-time information still may not be sufficient to choose the best

program transformation such as loop tiling or array padding. To overcome this

problem, it is possible to create several versions of the program with various tiling

and padding parameters, execute them, and choose the best one with better

performance. Such a process, that investigates sequences of parameters for various

60

transformations, creates and executes these variants and picks one with the highest

speed-up, is called iterative compilation. Kisuki et al. present an iterative compilation

technique in [KKO+00] that uses three program transformations: loop tiling, loop

unrolling and array padding. These transformations with varied parameters are

applied to a program successively until code with the lowest execution time is

obtained. This technique is evaluated on several benchmarks and platforms to

demonstrate the performance improvements achieved in comparison with static

methods. The major benefits of this technique are the ability to tackle memory

problem and the possibility to find optimal code. However, the major drawback of

this technique is an excessive optimisation time. Nevertheless, in cases when the

lifetime of a program with a particular dataset size is much longer than the

optimisation time, it is beneficial to use this technique to obtain code with optimal

performance.

Whaley and Dongarra describe “Automatically Tuned Linear Algebra Software”

(ATLAS) in [WD98]. This software uses static and iterative techniques to tune

various numerical subroutines for a better performance during its first installation.

Therefore, all the further calls to these subroutines will be forwarded to a particular

optimised variant, depending on the dataset size and other parameters. This is an

example of the case when the optimisation time for the library is not critical, since

the lifetime of this library is much longer.

Finally, two papers that use the iterative compilation approach, though not

directly related to the research of this thesis, should be mentioned. Van der Mark et

al. uses iterative compilation in [MRB+99] to optimise programs for embedded

VLIW processors. This approach is beneficial for embedded applications as the long

optimisation time can be reimbursed by the good performance and by the number of

systems produced. Of the major constraints of embedded applications is the limited

size of the code. Therefore, an iterative search is used to find the best loop unrolling

and software pipelining parameters for a trade-off between code speed and size.

Nisbet proposes an iterative search for the best parallelisation transformations on

distributed memory architectures using genetic algorithm techniques in [Nis98].

Briefly, these techniques work in a similar way as the evolution of living organisms

by iteratively searching better solutions to problems. In the context of parallelisation,

61

genetic algorithm techniques are used to determine program transformation

sequences in order to minimise the execution times of various programs.

3.4.2 Adaptive compilation

Adaptive compilation is a technique for optimising the program dynamically

during its execution. The advantage of this technique is that it allows the program to

adapt for the particular platform and for the particular dataset to achieve best

performance without the need for lengthy recompilations and test executions.

However, implementing such a technique in practice is a challenging task since the

analysis and optimisation of a program should be performed fast and on the fly, and

may degrade performance instead of improving it. Besides, the optimisation tool may

not have access to the program source code, and therefore it should be able to

transform either intermediate representation of the program or the binary code

directly.

Voss and Eigenmann present a framework for dynamic program optimisation

called “Automated De-coupled Adaptive Program Transformation” (ADAPT) in

[VE00]. It decouples dynamic compilation that produces several versions of the code

from the dynamic selection of these versions. This allows compilation to be

performed in parallel with program execution to minimise overheads. ADAPT

instruments the program to obtain run-time values and then uses a translator that

optimises parts of the program during its execution depending on the dataset and

platform parameters. When new versions of the program parts are available, the

dynamic selection mechanism makes a run-time decision about which version to use

in order to achieve better performance. ADAPT supports various transformations

including loop distribution, loop tiling and loop unrolling. It is evaluated using three

SPEC benchmarks and speed-ups are achieved in all cases in comparison with

statically optimised programs.

Zhang et al. describe a tool called Morph in [ZWG+97] for automatically

profiling and optimising programs in the background on Alpha platforms. It is

composed of three major components. A Morph Monitor profiles programs

continuously with low overhead and is similar to the DCPI tool reviewed in section

3.3.1. A Morph Editor is a tool that optimises programs using code layout

62

optimisations based on the profile information. It deals with the intermediate

representation of the program if the source code is unavailable, and transforms it into

binary executable form. A Morph Manager analyses the profile information, and

makes a decision about when to re-optimise the code. Therefore, the Morph system is

capable of optimising programs automatically in the background, taking into account

various hardware parameters and program usage patterns. It is evaluated on a number

of benchmarks and performance improvement is achieved in all cases.

Finally, Kistler and Franz present a comprehensive analysis for continuous

program optimisation in [KF03]. They describe a system that continuously profiles

programs and can adjust dynamic data layouts for better cache locality or re-schedule

instructions for better ILP in the background with the program execution. An

algorithm that decides when the code should be optimised, based on the profiled

information, is further presented and is followed by the optimisation algorithms. This

system is evaluated on a number of benchmarks and speed-ups are achieved in most

of the cases. The results are compared with the statically optimised codes and

overheads and profitability of this technique are discussed.

3.5 Summary

This chapter reviewed major papers that are related to the area of memory-

hierarchy optimisations. Mathematical models for various transformations and data

locality analysis were described in detail to provide an important background for the

research presented in this thesis. Various static and dynamic techniques that analyse

and improve program performance were also reviewed in detail to be compared with

new methods developed in this thesis.

63

Chapter 4

Iterative Compilation

The focus of this thesis is a platform independent optimisation approach based on

feedback-directed program restructuring. This chapter presents the case for iterative

compilation. It briefly describes the experimental framework used and shows the

influence of various transformations on program performance. The results obtained

help explain the difficulty of determining the best transformation parameters using

current static or dynamic methods. It is followed by a description of the program

optimisation space with the given set of available transformations. An algorithm is

proposed for searching the optimisation space of large applications to choose the best

transformation to minimise the overall execution time. This algorithm is evaluated on

a wide range of kernels and real programs from the SPEC benchmark suite and is

compared to existing static and dynamic optimisers.

4.1 Introduction

The research presented in this thesis tackles the problem of the ever-increasing

gap between the speed of processor and memory. Previous chapters have provided

the motivation and the background for this work and described various hardware and

software techniques that attempted to overcome this memory problem.

Briefly, hardware solutions are based on the introduction of faster but smaller

intermediate layers of memory between the processor and the main memory. These

layers of memory called cache memory exploit data locality. However, the original

programs may exhibit many cache misses when the program data is not found in the

cache and therefore has to be retrieved from slower main memory. This depends on

the program structure and the memory hierarchy organisation, and can considerably

degrade performance. Therefore, software optimisation methods based on program

transformations are used to improve data locality and reduce the number of cache

misses. Three major program transformations are used in this thesis: loop tiling, loop

unrolling and array padding. These transformations are capable of reducing cache

64

misses as described in detail in section 3.1. Potentially, these transformations can be

applied manually for small and simple programs. However, it requires a good and

detailed knowledge of the underlying hardware from a programmer and is a tedious

and time-consuming process. Moreover, any small changes in the software or

hardware parameters may invalidate the whole optimisation process so it has to be

started from scratch again. Therefore, automatic optimisation approaches are

desirable for optimising portable codes for particular architectures.

Traditional automatic optimisation approaches are based on comprehensive static

program analysis as described in section 3.2. These approaches attempt to analyse

program data locality and to predict the number of cache misses, taking into

consideration software parameters and hardware models. Modern platforms have

complex internal organisations with the support of pipelines, out-of-order execution

and cache memory. Therefore, hardware models used by optimisations are simplified

in order for the analysis to be tractable. It means that static approaches provide rough

performance estimates and often fail to select the best optimisation. Static

approaches also fail in cases where information is not available at compile time.

Dynamic methods are intended to solve these problems by obtaining various run-

time parameters during program execution and then by re-optimising this program

using these parameters. Some of these methods are described in section 3.3.

However, it is also shown that current dynamic approaches focus on improving ILP

by better branch prediction or on improving instruction cache usage by moving

frequently accessed parts of the code closer to each other. Thus, these methods also

fail to tackle the problem of the growing performance gap between processor and

memory.

This chapter presents an iterative feedback-assisted optimisation approach that

can overcome the above problems. This approach is based on creating variants of the

program with different transformation parameters. All variants of the program are

executed and the one with the lowest execution time is picked as the best version.

This algorithm is described in detail further in this chapter and is evaluated on two

platforms using a number of kernels and large benchmarks. The major advantage of

this approach is that it does not need the detailed knowledge of the program and the

underlying hardware and is capable of outperforming current static and dynamic

65

approaches. Unlike some other iterative compilation techniques that are applied to

small kernels, it can successfully optimise large applications using a smart phase

order. The major drawbacks are the excessive compilation time of iterative methods

and the potential sensitivity of the optimisations to dataset sizes and to conditional

dependencies on the data values. However, new techniques for reducing the

compilation time have been developed and are presented in chapters 5 and 6. Some

techniques that allow applying iterative compilation to programs with different

datasets are subjects of the future research and briefly proposed in chapter 6 and 7.

4.2 Experimental framework

This section gives an outline of the experimental framework briefly describing

the software architecture, platforms and benchmarks used. Some additional technical

details about the platforms used can be found in Appendix A.

4.2.1 Software architecture

The validation of platform-independent iterative compilation and performance

prediction techniques developed in this research requires conducting a number of

experiments on multiple benchmarks and platforms. Therefore, an optimising

software suite capable of conducting a large number of various experiments

automatically has been developed. This suite is a set of tools designed to analyse

program behaviour and optimise its performance. In order to make this toolset easily

usable, portable and flexible, a client/server architecture [Sin92] is used as shown in

figure 4.1. It consists of autonomous components such as servers, clients and a

shared network file system. These components communicate with each other over

the network using data files on the shared file system and using standard telnet

protocol [DHP+77] as shown by arrows in figure 4.1. Servers perform various

analysis and optimisation tasks on the target platform, while the client is a Graphical

User Interface (GUI) application that enables users to interact with servers remotely.

A client is platform independent and can access various platforms, obtain and present

results in a convenient way.

66

This software architecture is flexible as it is easy to update the software and add

new tools without the need to stop and restart all components. It supports auto error

and fault recovery as servers can be restarted and the analysis and optimisation

process can continue from the last correct state. The Run Server is introduced to ease

portability between different platforms. This server is platform dependent and is used

to execute applications and obtain their run-time parameters. Therefore, it is written

in C to use low-level OS calls and recompiled for each platform using options

specific for the particular platform. Most of the remaining software is written in Java

and thus portable across platforms. Next in the software hierarchy are the

Compilation and Transformation Servers. The Compilation Server sends requests to

the Run Server to compile and execute programs and to collect various profile

information. The Transformation Server supports array padding, loop tiling and loop

unrolling transformations of Fortran programs, described in detail in section 3.1.

Clients

Preliminary Analysis Server, Transformation Server,
Iterative Compilation Server, Compilation Server,
Performance Prediction Server Run Server

Shared Network File System
 Figure 4.1: Software architecture of the optimising suite

Network

67

Finally, the Preliminary Analysis Server, Iterative Compilation Server and

Performance Prediction Servers are tools that implement new analysis and

optimisation techniques developed in this thesis. Briefly, the Preliminary Analysis

Server is used for obtaining various preliminary information about the program such

as the number of subroutines and loops, original execution time and so on, needed

for further optimisations. The Iterative Compilation Server is used for applying new

iterative compilation techniques. The Performance Prediction Server is used for

predicting the ideal performance of the program. Similar architectures proved to be

versatile and reliable in previous research projects such as MHAOTEU [ATA+00].

4.2.2 Platforms and applications

To demonstrate new platform-independent optimising techniques two distinctive,

widespread platforms have been chosen for the experiments:

• Compaq Alpha 21264 500 MHz 512Mb, Digital Unix

• Intel Pentium III 650 MHz 256Mb, Windows 2000 Professional

For simplicity, further references to these platforms in the thesis will be as “Alpha”

and “Pentium”. The Alpha platform has a reduced instruction set (RISC) and the

Pentium platform has a complex instruction set (CISC). Both platforms have a

superscalar architecture with out-of-order execution support. Both platforms have

two levels of cache: the Alpha has a 64KB 2-way set associative first level of cache

and a 2MB direct-mapped second level of cache; the Pentium has a 16KB 4-way set

associative first level of cache and a 256KB 8-way set associative second level of

cache. These architectural features are described in detail in sections 2.1 and 2.2.

More information about these platforms can be found in Appendix A.

Matrix multiplication (matmul), successive over relaxation (sor) and eight

benchmarks from the SPEC’95 benchmark suite [SPE03] with reference datasets

bigger than the cache size have been chosen for the experiments (two more

benchmarks from this suite have been omitted due to technical compilation

problems). Table 4.1 presents a brief description of each program (the SPEC suite

description is taken from the official website [SPE03]) and shows the number of

lines of the source code and the number of subroutines. All these applications are

based on scientific numerical, floating-point algorithms within the scope of this

68

research and are written in Fortran. The two kernels, matmul and sor, are selected to

allow simple and detailed performance evaluation and to analyse the developed

techniques in depth. Their source codes are presented in figure 4.2. Their data sizes

are selected to be larger than the cache size. The number of times these kernels are

executed is selected in such a way that their execution times are similar to those of

the SPEC benchmarks. The SPEC benchmarks are based on real applications that are

hard to optimise. They are used to give a realistic and critical evaluation of the

developed techniques. Moreover, all these programs are well studied ([WD98] and

[MT99], for example) and can be used to compare results of the new techniques

presented in this thesis with existing ones.

Table 4.1: Description of applications

Application: Lines of code/

Number of subroutines:

Description:

matmul 63 / 2 Matrix multiplication.

sor 59 / 2 Successive over relaxation method.

tomcatv 190 / 1 SPEC’95 FP. Fluid Dynamics / Geometric

Translation. Generation of a two-dimensional

boundary-fitted coordinate system around general

geometric domains.

swim 429 / 6 SPEC’95 FP. Weather Prediction. Solves shallow

water equations using finite difference

approximations.

su2cor 2332 / 35 SPEC’95 FP. Quantum Physics. Masses of

elementary particles are computed in the Quark-

Gluon theory.

mgrid 484 / 12 SPEC’95 FP. Electromagnetism. Calculation of a 3D

potential field.

applu 3868 / 16 SPEC’95 FP. Fluid Dynamics/Math. Solves matrix

system with pivoting.

turb3d 2101 / 23 SPEC’95 FP. Simulation. Simulates turbulence in a

cubic area.

apsi 7361 / 96 SPEC’95 FP. Weather Prediction. Calculates

statistics on temperature and pollutants in a grid.

wave5 7764 / 105 SPEC’95 FP. Electromagnetics. Solves Maxwell's

equations on a cartesian mesh.

69

Before analysing and comparing various execution times, it is important to

determine the precision of the timing on the particular platform. Execution time is

generally measured using the system timer and can oscillate from run to run due to

various operating system management processes. An additional tool has been created

to measure the precision of the execution time. It executes the same time-consuming

application 10 times and measures the deviation of the execution time. For the Alpha

platform with Unix operating system, the obtained precision is 0.2 seconds. For the

Pentium platform with Windows 2000 operating system, the original precision is 2.5

seconds. However, after setting the execution priority of the application just one

level above normal, the precision becomes 0.5 seconds. Therefore, both platforms

have a deviation less than 0.4% in execution time for all the programs used in the

experiments.

C this subroutine is executed 8 times
 IMPLICIT REAL (A-F)
 PARAMETER (N=512)
 COMMON Y, A(N,N), B(N,N), C(N,N)
 DO I=1, N
 DO J=1, N
 DO K=1, N
 A(I,J)=A(I,J)+B(I,K)*C(K,J)
 END DO
 END DO
 END DO

(a) matmul

C this subroutine is executed 256 times
 IMPLICIT REAL (A-F,X)

 PARAMETER (N=2048)
 COMMON Y, A(N,N)

 DO J=2, N-1
 DO I=2, N-1
 A(I,J)=A(I,J)+(A(I+1,J)+A(I-1,J)+A(I,J+1)+A(I,J-1))*0.00001
 END DO
 END DO

 (b) sor

Figure 4.2: Source code of matmul and sor kernels

70

4.3 Impact of program transformations

The aim of this section is to show the variable impact of program transformations

on the program performance and to demonstrate why finding the best transformation

parameter using known static and dynamic methods fails on modern platforms. It

demonstrates that the impact of program transformations is of a non-linear nature and

that it varies across different machines, underlining the challenge in developing

portable automatic optimisation approaches. The impact of array padding, loop

unrolling and loop tiling is examined using the small matmul kernel and the large

swim benchmark on two platforms.

4.3.1 Array padding

Several studies of the cache behaviour of various programs reviewed in detail in

sections 3.1.3 and 3.2.3, show that many programs exhibit severe conflict misses,

which degrade performance considerably. In such cases, intra- and inter-variable

array padding is one of those program transformations that can be used to reduce

conflict misses by inserting dummy data entries between the columns of arrays.

Previous studies show a potentially large number of conflict misses in the cache

behaviour of both matmul and swim programs. Therefore, array padding can be an

effective transformation to improve their performance.

To simplify the experiments, intra-variable array padding is applied to all arrays

simultaneously with the same parameter within the range of 1 to 64. This also

changes the base address of each array, thus indirectly performing inter-variable

array padding as well. Figure 4.3 demonstrates the changes in the execution time for

matmul on the Alpha and Pentium platforms as a function of the array padding

parameter and figure 4.4 presents the same experiments for swim on both platforms.

These experiments show that matmul and swim have indeed a large number of

conflict misses that can be removed by array padding. This simple and effective

transformation considerably improves program performance. It improves matmul

performance by approximately 70% on the Pentium platform and by approximately

40% on the Alpha platform. Array padding improves the performance of the swim

benchmark by approximately 45% on the Alpha platform and by approximately 25%

71

on the Pentium platform. These figures also show that the influence of array padding

varies considerably across platforms. This is due to the fact that the effect of array

padding depends on the cache organisation as shown in section 3.1.3. The oscillatory

behaviour of array padding is due to the limited size and associativity of the cache.

This means that array layouts and base addresses are changing in such a way after

array padding, that they are mapped to the same cache lines periodically. Matmul has

a higher performance improvement than swim because it performs less calculations

per memory access and thus has a higher potential speed-up when cache misses are

removed.

These experiments also explain why current static optimisation methods often

fail to improve program performance after applying array padding. Static methods

25

30

35

40

45

50

0 8 16 24 32 40 48 56 64

array padding factor

pr
og

ra
m

 e
xe

cu
tio

n
tim

e
(s

ec
.)

(a) Alpha platform

25

35

45

55

65

75

85

95

0 8 16 24 32 40 48 56 64

array padding factor

pr
og

ra
m

 e
xe

cu
tio

n
tim

e
(s

ec
.)

(b) Pentium platform

 Figure 4.3: Execution time for varying array padding factors (matmul)

72

often use approximations to be tractable and may lack important run-time

information such as array base addresses. Therefore, if these methods mispredict the

array padding parameter even by a small factor in comparison with the best one, the

overall performance can degrade considerably. For example, the difference in the

execution times of the swim on the Alpha platform for the optimal padding factor 9

and for the following padding factor 10 is approximately 43%! The performance

degradation for the same benchmark on the Pentium platform is also significant,

approximately 14%, if padding factors 6 or 8 are selected that are close to the

optimal padding factor 7.

Figure 4.4: Execution time for varying array padding factors (swim)

40

50

60

70

80

90

100

0 8 16 24 32 40 48 56 64

array padding factor

pr
og

ra
m

 e
xe

cu
tio

n
tim

e
(s

ec
.)

(a) Alpha platform

100

110

120

130

140

150

0 8 16 24 32 40 48 56 64

array padding factor

pr
og

ra
m

 e
xe

cu
tio

n
tim

e
(s

ec
.)

(b) Pentium platform

73

4.3.2 Loop tiling

Loop tiling is used to improve cache reuse within a loop nest by dividing its

iteration space into tiles as described in section 3.1.2. Various studies reviewed in

section 3.2.2, show the effectiveness of this transformation in improving program

performance when the data footprint of the original loop nest is bigger than the cache

size. Since loop tiling changes the memory access pattern for the loop nest, it can

also be used on its own or with array padding for removing conflict misses for this

loop nest. Previous studies presented in section 3.2.3, introduce complex static

techniques to analyse cache reuse for loop nests and to choose the best tile factor in

such a way that tiles fit cache and exhibit minimum conflict misses.

Figure 4.5 shows the changes in the execution time for matmul on two platforms

as a function of the loop tiling parameter. Analysis of these results shows that the

original matrix multiplication algorithm for matrices bigger than the caches size has

a poor locality, which can be improved using loop tiling. Graphs for both the Alpha

and Pentium platforms have two distinct flat areas: approximately from 4 to 32 and

from 46 to 255 for matmul on the Alpha platform, and from 32 to 122 and from 172

to 212 for this kernel on the Pentium platform. These results reflect the fact that both

systems have two levels of cache and that tiles with the increasing size first fit level

one cache and then fit level 2 cache. It is also possible to see some oscillations near

the minimum in the graph for the Alpha platform in comparison with the relatively

smooth graph for the Pentium platform. This can be explained by conflict misses

occurring on the Alpha platform due to the limited associativity of its caches. The

Pentium platform has a higher associativity of caches and therefore is capable of

removing these misses at the hardware level.

Figure 4.6 shows the changes in execution time for the swim benchmark on two

platforms as a function of the loop tiling parameter applied consecutively to the three

most time consuming loops. As in the case of matmul, there are execution time

oscillations near the minimum area for all three swim loops on the Alpha platform.

However, loop tiling behaviour is different on the Pentium platform where one loop

has multiple small oscillations while the other two loops have relatively smooth

graphs. The loops in the swim benchmark perform more calculations per memory

74

access than matmul loops and therefore have less improvement after applying

memory transformations.

Many static methods exist for analysing data locality and for choosing the best

tile parameter as described in sections 3.2.2 and 3.2.3. They work reasonably well to

eliminate capacity misses on simple kernels such as matrix multiplication. However,

these methods encounter similar problems on complex programs with both conflict

and capacity misses, as in the case of array padding. They lack the precision and run-

time information to predict conflicts between memory accesses. These methods are

evaluated in detail in section 6.5 where they are compared to the optimisation

methods developed in this thesis.

0

10

20

30

40

50

60

0 32 64 96 128 160 192 224 256

loop tiling parameter

pr
og

ra
m

 e
xe

cu
tio

n
tim

e
(s

ec
.)

(a) Alpha platform

0

5

10

15

20

25

30

35

0 32 64 96 128 160 192 224 256

loop tiling parameter

pr
og

ra
m

 e
xe

cu
tio

n
tim

e
(s

ec
.)

(b) Pentium platform

 Figure 4.5: Execution time for varying loop tiling factors applied to the
most time consuming loop (matmul)

75

4.3.3 Loop unrolling

Loop unrolling described in section 3.1.4 is used to improve ILP by increasing

the number of operations within a single loop iteration, and to improve data locality

by reducing the number of memory accesses through better register reuse. On the

other hand, loop unrolling increases the size of the code that may result in

performance degradation if the transformed code is larger than the instruction cache

size. Naturally, as the code grows, the effect of loop unrolling depends on the

number of available registers and on other hardware resources. Thus, high loop

45
47
49
51
53
55
57
59
61
63
65

0 32 64 96 128

loop tiling parameter

pr
og

ra
m

 e
xe

cu
tio

n
tim

e
(s

ec
.)

0 32 64 96 128
loop tiling parameter

0 32 64 96 128

loop tiling parameter

(a) Alpha platform

105

110

115

120

125

130

0 32 64 96 128

loop tiling parameter

pr
og

ra
m

 e
xe

cu
tio

n
tim

e
(s

ec
.)

0 32 64 96 128
loop tiling parameter

0 32 64 96 128
loop tiling parameter

(b) Pentium platform

 Figure 4.6: Execution time for varying loop tiling factors applied to the three
most time consuming loops (swim)

76

unrolling factors can degrade the performance of large loops, and small unrolling

factors are generally beneficial as shown in studies presented in section 3.2.1.

Figures 4.7 show the changes in the execution time for matmul on two platforms

as a function of the loop unrolling parameter within the range of 2 to 128. Both

graphs have similar behaviour. The execution time decreases rapidly on both graphs

for small unrolling factors until 15 on the Alpha platform and until 7 on the Pentium

platform. Further, performance improvements slow down and are negligible on both

platforms. This shows that after some unrolling factor threshold, all hardware

resources are utilised and all the potential ILP is exploited. These graphs also show

that loop unrolling either improves performance or at least does not degrade it for the

Figure 4.7: Execution time for varying loop unrolling factors applied to the
most time consuming loop (matmul)

25

30

35

40

45

50

0 16 32 48 64 80 96 112 128

loop unrolling parameter

pr
og

ra
m

 e
xe

cu
tio

n
tim

e
(s

ec
.)

(a) Alpha platform

20

21

22

23

24

25

26

27

0 16 32 48 64 80 96 112 128

loop unrolling parameter

pr
og

ra
m

 e
xe

cu
tio

n
tim

e
(s

ec
.)

(b) Pentium platform

77

kernel within the chosen range of unrolling factors. This is explained by the fact that

matmul is a small and simple kernel with a high register reuse. Therefore, the

transformed code fit the instruction cache for all chosen unrolling factors.

The behaviour of loop unrolling is different for larger loops. This situation is

demonstrated in figure 4.8 that presents graphs with changes in execution time for

the large swim benchmark on two platforms as a function of the loop unrolling

parameter. Loop unrolling is applied to the three most time consuming loops of this

benchmark. There are small improvements in the execution time after applying loop

45

50

55

60

65

0 32 64 96 128

loop tiling parameter

pr
og

ra
m

 e
xe

cu
tio

n
tim

e
(s

ec
.)

0 32 64 96 128
loop tiling parameter

0 32 64 96 128
loop tiling parameter

 loop 1 loop 2 loop 3

(a) Alpha platform

105

110

115

120

125

130

0 32 64 96 128

loop tiling parameter

pr
og

ra
m

 e
xe

cu
tio

n
tim

e
(s

ec
.)

0 32 64 96 128
loop tiling parameter

0 32 64 96 128
loop tiling parameter

 loop 1 loop 2 loop 3

(b) Pentium platform

 Figure 4.8: Execution time for varying loop unrolling factors applied to the
three most time consuming loops (swim)

78

unrolling with small factors for all three loops on the Alpha platform with a sharp

performance degradation after a certain parameter, which is 6 for the first loop, 4 for

the second loop and 16 for the last loop. The little improvements in this benchmark

performance in comparison with matmul is explained by the fact that the body of the

original loop is already large enough to exploit ILP and there is a little potential for

further improvements. The sharp performance degradation shows that the

transformed code becomes larger than the instruction cache size after a particular

unrolling factor. There is a less sharp performance degradation on the Pentium

platform after applying loop unrolling with large factors and is explained by the fact

that this platform has a complex instruction set. Therefore, both the original and

transformed programs are considerably more compact than on the Alpha platform

and fit the instruction cache for larger unrolling factors.

The oscillations that can also be seen in both the matmul and swim graphs

depend on many factors, for example the way the compiler allocates registers and the

way the processor executes instructions and predicts branches. These oscillations

demonstrate that choosing a fixed unrolling factor or using static techniques for

predicting ILP generally improves the performance for small kernels but may not be

optimal or can even degrade performance for large programs such as the SPEC

benchmarks.

The experiments presented in this section show a high potential for improving the

program performance using array padding, loop tiling and loop unrolling. It also

demonstrates why modern static and dynamic optimisation techniques often fail to

deliver this performance improvement. The following section presents a new

feedback-directed optimisation method that considerably outperforms the state-of-the

art compilers with no architectural knowledge.

4.4 Basic search strategy

The main objective of a compiler optimisation strategy is to decide which

transformations to apply. It is usually guided by information obtained using static or

dynamic analysis and heuristics that reduce the transformation space considered. The

majority of existing research in optimisation via high level restructuring relies on

static information and often fails to achieve the best performance due to the

79

imprecision of models, as described in sections 3.1 and 4.3. Furthermore, due to a

highly erratic behaviour of each transformation, determining the best combination for

an arbitrary program and platform is very difficult. To overcome this problem, the

approach presented in this thesis primarily deals with developing search-based

iterative compilation techniques that are solely based on dynamic information and

have minimal or no architectural knowledge at all.

Ideally, iterative compilation is a process that creates multiple variants of a

program for all possible transformations, executes them and chooses the one with the

Figure 4.9: Basic search strategy algorithm

1. profile original program

2. choose set of arrays and loops

3. apply data transformations:

o apply array padding (1..Na) for all global arrays

o run program variant and record the best execution time

o select the best transformation (minimal execution time)

4. apply loop transformations:

for each selected loop nest:

for each loop from this nest:

if loop is not innermost and is within a perfect nest:

o apply loop tiling (2..Nt) for the loop nest

o run program variant and record the best execution time

if loop is innermost:

o apply loop unrolling (2..Nu) for the innermost loop without tiling

o run program variant and record the best execution time

if the best tiling factor is found for the enclosing iterators

within the loop nest:

o choose best tiling transformation

o apply loop unrolling (2..Nu) for the innermost loop

o run program variant and record the best execution time

select the best transformation for the loop nest

(either loop unrolling or a combination of both loop tiling and loop

unrolling)

80

best performance. However, the transformation search space for real programs can be

overwhelmingly large making it impossible to investigate within a reasonable time.

For instance, consider the swim benchmark from the SPEC suite with 14 arrays

and 8 double-nested loops, and only three transformations: array padding with

parameters up to 64, loop tiling with parameters up to 256, and loop unrolling with

parameters up to 128. The search space for this benchmark consists of approximately

1052 possible different transformations that is unrealistic to explore. An additional

problem is that the same dataset has to be used during iterative compilation. This

means that the best variant of the program found during iterative compilation for the

particular dataset may not be optimal if dataset size or content are changed. A

potential solution is to optimise a program several times for some typical datasets

with the most time consuming branches taken and to embed the conditional checks

on the dataset into the final program to choose different optimised versions.

However, this is out of the scope of this thesis. Preliminary results of using smaller

datasets for iterative compilation, shown later in section 6.6, demonstrate such a

possibility. However, this is out of the scope of this thesis. Therefore, the datasets of

the programs studied in this thesis have a fixed size and the influence of their content

on the optimisation process is a subject for future research.

Figure 4.9 presents a new basic search strategy algorithm that reduces the search

space dramatically by considering data and loop transformations separately one by

one instead of all combinatorial options. Initially, the program is profiled and those

subroutines that dominate execution time are marked. Only loop nests and arrays

referenced within these subroutines are selected for the search strategy to remove

unimportant loops from further investigation.

As data transformations are global in effect, they are considered first on the

assumption that local loop transformations can later compensate for some adverse

effects that can be caused locally by the global data transformations. First, array

padding is applied to the first dimension of the marked arrays. If there are Na

padding factors to consider and m arrays, then the number of different padding

combinations is Na
 m. To reduce this complexity, each array is padded with the same

factor, reducing the number of iterations to Na. For each array padding parameter, a

81

new variant of the program is executed and the best padding factor, according to the

minimal execution time, is selected.

When the process of choosing the array padding factor is completed, the best

array padding transformation is incorporated in all further program variants. After

that, loop transformations are applied sequentially. For each loop from a selected

loop nest, if this loop is not innermost and is within a perfect loop nest then loop

tiling is applied with factors from 2 to Nt. Each new variant of the program is

executed and the best execution time is recorded. When the loop is innermost, loop

unrolling is applied first with factors from 2 to Nu. Each new variant of the program

is executed and the best execution time is recorded. Further, according to studies

presented in chapter 3, applying a combination of loop tiling and loop unrolling can

potentially achieve better performance improvements than after applying each

transformation on its own. Therefore, if the best loop tiling factor has been found for

the outer enclosing iterators within this loop nest, the loop tiling with this parameter

is applied and loop unrolling is further applied for the innermost loop with factors

from 2 to Nu. Each new variant of the program is executed and the best execution

time is recorded. Finally, the best sequence of transformations, which is either loop

tiling or loop unrolling or a combination of both, is selected for this loop nest to be

used with the following transformations.

This basic optimisation strategy considerably reduces the search space. For

example, the search space for the swim benchmark from the SPEC suite mentioned

above is reduced from approximately 1052 variants to approximately 2500 possible

variants. Though this number is still high, it can be tolerable for small programs and

kernels with a long lifetime that need to be well optimised, thus making this

approach a realistic alternative to other optimisation methods. However, this basic

strategy treats data and loop transformations, which may potentially influence each

other, separately and therefore may not achieve the best possible performance.

Nevertheless, the following evaluation section shows that this simplified strategy can

still achieve considerable performance improvements without architectural

knowledge compared to current compiler static and feedback-directed optimisation

techniques.

82

4.5 Experimental results

Development of any new optimisation technique should ideally be compared

with methods implemented in the best commercial optimising compilers. The

following optimising compilers are chosen for the experiments:

• Digital Fortran 5.2 (Alpha platform)

• Intel Fortran 6.0 (Pentium platform)

Both compliers support static data and loop transformations. However, since static

optimisation methods can fail to achieve the best performance on rapidly evolving

hardware or may even degrade it, dynamic methods are used as well. Both of the

above compilers support feedback-assisted compilation. Briefly, it consists of three

steps: program instrumentation where special code is inserted into the program to

obtain run-time information, execution of the instrumented code to collect this run-

time information, and finally feedback-assisted compilation where the program is

optimised using run-time information.

For further reference and comparison all applications are compiled using three

options:

Opt.1) maximum internal optimisations with data and loop transformations

disabled;

Opt.2) maximum internal optimisations with data and loop transformations

enabled;

Opt.3) feedback-assisted optimisations.

This allows comparison of the best static and dynamic optimisation methods

implemented in the state-of-the-art compilers with the new techniques developed in

this thesis. It also allows one to analyse the influence of static compiler data and loop

transformations on the program performance.

The execution times for 2 kernels and 8 SPEC benchmarks used in the

experiments with the optimisations described above for the Alpha and Pentium

platforms are presented in table 4.2 with the best execution times highlighted. Figure

4.10 present graphs with execution time improvements of Opt.2 and Opt.3 over

Opt.1 on both platforms, where improvement is calculated as

83

%100⋅
−

Toriginal
ToriginalTnew . These results support the statement made in the previous

sections that current static and dynamic optimisation techniques with data and loop

transformations are still not efficient and may even degrade performance. On the

Alpha platform, internal static compiler optimisations are only capable of achieving a

considerable performance improvement, approximately 30%, on matmul when

applying data and loop transformations. Swim, su2cor, applu and wave5 have

performance improvements between 10 and 15% after loop and data transformations;

sor, mgrid and apsi have a negligible performance improvement; tomcatv has its

performance slightly degraded and finally, turb3d has its performance degraded

considerably by 20%. Feedback-assisted optimisations perform better only on mgrid

and wave5 on the Alpha platform. For all other codes, dynamic optimisations fail to

improve on static optimisations on the Alpha platform. On the Pentium platform, the

influence of both static and dynamic optimisations on program performance is

insignificant. Similar to the Alpha platform, some codes have performance

improvements while others has their performance degraded, but in all cases, the

change in the execution time is less than 3.5% of the original time. Furthermore,

feedback-directed optimisations slightly degrade the performance of mgrid and apsi.

These results for the Pentium platform can be explained by its smaller cache size,

lower memory throughput and higher instruction latencies common for CISC

platforms as described in section 2.1.2. Furthermore, Digital Fortran for the Alpha

platform has an aggressive optimisation engine and therefore can achieve better

performance.

The basic search strategy is evaluated on the same programs on the Alpha and

Pentium platforms. All applications are first profiled to choose the subroutines that

dominate execution time. Within each chosen subroutine, all loop nests and arrays

referenced are selected for the use in the basic search strategy. The maximum array

padding factor has been chosen as Na = 64. The maximum loop tiling and unrolling

factors have been chosen as Nt = 512 and Nu = 512. To compare the efficiency of the

search strategy with the best commercial compilers, table 4.3 presents execution time

improvements achieved after applying iterative compilation with the basic search

84

strategy relative to Opt.1, Opt.2 and Opt.3, and figure 4.11 presents a graph with

these results.

Since iterative compilation selects only the best variants of the transformed

program, it achieves performance improvement in all cases unlike best static and

feedback directed optimisation methods that may degrade performance of some

codes. Moreover, iterative compilation achieves high performance improvements on

small kernels that have relatively few loops and arrays after several thousands of

iterations. The original matmul has a poor data reuse that can be dramatically

 Alpha platform Pentium platform

Application: Opt.1 Opt.2 Opt.3 Opt.1 Opt.2 Opt.3

matmul 45.2 31.1 31.1 86.4 83.9 85.0

sor 48.4 48.4 48.4 48.9 48.9 48.9

tomcatv 79.9 83.1 82.0 144.8 144.3 140.6

swim 83.6 71.4 71.4 131.7 132.5 131.8

su2cor 79.5 69.6 70.1 170.1 169.6 168.8

mgrid 85.3 84.6 80.1 189.0 188.9 191.1

applu 93.5 83.0 84.3 170.2 166.6 164.4

turb3d 137.1 163.6 150.1 190.5 188.7 189.3

apsi 62.0 60.1 60.3 111.0 110.2 113.5

wave5 73.5 65.3 62.5 121.3 119.3 119.0

Opt.1) maximum internal optimisations with data and loop transformations disabled:

 “-O4” for the Alpha platform,

 “/O2 /Qunroll0” for the Pentium platform;

Opt.2) maximum internal optimisations with data and loop transformations enabled:

 “-O5” for the Alpha platform,

 “/O3 /Qunroll” for the Pentium platform;

Opt.3) feedback-assisted optimisations:

 “-O5 -feedback” for the Alpha platform,

 “/O3 /Qunroll /Qprof_use” for the Pentium platform.

 Table 4.2: Application execution times after internal compiler optimisations
(best times are highlighted)

85

improved using padding, tiling and unrolling as described in various studies

presented in chapter 3. After iterative compilation, matmul achieves a considerable

performance improvement of 80.1% on the Alpha platform over Opt.1 and an even

higher improvement of 92.6% on the Pentium platform. Sor has better locality and

therefore less potential for improvement after memory optimisations. Nevertheless,

this kernel still achieves a considerable performance improvement of 28.6% on the

Alpha platform after iterative compilation and 16.0% on the Pentium platform. On

average, both kernels achieve around 54% performance improvement on both

platforms after 1599 iterations over Opt.1. These kernels achieve considerable

-30

-20

-10

0

10

20

30

40

m
at

m
ul so
r

to
m

ca
tv

sw
im

su
2c

or

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

w
av

e5

ex
ec

ut
io

n
tim

e
im

pr
ov

em
en

t,
%

Opt. 2 Opt. 3

(a) Alpha platform

-3

-2

-1

0

1

2

3

4

m
at

m
ul so
r

to
m

ca
tv

sw
im

su
2c

or

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

w
av

e5

ex
ec

ut
io

n
tim

e
im

pr
ov

em
en

t,
%

Opt. 2 Opt. 3

(b) Pentium platform

Figure 4.10: Execution time improvements (%) of Opt.2 and Opt.3 over Opt.1

86

performance improvements of 50% on the Alpha platform and of around 54% on the

Pentium platform on average even over Opt.2 that are high loop and data

optimisations and over Opt.3 that are feedback directed optimisations. Such high

improvements after iterative compilation are due to simple loop structures of such

kernels that allow easy, straightforward and efficient memory optimisations of the

code. However, this may not be the case for real large applications with multiple

loop nests where data reuse occurs across nests [MT99]. In such cases, transforming

loop nests separately can potentially reduce overall optimisation effect. Nevertheless,

results presented in table 4.3 and figure 4.11 for eight SPEC’95 benchmarks show

that iterative compilation with the basic search strategy is capable of achieving high

performance improvements even on real complex applications with multiple loop

nests.

Improvements vary considerably across applications and platforms. For the

Alpha platform, performance improvements vary between 13.0% and 45.1% and for

the Pentium platform between 4.8% and 22.5%. The number of iterations needed for

the optimisation varies between 5694 and 27180 for both platforms as the same

number of loops and arrays has been selected for simplicity. It should be noted that

the higher number of iterations means that more loops have been selected for the

optimisations. However, it does not necessarily mean that the achieved performance

improvement is higher as naturally not all loops can benefit from memory

optimisations. For example, swim has the highest performance improvement of

45.1% over Opt.1 among all other SPEC benchmarks on the Alpha platform after

only 6205 iterations and one of the highest performance improvements of 18.0% on

the Pentium platform. On the contrary, applu has one of the lowest performance

improvements of 16.0% among SPEC benchmarks on the Alpha platform after a

considerable 27180 iterations and the lowest improvement of 4.8% on the Pentium

platform. This can be explained by the fact that swim has only three most time

consuming loops with a simple structure operating with large two-dimensional

matrices that can be easily transformed and can benefit the most from memory

optimisations. In contrast, applu has several time consuming loops with either

complex structures or non-perfectly nested loops operating on five-dimensional

matrices and are difficult to transform.

87

Execution time improvements: Application: Number of
iterations: Over Opt.1 Over Opt.2 Over Opt.3

matmul 1599 80.1% 71.1% 71.1%

sor 1599 28.6% 28.6% 28.6%

average
(kernels)

1599 54.4% 49.9% 49.9%

tomcatv 7738 29.6% 32.3% 31.4%

swim 6205 45.1% 35.7% 35.7%

su2cor 9280 26.5% 16.0% 16.7%

mgrid 14905 22.5% 21.9% 17.5%

applu 27180 16.0% 5.4% 6.9%

turb3d 5694 30.1% 41.4% 36.2%

apsi 10813 13.0% 10.2% 10.6%

wave5 7744 24.2% 14.6% 10.8%

average
(benchmarks)

11195 25.9% 22.2% 20.7%

(a) Alpha platform

Execution time improvements: Application: Number of

iterations: Over Opt.1 Over Opt.2 Over Opt.3

matmul 1599 92.6% 92.4% 92.4%

sor 1599 16.0% 16.0% 16.0%

average
(kernels)

1599 54.3% 54.2% 54.2%

tomcatv 7738 4.8% 4.5% 2.0%

swim 6205 18.0% 18.5% 18.0%

su2cor 9280 7.4% 7.1% 6.7%

mgrid 14905 13.0% 13.0% 13.9%

applu 27180 4.8% 2.8% 1.5%

turb3d 5694 9.1% 8.3% 8.6%

apsi 10813 22.5% 22.0% 24.2%

wave5 7744 17.4% 16.1% 15.8%

average
(benchmarks)

11195 12.1% 11.5% 11.3%

(b) Pentium platform
Table 4.3: Execution time improvements (%) after iterative compilation with

the basic search strategy over Opt.1, Opt.2 and Opt.3

88

Naturally, the outcome of iterative compilation as well as the performance

improvements after static or dynamic optimisations depends heavily on the processor

architecture, memory hierarchy and compiler technology used as shown in chapter 3

and in section 4.3 and therefore can vary considerably across different platforms. The

results presented in table 4.3 for SPEC benchmarks demonstrate this statement. For

example, tomcatv, su2cor and turb3d have considerable performance improvements

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

m
at

m
ul so
r

to
m

ca
tv

sw
im

su
2c

or

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

w
av

e5ex
ec

ut
io

n
tim

e
im

pr
ov

em
en

t,
%

Opt.2 Opt.3 iterative compilation (basic search strategy)

(a) Alpha platform

-10

0

10

20

30

40

50

60

70

80

90

100

m
at

m
ul so
r

to
m

ca
tv

sw
im

su
2c

or

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

w
av

e5

ex
ec

ut
io

n
tim

e
im

pr
ov

em
en

t,
%

Opt.2 Opt.3 iterative compilation (basic search strategy)

(b) Pentium platform
 Figure 4.11: Execution time improvements (%) after iterative compilation with

the basic search strategy, Opt.2 and Opt.3 over Opt.1

89

on the Alpha platform of around 30% whilst the same benchmarks have relatively

small improvement of around 5 to 9% on the Pentium platform. Apsi, on the other

hand, achieves better performance improvement of 22.5% on the Pentium platform

than on the Alpha platform where its improvement is smaller of 13.0%. Finally,

mgrid and wave5 have high performance improvements on both platforms. Such

variations are explained by differences between CISC and RISC architectures of the

used platforms and by differences in memory hierarchy: the Alpha platform has

larger caches but with less available associativity than the Pentium platform.

When compared to Opt.2 that are static compiler loop and data optimisations and

Opt.3 that are feedback-directed optimisations, iterative compilation should achieve

less performance improvements. The above experiments for both kernels and SPEC

benchmarks prove this statement. Iterative compilation achieves 54.4% improvement

for kernels on average over Opt.1 and 49.9% over Opt.2 and Opt.3 on the Alpha

platform. It achieves 54.3% improvement for the same kernels on average over Opt.1

and 54.2% over Opt.2 and Opt.3 on the Pentium platform. SPEC benchmarks have

performance improvements of 25.9% on average over Opt.1, 22.2% over Opt.2 and

20.7% over Opt.3 on the Alpha platform and performance improvements of 12.1%

over Opt.1, 11.5% over Opt.2 and 11.3% over Opt.3 on the Pentium platform. These

figures show that though performance improvements after iterative compilation with

the basic search strategy are slightly smaller for Opt.2 and Opt.3 than Opt.1, overall

they are considerable for all kernels and for most of the benchmarks. The smaller

average performance improvements on the Pentium platform in comparison with the

Alpha platform are explained by the limitations of optimisations on CISC platform

due to higher instruction latencies and due to smaller cache size and lower memory

throughput. Nevertheless, these results are remarkable, considering that this search

strategy does not have knowledge of the underlying hardware and has a minimal

knowledge about the program structure. This is important for optimising programs

on rapidly evolving hardware since performance improvement varies considerably

from one platform to another. Besides, it shows the high potential for performance

improvements that modern static and dynamic methods fail to explore. The following

chapters will compare the obtained results with other methods and will present a new

realistic approach for predicting best potential performance for programs.

90

To demonstrate the iterative compilation process in detail, figure 4.12 shows the

execution time of the transformed matmul kernel on the Alpha and Pentium

platforms during each iterative step and the best achieved execution time. Matmul

has a single subroutine and a triple-nested loop referencing three arrays. All three

arrays have been selected for iterative compilation. However, only the inner and

outer loops have been selected for iterative compilation for the sake of simplicity and

0

5

10

15

20

25

30

35

40

0 256 512 768 1024 1280 1536

iterations

pr
or

gr
am

 e
xe

cu
tio

n
tim

e
(s

ec
.)

exec. time after transformations minimal exec. time

 (a) Alpha platform

0

5

10

15

20

25

30

35

0 256 512 768 1024 1280 1536

iterations

pr
og

ra
m

 e
xe

cu
tio

n
tim

e
(s

ec
.)

exec. time after transformations minimal execution time

 (b) Pentium platform

 Figure 4.12: Changes in execution time during each iterative step (matmul)

91

to reduce the number of iterations. Therefore, iterative compilation for this kernel

consisted of four major steps:

• global array padding (1..64);

• loop tiling of the outer loop (65..576);

• best loop tiling of the outer loop plus loop unrolling of the inner loop

(577..1088);

• loop unrolling of the inner loop (1089..1599),

where numbers in brackets show iterations that belong to each step. The above

graphs demonstrate that optimisations depend heavily on the hardware and that best

transformation factors vary considerably across platforms. For example, the best

performance for matmul on the Alpha platform is achieved using array padding and

loop tiling, whilst on the Pentium platform it is achieved using array padding and the

combination of loop tiling and unrolling. This also demonstrates the difficulties

which static optimisation methods face, as these techniques should not only consider

separate transformations but also their combinations.

The basic search strategy presented in this chapter has a major drawback: the

time spent for program optimisation is considerably higher that used by modern

static or dynamic approaches – it can require thousands of runs of program variants.

This can be acceptable and useful for optimising small programs and kernels whose

lifetime is greater than the overall optimisation time, but in many other cases the

iterative compilation time is unacceptable. To overcome this drawback, the following

chapters will investigate the possibilities in finding the trade-off between the speed-

up and the iterative compilation time by reducing the search space and by using

advanced search strategies.

4.6 Summary

This chapter shows the influence of array padding, loop tiling and unrolling on

application performance, and describes a new iterative optimisation approach

including all these transformations that outperforms current static and feedback

directed compiler techniques. This approach allows optimisers to adapt to any new

platform by way of feedback directed iterative compilation. Considerable speed-up

92

has been achieved after applying iterative compilation for two well-known kernels

and eight SPEC FP benchmarks across two platforms compared to the results

obtained using native high-level restructurers and platform-specific profile-directed

optimisers that employ the same transformations. Furthermore, iterative compilation

never degrades program performance unlike current static and dynamic methods that

can considerably degrade it.

This chapter shows that it is possible to dramatically outperform current static

and dynamic optimisation methods using iterative compilation with the same or a

smaller set of transformations, regardless of the platform. The major drawback of the

new approach is a very large number of iterations making it very time-consuming.

To overcome this problem the next chapters investigate new techniques to predict the

possible performance improvements before applying costly iterative compilation and

describe new search strategies to dramatically reduce the search space.

93

Chapter 5

Performance Prediction

This chapter describes a new fast and accurate technique that can predict the

potential benefit from applying memory transformations to various program sections.

Since the optimisation process can be tedious and time-consuming, this technique

allows the removing of those program sections from the optimisation process that do

not have the potential for performance improvement. It is particularly important for

iterative compilation where investigating only one loop nest may require thousands

of executions of program variants. This technique is platform-independent and

transforms the assembler code of the original program so that the new program

variant does not exhibit cache misses. Thus, profiling the original and new program

followed by a comparison of execution times provides a fast evaluation of the

potential benefit from applying memory transformations that target cache misses.

The advantages of this technique over existing ones are compared at the end of this

chapter. Chapter 6 shows how this performance prediction technique effectively

reduces the search space.

5.1 Introduction

In performance critical applications, memory latency is frequently the dominant

overhead and in many cases, automatic compiler-based optimisations to improve

memory performance are limited. As shown in the previous chapter, in the majority

of such cases iterative compilation provides a significant performance improvement.

However, this method is excessively time-consuming and is therefore unrealistic to

use in general purpose computing. Furthermore, as the potential benefit from

optimisation is unknown there is no way to judge the amount of effort worth

spending and there are no criteria from which to decide when the optimisation

process should stop, i.e. when the optimal memory performance has been achieved or

sufficiently approached.

94

This leads to the following technical question: is it possible to estimate the

potential benefit of memory program optimisation before applying costly iterative

compilation? While it is difficult to provide an accurate value of the expected

execution time beforehand, a new technique for estimating a lower bound on

execution time for scientific applications is proposed and described in this chapter.

Memory transformations and most of the current memory optimisations

described in detail in chapter 3 attempt to remove cache misses. Therefore, the lower

bound on execution time of a program or the potential execution time of a program

after memory optimisations is defined here as the execution time of a program if all

its cache misses are removed. Obtaining this lower bound on old in-order-execution

processors can be relatively straightforward by using hardware counters: the

execution time of the original program minus the number of misses (as recorded by

hardware counters) times the memory access latency would provide an accurate

lower bound on execution time [HP96]. However, modern superscalar processors

described in detail in section 2.1 have non-blocking caches, out-of-order execution,

complex memory hierarchies and can continue executing the program in parallel with

memory accesses instead of stalling. Thus, it is not possible to deduce the no-miss

execution time directly based only on the execution time of the original program and

the number of misses. This is empirically demonstrated further in section 5.7 of this

chapter.

Processor simulators, such as SimpleScalar described in section 3.3.2, provide a

simple means to compute this lower bound, as it is trivial to modify a processor

simulator so that it mimics perfect cache behaviour. However, processor simulators

have several major drawbacks. Firstly, they generally model only the processor while

the whole system can have a strong impact on memory performance: the way the

TLB is reloaded, the bus arbitration mechanism, the physical to virtual mapping in

lower cache levels and the type of memory (SDRAM, DDRAM), for example.

Consequently, there is a need for a system simulator rather than a processor

simulator. Secondly, it is difficult to develop a processor simulator that accurately

models an existing processor without privileged access to the processor internal

workings, so that an accurate system simulator would require a significant effort to

accurately model the chip set, the memory chips, the operating system and all other

95

components. Finally, processor simulators are extremely slow: a simulated program

on a current superscalar processor runs several hundred times slower than normal

execution as described in section 3.3.2. Whether the simulator is used only once at

the beginning of the optimisation process or worse, at each step, such a slowdown is

rarely acceptable for most of the programs and is not tolerable for applications whose

execution time exceeds a few minutes.

As the whole system architecture needs to be taken into account and excessive

analysis time is unaffordable, simulators do not provide a satisfactory means for

computing the execution time lower bound. In this chapter, a new technique that is

both fast and reasonably accurate for estimating the execution time lower bound of a

program is described. This technique has been implemented and tested on a wide

range of programs and has been compared to other existing techniques.

5.2 Motivation and example

This section provides a motivating example, illustrating the assembler

modification technique to remove almost all cache misses without affecting the

remainder of the program. The general approach is to modify the program so that it

retains the characteristics of the original program but induces the minimal number of

misses. Therefore, the execution time of the instrumented program or its specific

parts will provide a lower bound on execution time of the original program once all

cache misses have been eliminated.

In numerical scientific programs where loops dominate the execution time,

almost all cache misses are due to array references within these loops. The baseline

of the new technique is to transform each individual array reference into a scalar

reference. The memory footprint, i.e. the number of unique memory references of the

resulting program is negligible compared to the original footprint and the number of

misses is close to zero. The challenge is to make sure that this transformation will

not affect the rest of the program and its execution on a superscalar processor.

Consider the array reference A[i] in the fortran loop in figure 5.1 (a). After

compiling on the Alpha platform, this reference is translated into the assembly code

shown in figure 5.1 (b), where integer register $19 contains the current target address

of the load instruction, i.e., the base address of array A plus loop counter i times the

96

size of one memory element (8 bytes in this example). Lda is a misleading acronym,

it is not a load instruction but an add instruction dedicated to address computations.

So in this case, it increments register $19 by 8 to fetch the next element of array A.

The load instruction, ldt, fetches the data located at the address stored in register $19

into a floating-point register $f13. These two instructions correspond to the array

reference A[i].

Assume now that ldt instruction is modified as shown in figure 5.1 (c), where

register $19 is substituted with the constant register $28 to access memory. Before

executing the loop, register $28 is set to a constant address which points to a memory

address with preloaded data values that remain invariant throughout execution. The

following ldt instructions within the loop will also use register $28 to access memory

but with different offsets 8, 16 etc. that are multiples of a single word, to point to

DO i = 1, N

 ... = A[i]

 ... = B[i+1]

 ...

ENDDO

 original code

 (a)

 lda $19, 8($19)

 ldt $f13, ($19) ; ... = A[i]

 ldt $f14, 8192($19) ; ... = B[i+1]

 assembler code

 (b)

lda $19, 8($19) lda $19, 0($19)

ldt $f13, ($28) ldt $f13, ($19)

ldt $f14, 8($28) ldt $f14, 8192($19)

changing memory changing address

access instructions increment instruction

 (c) (d)

 Figure 5.1: Assembler transformations to predict potential performance

97

their own constant memory locations. Thus, the assembler instruction ldt $f14,

8192($20) corresponding to the access to the array B will be further transformed to

ldt $f14, 8($28).

The new transformed code has all the same instructions; the same number of

computations is performed and data dependencies are preserved between instructions

operating on registers, but now addresses referenced by each instruction ldt are

constant over the whole loop execution. Consequently, the memory footprint of

reference A[i] is reduced from N x 8 bytes to just 8 bytes. Considering the minimum

cache size is around 8 Kbytes, and that the number of references is significantly less

than a 1000 within do-loops, the memory footprint after transformation will almost

always fit in cache and then only induce as many compulsory misses as the number

of array references in a loop, which is negligible.

Another way of transforming the assembler code to remove cache misses also

exists. If the increment of the address register $19 is set to zero as shown in figure

5.1(d), then throughout the loop iterations the ldt instruction will load floating point

register $f13 with the same data referenced by the base address of the array A. This

technique gives the same performance prediction, as the first one. However, it

requires a complex analysis of all instructions dealing with index calculations, and of

dependencies between them and the memory access instructions. Moreover, it is

platform and compiler dependent. For this reason, it has been abandoned in this

research in favour of the first technique, which can be used with any language and

can be easily ported to different platforms.

Naturally, once the code has been transformed as above, it no longer executes

correctly. Therefore, a copy is made of each program segment of interest at the

assembler level and modified as described above. First, the instrumented segment is

executed and then the original segment is executed to enable normal program

execution. However, the instrumented segment can still modify variables so that the

program may not run correctly afterwards. For this reason, backup and restore

procedures for saving and restoring all modified registers are added before and after

the instrumented segment respectively. For example, consider a subroutine calc2

from the SPEC benchmark swim and the transformed assembler code as shown in

figure 5.2 where calc2_prep_ is the backup procedure, calc2_tr_ is the instrumented

98

segment, calc2_restore_ is the restore procedure, calc2_ is the original segment and

br is the assembler instruction for branch and return. calc2_prep copies a minimal set

of the data values accessed by the original segment into a new data area to be used by

the modified program segment. In addition, all register values are saved and later

restored. The transformed routine calc2_tr_ is modified to refer to a greatly reduced

number of data values residing in a special data area so that the number of cache

misses is close to zero. Once it is executed, the registers are restored to their earlier

values in calc2_restore_. Finally, the original segment calc2_ is executed. After

profiling the modified program on subroutine level with high precision using

hardware counters, the execution time of the transformed segment calc2_tr_ will be

the lower bound execution time of the original segment calc2_.

In the next section, a transforming algorithm for predicting performance is

described in detail. Its implementation on two platforms is also presented and is

evaluated on a wide range of programs.

5.3 Performance prediction algorithm

Figure 5.3 outlines the algorithm used to determine the lower bound of the

execution time. During the first step, the original program is profiled to select

sections of this program that dominate the execution time, typically loop nests.

During the second step, the program is instrumented and calls after each memory

reference are inserted to record data values referred to by the first execution of each

load/store instruction. During step three, the modified program is executed to collect

and store all necessary data values. Step four is the main modification procedure. A

...

br calc2_prep_ # Preparing data for transformed

 # segment, and saving all registers

br calc2_tr_ # Executing transformed segment

br calc2_restore_ # Restoring registers

calc2_: ... # Executing original segment

...
 Figure 5.2: Program modifications to ensure correct code execution after

performance prediction transformation

99

duplicate copy of the appropriate routine is created. This copy is transformed so that

all array references become scalar references, and the number of memory accesses is

reduced to the smallest possible footprint whilst maintaining dependences and

referring to valid data. Routines for saving and restoring registers are then inserted

into the program. Finally, the entire program is executed and the necessary profile

data is collected.

5.3.1 Collecting data values

The purpose of the technique is to minimise references to memory in order to

determine a lower bound on execution time. A naive approach would be to simply

replace all load/store operations with NOOPs. However, this would alter the

scheduling of the program and more importantly cause a large number of exceptions

due to arithmetic on non-initialised register values. Alternatively, all load and store

operations could refer to one initialised memory location, which would be

permanently in L1 cache after the first reference. Although reducing floating-point

exceptions, this will make every memory operation dependent on each other,

radically changing the behaviour of the program. Therefore, an approach proposed

here is to run the original program, obtain the values of the data referred to by each

memory operation on its first execution, and then to transform all those operations to

always refer to these constant values. This dramatically reduces the footprint of the

program since an array reference traversing N elements of an array will now only

1. Profile original program and select the segments of interest

2. Instrument program segments to collect run-time data values and addresses

3. Run instrumented program

4. Transform program:

o create copies of each segment

o allocate memory for preset values

o transform instructions with memory access inside each segment

so that they reference to preset values, analysing and keeping data

dependencies

5. Profile transformed program

 Figure 5.3: Performance prediction algorithm

100

refer to the first element. This also reduces the likelihood of introduced exceptions as

all memory operations reference to their own locations with the appropriately

initialised values.

Obtaining the required data is achieved by inserting a jump to a data collection

subroutine after each memory operation. Before jumping to the collection routine,

the instruction number is pushed onto the stack, together with the memory location

referred to, as shown in figure 5.4 (a), where instruction_no is simply the location in

memory of the particular load/store instruction. Within the collection subroutine, the

memory location and its value referred to in the original memory operation are saved

to two arrays. Addr contains the instruction_no of the memory instruction plus the

memory address referred to while value contains the actual value referred to i.e.

Mem[address]. Only the first data value referred to by an instruction is stored and

therefore an additional check array is used.

instruction_no: load/store dest_reg, Mem[address]

 push instruction_no

 push address

 br collect

 code modification to collect data values

 (a)

if check[instruction_no] == 0 then

 check[instruction_no] = 1

 addr[next].ins_no = instruction_no

 addr[next].add = address

 value[next] = Mem[address]

 next = next + 1

else

 Mem[instruction_no+word_size] = NOOP // overwrite 1st push

 Mem[instruction_no+2*word_size] = NOOP // overwrite 2nd push

 Mem[instruction_no+3*word_size] = NOOP // overwrite branch

endif

 data collection procedure with self-modifying code

 (b)

Figure 5.4: Data collection for performance prediction transformation

101

The data collection routine that obtains all the necessary data is shown in figure

5.4 (b). Its major drawback is that the additional overhead of jumping to a subroutine

on every memory access is prohibitively expensive. In some cases, it increased the

execution time by a factor of 20, which can be unacceptable for large applications.

To overcome this problem, self-modifying code is introduced. This code overwrites

the original push and subroutine jump instructions with NOOPs (no operation

instructions) once data has been collected for the first execution of any instruction.

Thus, instead of jumping to the collection routine each time a load/store is executed,

it only takes place once, increasing the execution time of the instrumented program

for obtaining runtime data no more than 10% from the original execution time in all

experiments.

5.3.2 Removing cache misses

The new technique maps all array references into scalar ones, reducing the

memory footprint and the number of misses. The algorithm for this transformation is

presented in figure 5.5. First, the number of instructions with memory access is

counted (instr_num) in the assembler code for each selected program segments with

the number seg. Then, memory is allocated with the address addr_preset[seg] and

the size instr_num * word_size to keep preset data values for the transformed

program to ensure correct code execution. Further, each instruction with memory

access within the selected program segment is transformed to reference preset data

with address addr_preset[seg] + instr * word_size. The transformed code has the

same instructions and the same number of calculations is performed. However, all

for each selected program segment (seg):

• count number of instructions with memory access (instr_num)

• allocate memory with address addr_preset[seg]

and size instr_num * word_size to keep preset data

for each instruction with memory access (instr) within the program segment:

• transform this instruction so that it references preset data

with address addr_preset[seg] + instr * word_size

 Figure 5.5: Performance prediction transformation algorithm for removing
cache misses

102

references within the selected program segment are constant during program

execution so that the memory footprint of all references is considerably reduced in

comparison with the original program.

5.3.3 Preserving data dependences

Obtaining a realistic lower-bound execution time requires preserving the

properties of the original program in the transformed one. The algorithm for the

performance prediction transformation, shown in figure 5.5 preserves the number

and the type of all instructions, and the data dependencies between instructions

operating on registers in the new code. However, it also removes all data

dependencies between instructions with memory access since they refer to different

locations in the specially allocated memory for preset data values.

In order to maintain the same data dependence structure of the original program,

it should be ensured that if two memory access instructions reference the same

memory location in the original code, they should reference the same memory

location with preset data values in the transformed code. In case of dynamically

allocated memory, addresses are not available at a compile time. However, the data

collection procedure described in section 5.3.1 obtains run-time addresses and data

values for all instructions with memory access. Comparing these run-time addresses

allows one to detect instructions referencing the same memory location. Therefore,

they can be further modified to reference the same memory location during

performance prediction transformation.

The proposed technique for preserving data dependencies has two potential

drawbacks. First, it cannot track and preserve dynamic dependencies, i.e. those data

dependencies that are changing during the program execution. Second, it cannot

preserve inter-iteration dependencies between instructions with memory access, i.e. it

preserves data dependencies only for the first iteration of the loop. A partial solution

to these problems is to obtain the lower bound of the execution time twice, with and

without preserved dependencies. If the execution times are similar, then there is no

influence of data dependencies on the particular program performance and, therefore,

lower bound execution time is valid. If there is a considerable difference, then the

obtained execution time is not guaranteed to be the lower bound. However, in all

103

experiments presented in this chapter, the difference in lower bound execution times

with and without preserved data dependencies between instructions with memory

access is less than 1%. This can be explained by the fact that calculations are

performed on the same registers in both the original and transformed programs.

Therefore, data dependencies are preserved between instructions even if dynamic

addresses are different in the transformed program.

5.3.4 Ensuring correct code execution

Once all array references of the selected segments of the analysed code are

transformed into scalar references, the program does not execute correctly and may

even crash due to the use of undefined array values by its unchanged segments.

Therefore, a copy of each program segment of interest is created at the assembler

level and modified as described above. First, the instrumented segment is executed

and then the original segment is executed to enable normal program execution. The

instrumented segment does not modify program variables as it access only specially

allocated memory with preloaded data, but it still modifies registers so that the

program does not yet run correctly. For this reason, backup and restore procedures

for saving and restoring all registers are added before and after the instrumented

segment respectively. Figure 5.6 presents an algorithm that ensures correct code

execution. Three procedure calls are embedded before each selected segment. The

for each selected program segment:

• duplicate this segment to be instrumented

during performance prediction transformation

• embed calls to the following procedures

before the selected program segment:

o procedure for saving the state of all registers and initialising

the memory with preset data to be used by the transformed

segment

o procedure with the transformed program segment

o procedure for restoring the state of all registers

 Figure 5.6: Algorithm to ensure correct execution of the transformed code

104

first procedure saves the state of all registers and initialises the memory with preset

data. This data is used in the second procedure that is the copy of the original

program segment transformed for the performance prediction. The third procedure

restores the state of all registers.

5.3.5 Array indirection and control flow

There is a potential problem when applying the performance prediction

transformation to the programs with array indirections or arbitrary control-flow.

Array indirections frequently cause problems for static analysis due to compile-time

unpredictability. However, since the values for all indirections are gathered during

step 2, these values are saved and referred to later in the modified form of the

program. Hence, indirection or other complex addressing such as tree structures do

not cause difficulties. On the other hand, arbitrary control-flow does cause problems.

A conditional within a loop whose value is dependent on an array element will be

assigned to either true of false for the entire duration of the loop in the proposed

approach. This is due to the first referenced value of the array being loaded each time

for the entire loop. Currently, such references are left unmodified. Alternatively, the

number of times a particular branch is taken may be recorded and replicated in the

modified code to give a more accurate prediction. Such cases are the subject of the

future research and are currently avoided.

5.4 Implementation

The performance prediction technique described above should be implemented in

the code generation phase of a compiler in the ideal case. However, due to the

inevitable lack of access to the internals of the processor vendors' compilers, this

technique is implemented as a post code generation, standalone assembler

modification transformation independent of high-level language. To show the

portability across platforms with different instruction sets a complete toolset for the

automatic analysis and instrumentation of codes has been developed for two

platforms briefly described in section 4.2.2: Compaq Alpha and Intel Pentium. These

are both superscalar processors with out-of-order execution and have two levels of

105

cache. However, the instruction sets of these processors are very different in

structure and are based on RISC and CISC design philosophies, respectively. These

designs are briefly described in section 2.1.1.

5.4.1 Alpha platform

Implementation of the performance transformation algorithm at assembler level

requires changing instructions with memory access. The Alpha platform has a

reduced instruction set where only load and store instructions can access memory

and all other instructions operate on registers. Load and store instructions in the

Alpha assembler have the following format:

instruction_type $data_register, offset($address_register)

Instruction_type is the type of a load or store instruction such as ‘lds’ for loading

long word, 'ldt' for loading quad word, 'sts' for storing long word and 'stt' for storing

quad word, for example. $Data_register is any floating-point register within a range

of $f0 .. $f31. $Address_register is any integer register with memory address within

a range of $0 .. $30 (register $31 always contains the value 0).

For performance prediction, the above instructions should be changed to

reference preset data in the specially allocated memory. Compaq compilers leave

register $28 free for other purposes. Therefore, this register is used to keep the base

address of the memory with the preset data. It is initialised before executing the

transformed program segment where all the instructions with memory access have

their $address_register and offset replaced by the register $28 and by the appropriate

offset as described in detail in section 5.3.1.

5.4.2 Pentium platform

Transforming the assembler code is different on the Pentium platform, as it uses

a complex instruction set. References to memory can be embedded within most of

the instructions in this instruction set, unlike the reduced instruction set where only

load and store instructions can access memory. The memory referencing part of

instructions with memory access on the Pentium assembler has the following format:

word_type PTR immediate_address + offset1[address_register_expression]

106

where 'PTR' indicates that the instruction has a memory access; word_type is the

type of the used word such as 'DWORD' for loading or storing double words or

'QWORD' for loading or storing quad words, for example. The address part of the

instruction may consist of an immediate address and its offset plus an

address_register_expression that can be a complex linear expression such as

register1+register2*const.

To predict performance, the address part of the instructions should be changed to

reference memory with preset data. Since immediate addresses are allowed in

instructions on the Pentium platform, the address part is simply replaced to give the

following expression:

word_type PTR addr_preset[seg] + instr * word_size

where addr_preset[seg] is the immediate address of the memory with preset data and

instr * word_size is the offset of the preset data for the particular instruction,

described in detail in section 5.3.1. The techniques developed for the Pentium and

Alpha platforms demonstrate that little platform specific modifications are required

even for radically distinct ISAs.

5.5 Experimental results

The experiments for determining a lower bound on execution time are performed

on both the Alpha and Pentium. The same programs are selected as in the previous

chapter: matmul, sor and eight benchmarks from the SPEC’95 benchmark suite using

reference datasets. The most time-consuming loops of these programs are selected

for the performance prediction transformation. Due to architectural differences of the

Alpha and Pentium platforms, the program execution also varies on these platforms.

Therefore, the most time-consuming loops are not necessarily the same on both

platforms. These program segments are further transformed to obtain a lower bound

on execution time. The execution times of the original and transformed versions and

their respective IPC (instruction per cycle) are measured using a high precision

profiler and hardware counter support. These figures and the potential speed-up for

each program segment are presented in table 5.1 for the Alpha platform and in table

5.2 for the Pentium platform.

107

The results obtained demonstrate large variations in potential performance

improvement among various program segments of the examined applications. Most

of the programs on both platforms contain both loops with a very high potential

speed-up and those with negligible potential. For example, loop main_1 from the

matmul kernel has a high potential speed-up of 9.4 on the Alpha platform. On the

same platform, loops main_5 from the tomcatv benchmark, sweep_2 from the su2cor

Program: Procedure and
loop number:

Original
time:

Original
IPC:

Transf.
time

Transf.
IPC:

Speedup:

matmul main_1 31.1 0.3 3.3 2.5 9.4
sor main_1 48.4 0.5 28.6 0.8 1.7
tomcatv main_1 28.9 1.0 12.3 2.4 2.3
 main_2 8.4 0.5 4.8 1.0 1.8
 main_3 19.3 0.3 4.8 1.6 4.0
 main_4 10.0 0.8 2.4 3.3 4.2
 main_5 11.5 0.6 2.4 2.2 4.8
swim calc1_1 19.9 1.0 9.3 2.3 2.1
 calc2_1 25.0 1.1 9.4 2.9 2.7
 calc3_1 24.0 0.9 6.5 3.2 3.7
su2cor adjmat_1 3.9 1.4 1.6 3.4 2.4
 bespol_1 3.6 2.4 2.6 3.5 1.4
 matadj_1 4.0 1.4 1.7 3.4 2.4
 matmat_1 10.8 1.2 4.0 3.4 2.7
 sweep_2 3.5 0.6 0.7 3.1 5.0
mgrid Psinv_1 22.0 1.9 18.6 2.3 1.2
 resid_1 43.4 1.9 34.9 2.3 1.2
 rprj3_1 7.4 1.0 3.7 1.9 2.0
applu buts_1 16.0 0.7 6.4 1.7 2.5
 jacu_1 12.9 0.9 5.2 2.3 2.5
 rhs_3 3.9 1.5 2.4 2.4 1.6
 rhs_4 4.1 1.5 2.6 2.3 1.6
turb3d dfct_1 19.6 0.8 5.9 2.6 3.3
 dfct_2 11.0 2.0 6.6 3.4 1.7
 Trans_1 8.1 2.6 7.8 2.7 1.0
apsi hyd_1 4.2 0.5 1.3 1.5 3.2
 Leapfr_2 3.2 0.5 0.7 2.5 4.6
 radb4_1 1.0 3.3 1.0 3.3 1.0
 radb4_2 3.3 2.5 3.3 2.5 1.0
 radf4_2 2.1 2.5 2.1 2.5 1.0
 trid_1 4.0 0.6 2.8 0.9 1.4
 trid_2 3.8 0.5 2.3 0.9 1.7
 ucrank_1 2.0 2.0 1.9 2.0 1.0
wave5 parmvr_1 1.4 1.0 1.1 1.3 1.3
 parmvr_3 8.2 0.8 3.7 1.8 2.2
 parmvr_4 4.9 2.1 2.6 3.0 1.9
 parmvr_5 1.1 1.3 1.1 1.3 1.0
 parmvr_11 4.5 1.0 1.8 2.6 2.5
 Table 5.1: Original and lower-bound execution times with IPCs (Alpha

platform)

108

benchmark and leapfr_2 from the apsi benchmark have a potential speed-up close to

5. On the other hand, loops psinv_1 and resid_1 from the mgrid benchmark, trans_1

from the turb3d benchmark, radb4_1, radb4_2, radf4_2 and ucrank_1 from the apsi

benchmark and parmvr_5 from the wave5 benchmark have a negligible potential

performance improvement.

Table 5.2: Original and lower-bound execution times with IPCs (Pentium
platform)

Program: Procedure and
loop number:

Original
time:

Original
IPC:

Transf.
time

Transf.
IPC:

Speedup:

matmul main_1 83.9 0.1 6.2 1.6 13.5
sor main_1 48.9 0.3 13.0 1.2 3.8
tomcatv main_1 47.4 0.4 21.5 1.2 2.2
 main_2 13.4 0.4 3.7 1.4 3.6
 main_3 32.5 0.1 11.3 0.5 2.9
 main_4 25.6 0.1 3.2 1.6 8.0
 main_5 24.3 0.1 1.8 1.4 13.5
swim calc1_1 41.7 0.4 25.3 0.7 1.6
 calc2_1 40.7 0.3 13.7 1.1 3.0
 calc3_1 48.8 0.2 9.3 1.4 5.2
su2cor adjmat_1 14.7 0.3 3.5 1.2 4.2
 bespol_1 15.8 0.2 2.9 1.1 5.4
 matadj_1 15.7 0.3 3.5 1.1 4.5
 matmat_1 37.7 0.3 8.5 1.2 4.4
 sweep_2 9.8 0.1 0.7 1.4 14.0
 sweep_3 2.0 0.1 1.7 0.1 1.2
 sweep_4 3.1 0.5 2.8 0.7 1.1
mgrid psinv_1 49.8 0.4 26.3 0.9 1.9
 resid_1 105.0 0.4 47.7 1.0 2.2
 rprj3_1 11.8 0.2 3.3 1.0 3.6
applu buts_1 34.7 0.5 15.5 1.2 2.2
 jacu_1 29.3 0.3 10.3 1.0 2.8
 rhs_2 6.7 0.5 4.5 0.9 1.5
 rhs_3 6.9 0.5 4.5 0.9 1.5
 rhs_4 7.2 0.5 4.4 0.9 1.6
turb3d dfct_1 31.7 0.2 7.6 1.6 4.2
 dfct_2 10.5 0.9 7.7 2.0 1.4
 fftz2_1 46.6 1.6 45.1 1.6 1.0
 trans_1 8.7 1.2 8.7 1.2 1.0
apsi dtdtz_1 4.6 0.1 1.0 0.6 4.6
 dvdtz_1 4.9 0.2 1.1 0.6 4.5
 leapfr_2 5.0 0.1 0.5 1.2 10.0
 trid_1 5.2 0.3 4.9 0.3 1.1
 trid_2 4.9 0.1 4.5 0.1 1.1
 ucrank_1 3.8 0.7 3.6 0.8 1.1
wave5 parmvr_1 4.1 0.1 4.1 0.1 1.0
 parmvr_3 14.7 0.2 3.0 1.2 4.9
 parmvr_4 15.3 0.3 5.2 0.9 2.9
 parmvr_5 4.5 0.1 4.5 0.1 1.0
 parmvr_11 8.1 0.3 2.0 1.6 4.1

109

The potential speed-up can be used to drive further optimisations. The

performance prediction technique can provide information about whether a loop is

memory bound, i.e. when data is retrieved from memory slower than it can be

processed, or not. In this way, it is similar to the static optimisation technique

proposed by Carr and Kennedy and described in detail in section 3.2.1. However, the

new performance prediction technique proposed in this chapter considers all the

hardware and program run-time parameters and is precise.

When a loop has a high potential speed-up, it is memory bound and can hence

benefit from further memory optimisations. If the potential speed-up is negligible,

the loop is either balanced or is compute bound, i.e. the rate of data retrieval from

memory is faster than its processing rate. In this case, this loop will not benefit from

memory optimisations. This can help to reduce the search space for iterative

compilation by removing those loops from consideration that do not have potential

speed-up as described in the next chapter. Compute-bound loops can benefit from

optimisations that improve ILP such as software pipelining and loop unrolling, for

example. However, ILP optimisations are beyond the scope of this research.

Experiments performed on the Pentium platform show that loops with high

potential speed-up are similar on both Alpha and Pentium platforms. This is

explained by the fact that the execution time of memory bound loops where memory

accesses dominate depends primarily on the memory design that is similar on both

architectures. For example, loops main_1 from the matmul kernel, main_5 from the

tomcatv benchmark, sweep_2 from the su2cor benchmark and leapfr_2 from the apsi

benchmark have high potential speed-ups as on the Alpha platform, though to a

different extent due to differences in the memory bandwidth of these architectures.

The potential speed-up of compute-bound loops should also be negligible on both

platforms as it does not depend on the memory access time and cache misses. Thus,

loops trans_1 from the turb3d benchmark, ucrank_1 from the apsi benchmark and

parmvr_5 from the wave5 benchmark have a potential speed-up close to 1 on both

platforms and are compute bound. All other loops have different potential speed-ups

on both architectures as they heavily depend on both the processor architecture and

the memory design. For example, loops psinv_1 and resid_1 from the mgrid

benchmark have relatively high potential speed-ups of 1.9 and 2.2 respectively on the

110

Pentium platform while these loops have a negligible potential speed-up on the

Alpha platform.

It should also be noted that the IPC of the transformed loops varies considerably

on both architectures and is not the ideal one (which is 4 for Alpha and 3 for

Pentium). Therefore, it is not possible to obtain the lower bound execution time

simply by multiplying the number of executed instructions and the ideal IPC for the

targeted machine.

Figure 5.7 shows the overall potential performance improvement and the

execution time improvement after iterative compilation with the basic search strategy

described in chapter 4 for each program on both processors. It demonstrates that

although it is not guaranteed that the lower bound of the execution time can be

achieved through selected transformations, performance improvements of some

programs are close to the predicted potential improvements after iterative

compilation with the basic search strategy. Besides, it shows that iterative

compilation even with only three memory transformations is an efficient

optimisation technique. For example, sor on the Alpha platform and matmul on both

platforms achieve considerable performance improvements close to the potential

ones. Thus, the lower bound execution time can be used as a realistic criterion to

drive and stop optimisation process.

Though it is possible to achieve the potential performance improvement for small

kernels with simple loop structures due to easy, straightforward and efficient

memory optimisations of such code, it is not the case for larger complex applications.

For the Alpha platform, performance improvements of only three SPEC benchmarks

- swim, mgrid and turb3d are relatively close to the potential ones. The performance

improvements of all other benchmarks though considerable are still far from the best

ones. This can be explained by the limited number of transformations used for

iterative compilation. For example, these transformations do not tackle compulsory

misses and memory bandwidth problem that can be efficiently optimised using

prefetching as described in section 3.1.5 but is out of the scope of the thesis.

Differences between potential performance improvement and improvement after

iterative compilation are even more dramatic on the Pentium platform. There are big

gaps in potential and achieved performance improvement for all SPEC benchmarks.

111

As in the case of the Alpha platform it can partly be explained by the complex loop

structures of those programs and by lower efficiency of the selected transformations

but more importantly are the differences in architectures of those two platforms. The

Pentium platform has a slower memory system than the Alpha platform and therefore

the potential for the improvement is higher when all cache misses are removed.

However, CISC architectures have inherently higher instruction and memory

latencies than RISC architectures. Therefore, the outcome of optimisations is smaller

on the Pentium platform than on the Alpha platform. Nevertheless, it does not mean

0
10
20
30
40
50
60
70
80
90

100

m
at

m
ul so
r

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

su
2c

or

10
7.

m
gr

id

11
0.

ap
pl

u

12
5.

tu
rb

3d

14
1.

ap
si

14
6.

wa
ve

5

ex
ec

ut
io

n
tim

e
im

pr
ov

em
en

t,
%

After performance prediction After basic iterative compilation

(a) Alpha platform

0
10
20
30
40
50
60
70
80
90

100

m
at

m
ul so
r

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

su
2c

or

10
7.

m
gr

id

11
0.

ap
pl

u

12
5.

tu
rb

3d

14
1.

ap
si

14
6.

wa
ve

5

ex
ec

ut
io

n
tim

e
im

pr
ov

em
en

t,
%

After performance prediction After basic iterative compilation

(b) Pentium platform

Figure 5.7: Overall potential and iterative performance improvement (%)

112

that the lower bound cannot be achieved as matmul achieved the potential

performance improvement after iterative compilation on the Pentium platform, for

example. To achieve this performance other optimisations should be considered and

the influence of various transformations on each other should be analysed, which is

the topic of future research. Therefore, performance prediction technique can also be

used to analyse the efficiency of various optimisation techniques and transformations

for the given programs and architectures.

5.6 Performance validation

To fully validate the fact that the instrumentation only affects memory behaviour

and that the lower bound can effectively be interpreted, the following experiment is

performed using a full processor simulator. The Alpha 21264 processor is modelled

using the SimpleScalar tool described in section 3.3.2. This model is also modified in

such a way that its cache is perfect, i.e., all memory requests hit in the first-level

cache. Further, both the original swim program from the SPEC’95 benchmark and its

transformed version for the performance prediction are executed on this simulator

with normal and perfect cache. Since the performance prediction transformation

removes all cache misses, the performance of the transformed program on the

simulator with normal cache should be nearly identical to the performance of the

original program on the simulator with perfect cache. Results presented in table 5.3

confirm that instrumentation barely affects the overall program behaviour. The IPC

of the transformed program run on the simulator with either normal or perfect cache,

3.02, is near to the one of the original program when simulated with perfect cache,

which is equal to 2.98. Results presented in table 5.4 show the number of cache

accesses and misses for the original program and its transformed version run on the

simulator with normal cache. These results also confirm that performance prediction

transformation removes most of the L1 cache misses and most of the L2 cache

accesses (large L2 cache miss ratio for the transformed code is not important since

the total number of L2 cache accesses in the transformed program is negligible in

comparison with the original program).

113

5.7 Comparison with existing techniques

Many existing optimisations or performance prediction techniques, described in

detail in chapter 3, attempt to predict and reduce the number of cache misses. It may

be argued that information about the number of cache misses obtained through

hardware counters can either guide optimisations or predict performance with less

effort. Such techniques can attempt to determine the overhead due to memory access

time directly using the information about cache misses obtained by hardware

counters, subtract this from the original time to obtain the lower bound on execution

time. These techniques may work well on old in-order-execution processors by using

the following formula for CPU execution time:

CPU execution time = (CPU clock cycles + memory stall cycles) * Clock cycle

However, modern superscalar processors with non-blocking caches and out-of-order

execution can considerably overlap CPU time and memory stall time, invalidating

this formula. Furthermore, the impact of memory access can be severely

underestimated by hardware counters. The following example illustrates this

statement. Consider matmul shown in figure 5.8 (a). This kernel is executed on the

Pentium platform and is profiled by the VTune tool [Int03b] using hardware

 Original program: Program transformed for
performance prediction:

IPC (simulator
with normal cache):

2.42 3.02

IPC (simulator
with perfect cache):

2.98 3.02

Table 5.3: IPC of the original and transformed programs obtained using the
simulator with normal and perfect caches

 Original program: Program transformed for
performance prediction:

Number of L1 cache accesses: 295,705,805 298,213,871
Number of L1 cache misses: 7.2% 0.0%
Number of L2 cache accesses: 2,123,885 1,993
Number of L2 cache misses: 72.4% 61.62%

Table 5.4: Cache behaviour of the original and transformed programs

114

counters. The performance prediction technique is then applied to this kernel.

Finally, it is optimised using iterative compilation with the basic search strategy

described in chapter 4. The execution time, the number of data memory references

and the miss ratio for L1 and L2 caches are shown in table 5.5 (a) for the original

matmul and for its transformed and optimised versions. These results show that the

original kernel exhibits a high number of cache misses on both cache levels. The

performance prediction technique shows how this program would behave when all

cache misses are removed. Iterative compilation with the basic search strategy is

capable of eliminating most of the cache misses for this kernel so that its optimal

execution time is close to the predicted lower bound time as expected.

Another kernel shown in figure 5.8 (b) is synthetically generated from matmul. It

is profiled on the Pentium platform using VTune tool. This kernel performs more

calculations but on the same array references so that the overall number of data

references and cache misses is the same. These figures are shown in table 5.5 (b),

where a slight difference in the number of cache misses is determined by the

hardware counter precision. Moreover, this kernel is also generated in such a way

that its execution time is nearly the same as that of the original matmul, meaning that

in both cases the memory accesses dominate the execution and all calculations are

 DO I=1, N
 DO J=1, N
 DO K=1, N
 A(I,J)=A(I,J)+B(I,K)*C(K,J)
 END DO
 END DO
 END DO

original matmul

(a)
 DO I=1, N
 DO J=1, N
 DO K=1, N
 A(I,J)=A(I,J)+B(I,K)*C(K,J)+(B(I,K)+C(K,J))*(B(I,K)-C(K,J))
 END DO
 END DO
 END DO

synthetically generated kernel

(b)

 Figure 5.8: Original matmul and synthetically generated kernel

115

performed in parallel with memory stalls. In this case, optimisation techniques based

on hardware counters, would expect the resulting optimised code for the modified

matmul to have the same execution time as the optimised version of the original

matmul. However, the performance prediction technique gives a potential lower

bound on execution time for the new kernel approximately three times higher then

that of the original kernel. This is validated by iterative compilation - 19.5 s. vs 7.6 s.

Hardware counters techniques may also attempt to predict the lower bound on

execution time using the following formula for the in-order processor [HP96]:

Memory access overhead = Data references * (HitRateL1 * HitTimeL1 +

MissRateL1 * (HitRateL2 * HitTimeL2 + MissRateL2 * HitTimeMain Memory))

For the above example, there are 1.3*109 data references and the average hit times is

measured as follows: HitTimeL1 = 1.5 ns; HitTimeL2 = 8 ns; HitTimemain Memory = 152

ns. Note that these figures depend on the processor and system configuration. After

 Execution

time:

Number of

data memory

references:

L1 cache

miss ratio:

L2 cache

Miss ratio:

Original kernel: 86.2 s. 1.3E9 0.452 0.448

Transformed kernel for

performance prediction:

6.2 s. 1.3E9 0.000 0.000

Optimised kernel after

iterative compilation:

7.6 s. 1.3E9 0.013 0.006

original matmul

(a)
 Execution

time:

Number of

data memory

references:

L1 cache

miss ratio:

L2 cache

Miss ratio:

Original kernel: 86.7 s. 1.3E9 0.445 0.447

Transformed kernel for

performance prediction:

18.8 s. 1.3E9 0.000 0.000

Optimised kernel after

iterative compilation:

19.5 s. 1.3E9 0.009 0.004

synthetically generated kernel

(b)

 Table 5.5: Example demonstrating the advantage of the proposed performance
prediction technique over the existing ones that are based on counting the

number of cache misses

116

substituting the values from table 5.4 for the original matmul, the memory overhead

is:

Memory access overhead = 1.3*109 * ((1-0.452)*1.5 + 0.452*((1-0.448)*8 +

0.448*152))*10-9 = 43.7 s.

Using the simplified equation above leads to CPU computation time of 86.2 – 43.7 =

42.5 s. If all cache misses are removed so that all accesses are to L1 cache only, the

memory stall obtained from the above formula is 2 s. Thus the lower bound

calculated solely from hardware counters is 42.7 s + 2 s = 44.7 s. However, this is 5.9

times higher than the time of the highly tuned matmul and its lower bound predicted

by technique presented in this chapter (44.7 s. versus 7.6 s.) and is 2.3 times higher

than the lower bound of the synthetically generated kernel (44.7 s. versus 19.5 s).

Therefore, the performance prediction technique described in this chapter provides a

more realistic lower bound on the execution time. Furthermore, iterative compilation

with the basic search strategy is capable of eliminating most of the cache misses for

the modified matmul as well as for the original matmul so that their execution time

are close to the predicted ones. This result demonstrates the advantage of using the

performance prediction technique to obtain the lower bound execution times.

Although, the lower bound execution time for the last kernel could be predicted

using simulation, it will be thousands of times slower than the proposed performance

prediction technique. Furthermore, the new method is superior to current techniques

by being able to predict a lower bound on execution time for a particular application

on a target platform without architectural knowledge of this platform and with a

minimal amount of knowledge about the instruction set of this platform.

5.8 Summary

This chapter describes a new technique for the fast evaluation of the lower bound

on execution time of program segments assuming that most cache misses have been

removed. It is based on assembler modification and is accurate as all instructions are

the same in the transformed code but load and store instructions refer to constant

addresses. Data dependencies are preserved and the program is actually run on the

targeted machine thus taking into account all system and architecture parameters.

The performance prediction technique is validated on a cycle accurate simulator.

117

However, it is significantly faster than simulation since the execution time of the

instrumented program is at most twice the execution time of the original program

compared with a 500 to 2000 times slowdown for simulation based techniques. It

also demonstrates that a majority of existing optimisations or performance prediction

techniques that attempt to predict and reduce the number of cache misses are no

longer valid on modern superscalar processors with non-blocking caches and out-of-

order execution.

Though this technique does not guarantee whether or not the lower bound of the

execution time can be achieved through transformations, it can determine program

segments which have a memory problem and which are candidates for memory

optimisations. The following chapter investigates the use of this lower bound

calculation in predicting the performance improvement and in reducing the

transformation space for advanced iterative compilation approaches to program

optimisations.

118

Chapter 6

Search Space Reduction

This chapter extends iterative compilation beyond the basic search strategy

described in chapter 4 by using the performance prediction technique presented in

chapter 5 with a random search strategy. This dramatically reduces the number of

iterations needed from thousands to less than a hundred and still achieves

considerable performance improvements. Thus, iterative compilation becomes a

realistic optimisation approach not only for the small kernels but also for a broad

range of applications. The results obtained are compared with the basic search

strategy and with other existing optimisation methods. Finally, a distinct method that

can reduce the iterative compilation time by using smaller datasets during program

optimisation is briefly considered.

6.1 Introduction

The two previous chapters describe an iterative optimisation technique that

outperforms current commercial compilers and introduce a technique for determining

a lower bound on execution time of a program. However, the compilation time for

the iterative search is excessively high (thousands of iterations) making it usable only

when the lifetime of a program is much higher than the time spent during its

optimisation. Therefore, the goal is to dramatically reduce the number of iterations

without sacrificing performance.

This chapter describes a technique to significantly reduce compilation times with

only 1-3% reduction in performance. It is achieved by using performance prediction

to remove loops that do not have any potential speed-up from the iterative search,

and by using a new random search strategy that investigates only a few random

transformation factors instead of all possible ones.

119

6.2 Using performance prediction

The performance prediction technique, described in chapter 5, determines a lower

bound on execution time for arbitrary sections of a program. In practice, if used

before applying a time-consuming iterative search for the best transformations, it can

reduce the search space by selecting only those sections of the program that have the

potential to be improved. This technique is fast. It needs only one preliminary run to

collect various run-time information about a program that is only 10-15% slower

than the execution time of the original program and a single run of the transformed

code that is at most twice as slow as the original program. This time is negligible in

comparison with the time needed to complete the iterative optimisation process, thus

ensuring that there is no overall slowdown using this technique.

To demonstrate the use of the performance prediction technique, matmul is

analysed on the Pentium platform and results are presented in table 6.1 (a). The

original time of this kernel is 83.9 s. and the predicted lower bound is 6.2 s. This

means that there is a great potential for this kernel to be improved and therefore it

should be further optimised. Iterative compilation is capable of improving the

performance of the original kernel considerably by 92.6% after approximately 1600

 Execution
time:

Original kernel: 83.9s.
Original kernel transformed for performance prediction: 6.2 s.
Optimised kernel after iterative compilation
(approximately 1600 iterations):

6.8 s.

Optimised kernel transformed for performance prediction: 6.4 s.

(a) matmul

 Execution
time:

Original kernel: 48.9 s.
Original kernel transformed for performance prediction: 13.0 s.
Optimised kernel after iterative compilation
(approximately 1600 iterations):

41.1 s.

Optimised kernel transformed for performance prediction: 13.6 s.

(b) sor

Table 6.1: Example demonstrating the use of the performance prediction
technique in iterative compilation (Pentium platform)

120

iterations. The execution time of the optimised kernel is 6.8 s. that is close to the

lower bound. Assume now, that the analysed code is already optimised. Performance

prediction technique can be used to detect such cases. For example, applying this

technique to the optimised kernel after iterative compilation provides a lower bound

execution time of 6.4 s, which gives a performance improvement of approximately

6%. Therefore, there is little potential for this code to be further optimised and it can

be excluded from consideration.

Although the prediction technique suggests which sections of the program have a

potential to be improved, it does not guarantee that the lower bound execution time

will be achieved through optimisation. To demonstrate this issue, consider the results

for sor shown in table 6.1 (b). The original time of this kernel is 48.9 s. and the lower

bound time is 13.0 s., which means that is 73.4% of the potential performance

improvement. However, the time achieved after iterative compilation is 41.1 s. that is

about 16.0% improvement. Such a big gap for sor on the Pentium platform is

explained in section 5.5 and is briefly due to higher instruction and memory latencies

on CISC architectures that demonstrate a high potential for improvement but are

harder to achieve through selected optimisations than say on the Alpha platform.

Nevertheless, it does not mean that the lower bound cannot be achieved. For

example, matmul achieved the potential performance improvement after iterative

compilation on the Pentium platform. Other optimisations such as prefetching should

be considered, for example, to achieve this performance, but are beyond the scope of

this thesis. Therefore, the performance prediction technique can be used for

identifying those sections of the program that have a potential for improvement after

memory optimisations and for excluding those loops from the iterative search that do

not, thereby reducing the search space for iterative compilation.

6.3 Random search strategy

Using the performance prediction technique reduces the search space by selecting

only those loops for further iterative compilation that have a potential for

improvement. However, the most time consuming part of the iterative search strategy

is applying all possible transformation factors within the chosen range.

121

To tackle this problem, new search algorithms should be used that apply fewer

transformation factors. Kisuki et al. evaluates five search algorithms on three

1. profile original program

2. run performance prediction technique

3. choose set of arrays and loops that dominate the execution time

 and have the potential for the improvement

4. apply data transformations:

o apply array padding N times with a random padding factor (1..Na)

for all global arrays

o run program variant and record the best execution time

o select the best transformation (minimal execution time)

5. apply loop transformations:

 for each selected loop nest:

for each loop from this nest:

if loop is not innermost and is within a perfect nest:

o apply loop tiling N times with a random tiling factor (1.. Nt)

 for the loop nest

o run program variant and record the best execution time

if loop is innermost:

o apply loop unrolling N times with a random unrolling factor

 (1..Nu) without tiling

o run program variant and record the best execution time

if the best tiling factor is found for the enclosing iterators

within the loop nest:

o choose best tiling transformation

o apply loop unrolling N times with a random unrolling factor

 (1..Nu) for the innermost loop

o run program variant and record the best execution time

select the best transformation for the loop nest

(either loop unrolling or a combination of both loop tiling and loop

unrolling)

Figure 6.1: Random search strategy algorithm

122

benchmarks in [KKO+00]: genetic search, simulated annealing, pyramid or grid

search, window search and random search. The grid or pyramid search strategy

defines a top level grid over the search space from the basic strategy. Each point on

this grid is ordered into a priority queue and is evaluated. The grid can be further

redefined around the best points that minimise program overall execution time. The

window search strategy defines windows over the search space. At first, there is only

one window that covers the entire space. During iterative compilation, a number of

samples is taken and ordered into a priority queue. Smaller windows are further

defined around the best points and evaluated again. The random search strategy is the

simplest one out of all presented here and picks transformation factors randomly

during a given number of iterations.

Simulated annealing is a search algorithm for a minimum in any general system

using a rough analogy with a physical process of heating and then slowly cooling a

metal into a minimum energy crystalline structure. During iterative compilation, the

aim of this algorithm is to minimise the execution time of a program. At first, a point

is selected randomly from the search space and all its neighbouring points are

inspected. The system is subsequently moved to points with lower execution time.

However, from time to time it is allowed to jump to a point with higher execution

time to avoid potential traps in the local minima.

Genetic search is also used to find the minimum execution time and is based on

an analogy with evolution of living organisms. At first, an initial population

consisting of 20 programs with random parameters is created. Second, a bit

representation of tile and unroll factors is created and a crossover point is determined

for a number of program variants. Further, the upper and the lower halves of this bit

representation or “chromosomes” are concatenated. During the mutation phase, the

remaining bits are flipped and the new population of programs is evaluated. Only 20

programs with the minimum execution time are left in the new population and the

rest is deleted.

The evaluation of all these strategies shows that iterative compilation is capable

of achieving high levels of optimisation in all cases. Furthermore, there is no

significant difference in their efficiency – all the obtained speed-ups are within 5% of

each other on average. However, there is a difference in the number of iterations to

123

obtain maximum speed-ups. Grid search is the slowest to reach the minimum of the

execution time as the original grid is defined over the whole search space. Simulated

annealing and random search strategies are the fastest and, finally, genetic and

windows search strategies are in between. The results from this paper demonstrate

that only a small fraction of the original search space is needed (0.03 to 0.05%) to

reach 90% of the maximum speed-up after the basic search strategy.

Due to the simplicity and efficiency of the random search strategy, a new

modified algorithm is proposed here and presented in figure 6.1. It differs from the

algorithm presented in chapter 4 by using the performance prediction technique and

by using random factors, which is enough to reduce the number of iterations by up to

two orders of magnitude. Selecting the same transformation factor is obviously

wasteful and is avoided. Both algorithms are able to optimise not only small kernels

but real large applications as well, unlike other iterative compilation methods

described above.

To demonstrate the advantages of the random search over the basic one described

in chapter 4, matmul is optimised on the Pentium platform using both these

strategies. The results presented in table 6.2 show the basic search strategy achieves

92.6% performance improvement after 1599 iterations. On the other hand, applying

the random search strategy achieves similar result of 91.7% improvement. However,

 basic
search

strategy

random
search

strategy

Execution time of matmul: 83.9 s.
Performance prediction time for matmul: 6.2 s.
Execution time of the optimised matmul
after iterative compilation:

6.8 s. 7.5 s.

Performance improvement
after iterative compilation:

91.9% 91.1%

Number of iterations needed: 1599 20

Maximum array padding factor Na = 64
Maximum loop tiling factor Nt = 512

Maximum loop unrolling factor Nu = 512

Number of random tries for the random search strategy N = 5
 Table 6.2: Comparison of the basic and random search strategies (matmul,

Pentium platform)

124

it needs 80 times fewer iterations to achieve this result. In other cases, performance

improvement can be lower, but the number of iterations needed to achieve it varies

from 20 to 80 that is two orders of magnitude less than after using the original basic

search strategy.

6.4 Experimental results

The random search strategy is evaluated in a similar manner to the basic search

strategy described in chapter 4. All applications are evaluated on both the Alpha and

Pentium platforms. To compare results with static and dynamic optimisations of the

best state-of-the-art commercial compilers the following three compiler options are

used:

Opt.1) maximum internal optimisations with data and loop transformations

disabled;

Opt.2) maximum internal optimisations with data and loop transformations

enabled;

Opt.3) feedback-assisted optimisations.

All applications are first profiled to choose the subroutines that dominate

execution time. Within each chosen subroutine, all loop nests are selected and the

performance prediction technique is applied as described in chapter 5 to eliminate

those loops from the search space that have a negligible execution time or have a

little potential for improvement after applying memory optimisations of less than 10-

15%, for example. Table 6.3 shows that there is a significant difference between the

total number of loops in a program and the number of loops that have been selected

for optimisation. This is due to the fact that SPEC benchmarks consist of a large

number of loops, but not all of them dominate the execution time or have any

potential for further improvement. Since most of the SPEC FP benchmarks are

memory bound, only about 15% of loops that dominate execution time have been

excluded from the search space after the performance prediction technique. All

arrays referenced within the chosen loops are considered further. The maximum

array padding factor, loop tiling factor and loop unrolling factors are the same as in

the case of the basic search strategy: Na = 64, Nt = 512 and Nu = 512, respectively.

The difference between this search strategy and the basic search strategy described in

125

chapter 4 is in trying only N random factors for each transformation instead of

checking the whole range of all possible factors. If the number of tries is too high,

the overall number of iterations is close to the one of the basic iterative search and

the performance improvement is close to the improvement after basic search

strategy. If the number of tries is too small, the overall number of iterations is small

as well. In this case, the probability of finding the best transformation factors is low

and the performance improvement may be negligible. After considering the results

from the paper [KKO+00] and aiming to perform less than a maximum of one

hundred iterations on the optimisation process to make iterative compilation a

realistic approach for a broad range of applications, the number of random tries N for

each transformation factor is chosen to be 5 for all kernels and SPEC benchmarks.

Table 6.4 presents the execution time improvements achieved after applying

iterative compilation with the random search strategy relative to Opt.1, Opt.2 and

Opt.3. Table 6.5 and figure 6.2 compare the performance improvements after

iterative compilation with the basic and random search strategies and present the

Application: Total number of loops: Number of selected loops

for the random search

strategy:

matmul 6 2

sor 5 2

tomcatv 16 5

swim 24 6

su2cor 117 4

mgrid 46 5

applu 168 5

turb3d 70 6

apsi 144 5

wave5 362 15

Table 6.3: Total number of analysed loops and the number of selected loops for

the random search strategy

126

number of iterations needed to achieve these performance improvements for both

strategies.

Execution time improvements: Application: Number of
iterations: Over Opt.1 Over Opt.2 Over Opt.3

matmul 20 79.2% 69.8% 69.8%

sor 20 11.2% 11.2% 11.2%

average (kernels) 20 45.2% 40.5% 40.5%

tomcatv 80 20.2% 23.3% 22.2%

swim 50 43.3% 33.6% 33.6%

su2cor 50 24.8% 14.1% 14.7%

mgrid 40 15.5% 14.8% 10.0%

applu 55 15.1% 4.4% 5.9%

turb3d 45 27.6% 39.3% 33.9%

apsi 65 11.5% 8.7% 9.0%

wave5 80 23.4% 13.7% 9.9%

average
(benchmarks)

58 22.7% 19.0% 17.4%

(a) Alpha platform

Execution time improvements: Application: Number of
iterations: Over Opt.1 Over Opt.2 Over Opt.3

matmul 20 91.7% 91.5% 91.6%

sor 20 15.6% 15.6% 15.6%

average (kernels) 20 53.7% 53.6% 53.6%

tomcatv 80 2.4% 2.1% -0.5%

swim 50 17.9% 18.4% 17.9%

su2cor 50 6.5% 6.2% 5.7%

mgrid 40 12.9% 12.9% 13.8%

applu 55 0% -2.1% -3.5%

turb3d 45 8.8% 8.0% 8.2%

apsi 65 22.2% 21.7% 23.9%

wave5 80 17.3% 16.0% 15.7%

average
(benchmarks)

58 11.0% 10.4% 10.2%

(b) Pentium platform

Table 6.4: Execution time improvements (%) after iterative compilation with
the random search strategy over Opt.1, Opt.2 and Opt.3

127

Random search strategy Basic search strategy

Performance

improvement:

Number of

iterations:

Performance

improvement:

Number of

iterations:

matmul 79.2% 20 80.1% 1599

sor 11.2% 20 28.6% 1599

average (kernels) 45.2% 20 54.4% 1599

tomcatv 20.2% 80 29.6% 7738

swim 43.3% 50 45.1% 6205

su2cor 24.8% 50 26.5% 9280

mgrid 15.5% 40 22.5% 14905

applu 15.1% 55 16.0% 27180

turb3d 27.6% 45 30.1% 5694

apsi 11.5% 65 13.0% 10813

wave5 23.4% 80 24.2% 7744

average

(benchmarks)

22.7% 58 25.9% 11195

(a) Alpha platform
Random search strategy Basic search strategy

Performance

improvement:

Number of

iterations:

Performance

improvement:

Number of

iterations:

matmul 91.7% 20 92.6% 1599

sor 15.6% 20 16.0% 1599

average (kernels) 53.7% 20 54.3% 1599

tomcatv 2.4% 80 4.8% 7738

swim 17.9% 50 18.0% 6205

su2cor 6.5% 50 7.4% 9280

mgrid 12.9% 40 13.0% 14905

applu 0% 55 4.8% 27180

turb3d 8.8% 45 9.1% 5694

apsi 22.2% 65 22.5% 10813

wave5 17.3% 80 17.4% 7744

average

(benchmarks)

11.0% 58 12.1% 11195

(b) Pentium platform
Table 6.5: Execution time improvements (%) and number of iterations needed

after iterative compilation with the random and basic search strategies over
Opt.1

128

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

m
at

m
ul so
r

to
m

ca
tv

sw
im

su
2c

or

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

w
av

e5

ex
ec

ut
io

n
tim

e
im

pr
ov

em
en

t,
%

Opt.2 Opt.3 iter. comp. (basic search strategy) iter. comp. (random search strategy)

(a) Alpha platform

-10

0

10

20

30

40

50

60

70

80

90

100

m
at

m
ul so
r

to
m

ca
tv

sw
im

su
2c

or

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

w
av

e5

ex
ec

ut
io

n
tim

e
im

pr
ov

em
en

t,
%

Opt.2 Opt.3 iter. comp. (basic search strategy) iter. comp. (random search strategy)

(b) Pentium platform
Figure 6.2: Execution time improvements (%) after iterative compilation with
the random search strategy and comparison with the basic search strategy and

compiler optimisations

129

As in the case of iterative compilation with the basic search strategy, the random

search strategy is also capable of achieving high performance improvements on

kernels with a few loops and arrays. Moreover, the random search strategy needs

only 20 iterations to obtain considerable performance improvements in contrast with

1599 iterations needed for the basic search strategy. There is less than 1% difference

between performance improvements of matmul for both search strategies on two

platforms. Figure 4.11 from chapter 4 explains this result. It shows that graphs with

changes in execution time during each iterative step for matmul on both platforms

are relatively smooth and therefore there is a high probability of choosing optimal

transformation factors after only a few random tries. However, the performance

improvement of sor drops considerably on the Alpha platform after the random

search strategy by approximately 17% in comparison with the improvement after the

basic search strategy. In contrast, the same benchmark has only a negligible

reduction in the performance improvement on the Pentium platform. This can be

explained by the fact, that the impact of transformations is greater and the

performance improvements are higher on the Alpha platform than on the Pentium

platform due to architectural features as demonstrated in section 4.5. Hence, the drop

in the overall performance is also higher on the Alpha platform. On average there is

around 9% reduction in the performance improvement on the Alpha platform and

less than 1% reduction on the Pentium platform for kernels after the random search

in comparison with the basic search. Nevertheless, it is a considerable performance

improvement and is achieved only after 20 iterations in comparison with thousands

of iterations of the basic search.

Performance improvements for SPEC benchmarks after iterative compilation

with the random search strategy remain considerable and similar to ones after the

basic search strategies on both platforms. For the Alpha platform, performance

improvements vary between 11.5% and 43.3%. On the Pentium platform, applu is

the only benchmark that does not have any performance improvement after the

random search strategy that is explained by its complex structure and non-perfectly

nested loops operating on five-dimensional matrices, which are hard to transform.

Even using the basic search strategy, applu achieved only a small performance

improvement of 4.8% after 27180 iterations. Therefore, using the random search

130

strategy with only 55 iterations is simply not enough to improve its performance.

Nevertheless, all other benchmarks on the Pentium platform have significant

performance improvements of up to 22.2%. Furthermore, the number of iterations

needed to obtain such results is reduced considerably. It varies between 40 and 80 in

contrast with the variation between 5694 and 27180 needed for the basic search

strategy. On average, iterative compilation with the random search strategy

performed well on both platforms with a small drop in performance improvement

from 25.9% to 22.7% on the Alpha platform and from 12.1% to 11.0% on the

Pentium platform.

When compared to Opt.2 and Opt.3 that are static and feedback-directed native

compiler optimisations respectively, the random search strategy achieves also

slightly less performance improvement than after the basic search strategy. However,

it is still considerable for most of the programs on both platforms with the exception

of tomcatv and applu on the Pentium platform. These benchmarks have already

negligible performance improvements after iterative compilation with the basic

search strategy due to various reasons described in section 4.5, and the native

compiler manages to slightly outperform the random search strategy. Nevertheless,

on average the performance improvements are considerable of 19.0% and 17.4%

over Opt.2 and Opt.3 respectively on the Alpha platform and of 10.4% and 10.2% on

the Pentium platform.

The experimental results obtained in this section show that using the performance

prediction technique and the random search strategy dramatically reduces the number

of iterations by about two orders of magnitude (370 times less in the case of mgrid)

while still achieving considerable performance improvement comparable to the

improvement obtained using the long basic search strategy. Besides, the random

search strategy still outperforms the native compiler with either static or feedback-

assisted optimisations for most of the programs on both platforms without any

knowledge of the underlying hardware and with a minimal knowledge about the

program structure. Furthermore, the small number of iterations is needed to achieve

such performance improvements demonstrates the possibility of using iterative

compilation not only in narrow areas such as optimising kernels but also for

131

optimising general-purpose, time-consuming applications on rapidly evolving

hardware.

6.5 Comparison with existing techniques

Although iterative compilation outperforms existing commercial compilers, it

should also be compared against published state-of-the-art static techniques. Here it

is compared to two well-known static optimisation techniques proposed by Lam et al.

in [LRW91] and by Coleman and McKinley in [CM95]. Both techniques are briefly

reviewed in section 3.2.3. These methods attempt to reduce conflict and capacity

misses by using loop tiling.

The algorithm for the first technique is presented in figure 6.3. It determines the

largest square tile size that removes self-interference misses based on the periodicity

in the addressing of a direct-mapped cache and the constant-stride accesses. This

algorithm takes the matrix size N and the cache size C as the input and returns the

largest tile size without conflict misses. The self-interference occurs between those

array elements that are mapped into the same location in the cache and depends only

algorithm FindB(N,C: integer) return integer;

 addr, di, dj, maxWidth: integer;

 maxWidth := min(N, C);

addr := N/2;

while true do

 addr: = addr + C;

 di := addr div N;

 dj := abs((addr mod N) – N/2);

 if di ≥ min(maxWidth, dj) then

 return min(maxWidth, di);

 maxWidth := min(maxWidth, dj);

 end while;

end algorithm;

 Figure 6.3: Algorithm to compute the best tile size that removes self-
interferences (Lam et al.)

132

on the difference of their addresses. Therefore, for a given array Y[i,j], the algorithm

attempts to find array words Y[di, N/2 ± dj] that are mapped to the same cache

location. The returned largest best tile is the maximum of di and dj.

The second technique presented in figure 6.4 determines rectangular tiles to

remove both capacity and conflict misses based on making the working set of the

loop nest smaller than the cache size and on minimising cross interference misses for

the tiled nests. This technique assumes that the cache is direct-mapped. As an input,

the algorithm has the cache size (CS), the line size (CLS) and the array column

procedure TSS(CS, CLS, N, M)

 Input: CS: cache size, CLS: cache line size,

 N: column length, M: row length

 Output: tile size = bestCol * bestRow

bestCol = oldCol = N

bestRow = rowSize = CS / N

colSize = CS - bestCol * bestRow

while (colSize > CLS & oldCol mod colSize ≠ 0 & rowSize < M)

 rowSize = computeRows (colSize)

 tmp = colSize adjusted to a multiple of CLS

 if (WSet (tmp, rowSize) > WSet (bestCol, bestRow)

 & WSet (tmp, rowSize) < CS

 & CIR (tmp, rowSize) < CIR (bestCol, bestRow)

 bestCol = tmp

 bestRow = rowSize

 endif

tmp = colSize

colSize = oldCol mod colSize

oldCol = tmp

endwhile

if necessary, adjust bestCol to meet the working set size constraint

end TSS

Figure 6.4: Algorithm to compute the best rectangular tile size (Coleman and

McKinley)

133

dimensions (N and M). To avoid self interference, the algorithm defines sets of

consecutive columns of the array whose starting position differ by N. It further

calculates the number of complete columns that fit into cache. The Euclidean

algorithm is used to generate all potential column dimensions relatively fast. Initially

the tile column size is set to N and than it is decreased until additional columns incur

no interference. The column sizes are always selected as multiples of the cache line

size to take advantage of spatial locality. To minimise cross interference, the new tile

size is selected in such a way that the size of the working set is larger than for the

previous tile size but it still fits in the cache while the cross interference rate is lower

for the new tile size.

Both techniques can be applied to optimise blocked algorithms. Therefore, they

are evaluated and compared with the developed iterative optimisation methods on the

Alpha and Pentium platforms using two well-studied kernels with blocked

algorithms: matmul and sor. The source codes of these kernels are presented in figure

4.2. Table 6.6 show the tile sizes selected for matmul and sor by the above

techniques and by iterative compilation with the basic and random search strategies.

Since both the above techniques apply only loop tiling, iterative compilation is

restricted to loop tiling to have a fair comparison. The tile sizes selected by the

algorithms presented in this section vary across two platforms. However, these sizes

are the same for the same kernels as both kernels have the same array size.

Furthermore, iterative compilation selected completely different tile sizes for both

programs on both platforms.

Table 6.7 shows the performance improvements after applying the above

optimisation algorithms to matmul and sor on the Alpha and Pentium platforms.

These results show that Lam et al. and Coleman and McKinley algorithms perform

reasonably well on matmul and considerably outperform the native compiler with

both static and feedback-assisted optimisations on both platforms. This is explained

by the fact that though matmul is a well-known kernel and is relatively easy to

optimise as shown in detail in section 4.3, the native compilers appear to be

concerned with avoiding degradation of performance after applying optimisations.

Therefore, they either do not apply loop tiling or apply it with a small factor that

generally does not degrade performance but improvements are also small. Hence, the

134

above static techniques have a greater potential to pick better tile size since the

performance improvement graph as a function of tiling factors presented in section

4.3.2 for both platforms shows large flat minimum areas. Furthermore, even if the

above static techniques fail to select the best blocking factor, they still gain

considerable performance improvement. However, this is not the case for the sor,

where both static optimisation algorithms and native compiler optimisations fail to

achieve any performance improvement mainly due to assuming the use of the direct-

mapped cache that is not the case and by using approximations to count

interferences. Nevertheless, iterative compilation with the long basic strategy and

with only loop tiling transformation enabled still outperforms both the above static

optimisations and the native compiler, while having no knowledge of the targeted

platform and having a minimum knowledge of the application. Furthermore, iterative

compilation with the random search strategy outperforms the above techniques after

only 5 iterations. Finally, iterative compilation with the random search strategy and

with all transformations enabled considerably outperforms all the above methods and

thus is a superior platform-independent optimisation method that can be applied to a

wide range of programs.

 matmul sor
Lam et al. optimisation algorithm 16x16 16x16
Coleman and McKinley algorithm 512x16 512x16
Iterative compilation, basic search strategy
(only tiling, 512 iterations)

8x8 4x4

Iterative compilation, random search strategy
(only tiling, 5 iterations)

12x12 7x7

(a) Alpha platform

 matmul sor
Lam et al. optimisation algorithm 8x8 8x8
Coleman and McKinley algorithm 512x8 512x8
Iterative compilation, basic search strategy
(only tiling, 512 iterations)

67x67 5x5

Iterative compilation, random search strategy
(only tiling, 5 iterations)

39x39 3x3

(a) Pentium platform

Table 6.6: Comparison of tile size selection by 4 algorithms: Lam et al.,
Coleman and McKinley, iterative compilation with the basic and random

search strategies.

135

6.6 Using smaller dataset

Using the performance prediction technique and the random search strategy as

described above dramatically reduces the optimisation time by reducing the number

of iterations. Potentially, there is another distinct method for reducing the overall

optimisation time by using smaller datasets for a program during iterative

compilation so that each program variant consumes less time. After iterative

 matmul sor
Lam et al. optimisation algorithm 56.1% 0%
Coleman and McKinley algorithm 51.3% 0%
Native compiler static optimisations 31.2% 0%
Native compiler feedback-assisted optimisations 31.2% 0%
Iterative compilation, basic search strategy
(only tiling, 512 iterations)

65.6% 25.4%

Iterative compilation, random search strategy
(only tiling, 5 iterations)

63.8% 4.1%

Iterative compilation, basic search strategy
(all transformations, 1599 iterations)

80.1% 28.6%

Iterative compilation, random search strategy
(all transformations, 20 iterations)

79.2% 11.2%

(a) Alpha platform

 matmul sor
Lam et al. optimisation algorithm 67.9% 0%
Coleman and McKinley algorithm 73.3% 0%
Native compiler static optimisations 2.9% 0%
Native compiler feedback-assisted optimisations 1.6% 0%
Iterative compilation, basic search strategy
(only tiling, 512 iterations)

85.8% 5.8%

Iterative compilation, random search strategy
(only tiling, 5 iterations)

85.4% 2.3%

Iterative compilation, basic search strategy
(all transformations, 1599 iterations)

91.7% 16.0%

Iterative compilation, random search strategy
(all transformations, 20 iterations)

91.2% 15.6%

(a) Pentium platform

Table 6.7: Execution time improvements (%) after static optimisation
algorithms, after native compiler static and dynamic optimisations, after

iterative compilation with loop tiling and after iterative compilation with all
transformations enabled

136

optimisation is finished, the best transformation parameters found are used for the

program with the original dataset. However, the main problem with this method is

that different datasets can change the behaviour of the program dramatically and,

therefore, the set of transformation factors best for the program with the smaller

dataset is not necessarily the best for the same program with the original dataset. To

demonstrate this issue, table 6.8 presents the best transformation factors found after

applying iterative compilation with the basic search strategy for the matmul kernel

on the Alpha platform using three distinct datasets with array sizes of 256x256,

512x512 and 1024x1024.

Consider three optimisation cases. The first one is when the dataset with the array

size of 256x256 is used during iterative compilation with the basic search strategy to

optimise the matmul kernel that further uses the dataset with the array size of

512x512. The second case is when the dataset with the array size of 512x512 is used

to optimise the same kernel that further uses the dataset with the array size of

1024x1024. The last case is when the dataset with the array size of 256x256 is used

to optimise matmul that further uses the dataset with the array size of 1024x1024.

For the first case, the best array padding factor is the same, but the best loop tiling

factor is different. For the second case, the best array padding is different, but the

best loop tiling factor is the same. For the third case, both best array padding and

loop tiling factors are different. In all cases, the best loop unrolling factor that could

reduce execution time is not found. This results show that the sets of transformations

are indeed different for different datasets.

Transformation:

Dataset:

array padding loop tiling loop unrolling

256x256 1 not found not found

512x512 1 16 not found

1024x1024 2 16 not found

 Table 6.8: Best transformation factors that reduce execution time, found after
iterative compilation with the basic search strategy for matmul with different

datasets on the Alpha platform

137

Table 6.9 compares performance improvements after iterative compilation with

the basic search strategy for the matmul kernel on the Alpha platform when both

original and smaller dataset are used during optimisation. This table shows that the

performance improvement dropped considerably in the first case from 80.7% to

38.7% and in the second case from 86.4% to 30.1%. However, the difference

between performance improvements in the second case is negligible of 86.4% versus

85.7%.

Now, consider the iterative optimisation of the two SPEC benchmarks, swim and

mgrid, with the basic search strategy using smaller training datasets to find good

optimisation and then applying the resulting best optimisation to the actual reference

data. Table 6.10 presents performance improvements for these benchmarks on both

the Alpha and Pentium platforms. The results demonstrate that the outcome of the

program optimisation with a smaller dataset also depends heavily on the platform

used. For example, swim has a considerable performance improvement of 38.6% on

the Alpha platform when using training dataset during optimisations while on the

Pentium platform there was no any improvement. On the contrary, mgrid has a

Dataset: Performance improvement
(optimisation with the same

dataset)

Performance improvement
(optimisation with the smaller

dataset)

512x512

80.1%

38.7%

(256x256 dataset for
optimisation)

1024x1024

86.4%

85.7%

(512x512 dataset for
optimisation)

1024x1024

86.4%

30.1%

(256x256 dataset for
optimisation)

Table 6.9: Comparison of performance improvements after iterative

compilation with the basic search strategy for matmul when the original and
smaller datasets are used during optimisation on the Alpha platform

138

higher performance improvement on the Pentium platform than on the Alpha

platform.

These results show that the smaller datasets can be potentially used for

optimising programs using iterative compilation, however the drop in performance

improvement can be significant in some cases. Therefore, more analysis is needed

for the influence of different datasets on the program behaviour and optimisations

such as in paper [EVD02] by Eeckhout et al, for example, where different datasets

for a given program are analysed and various program-input pairs that are close to

each other are selected to span the complete workload space. This is the topic of the

future research.

6.7 Summary

This chapter presents methods to reduce the iterative search space dramatically,

whilst still considerably outperforming current static optimisation methods and

native compiler static and feedback-directed optimisations. First, performance

prediction technique is used to remove those loops from the search space that have a

negligible execution time or do not have a potential for further improvement.

Second, a new search strategy is applied that tries only a small number of random

factors for transformations instead of all possible ones. This reduces the number of

iterations by two orders of magnitude without sacrificing performance much, thus

making iterative compilation a realistic optimisation approach for a wide range of

applications.

The results are compared with the performance improvements obtained using the

native compilers and two well-known static optimisation techniques by Lam et al.

 Alpha platform Pentium platform

swim 38.6% 0%

mgrid 5.1% 9.6%

Table 6.10: Performance improvements after iterative compilation with the

basic search strategy for SPEC benchmarks when the training dataset is used
during optimisation and then the best optimisation is applied to the reference

data

139

and Coleman and McKinley. Another method that reduces the iterative compilation

time by using smaller datasets during program optimisation is also briefly examined.

Experimental results show that this method can obtain considerable performance

improvements on some datasets while gaining no speed-up on others. Therefore, it

shows that there is a potential for reduction in compilation time but it requires further

analysis of the influence of various datasets on program performance and is the topic

of future research.

140

Chapter 7

Conclusions

This chapter briefly summarises the main results of this thesis, provides a critical

review and proposes future work.

7.1 Summary

This thesis presented an automatic iterative compilation method for optimising

numerical applications where memory latency is the dominant overhead. This

platform-independent approach is based on feedback-directed program

transformations. It is capable of outperforming considerably current well-known

static and feedback-directed optimisations on large real applications. Moreover,

iterative compilation never degrades program performance unlike other current

methods that may degrade performance significantly. However, the major drawback

of this method is the excessive compilation time where thousands of iterations are

needed to achieve performance improvement. This thesis presented two techniques to

reduce this time. First, a simple, fast and accurate performance prediction technique

has been presented, that is capable of obtaining the lower bound on execution time if

all cache misses were to be removed by transforming all program array references

into scalars yet ensuring correct code execution. This technique can be used to

considerably reduce the search space of iterative compilation by removing those

loops from it that do not have any potential for improvement. It can also help

programmers detect program sections that have a memory problem and therefore

have to be optimised. Second, a random search strategy has been developed. This

strategy tries only a small number of random factors for each transformation instead

of all possible ones thus reducing the number of iterations by two orders of

magnitude without significantly sacrificing performance.

A complete software toolset for automatic program analysis, transformations and

optimisations has been created. It currently supports two distinct platforms: the

Compaq Alpha with Digital Unix (RISC architecture) and the Intel Pentium with

141

Microsoft Windows (CISC architecture). The influence of array padding, loop tiling

and loop unrolling on program performance has been analysed in detail on these two

platforms. Furthermore, 2 kernels and 8 large SPEC benchmarks have been analysed

and optimised using the developed iterative compilation strategy. Considerable

performance improvements have been achieved in most of the cases in comparison

with native state-of-the-art compilers and with well-known static optimisation

techniques.

Therefore, the proposed iterative compilation approach with performance

prediction and random search becomes a realistic platform-independent optimisation

approach for a wide range of applications.

7.2 Critical review and future work

One of the drawbacks of the current implementation of iterative compilation

presented in this thesis is that it is applied to programs with the same dataset size and

with no conditional dependencies on the data values. To overcome this problem,

program can be optimised several times for some typical datasets with the most time

consuming branches taken. Further, conditional checks on the dataset can be

embedded into the final program to choose different optimised versions. This will be

the subject of future research.

The iterative optimisation method currently uses only three program

transformations: array padding, loop tiling and loop unrolling. However, other

transformations exist that can considerably improve performance: software

pipelining, prefetching, loop distribution and fusion, for example. This will be

implemented in the future. Since the above transformations can be used to optimise

programs for ILP, they may be used for a wide range of programs, not only

numerical applications with a memory problem.

The current implementation of iterative compilation uses source-to-source

program transformations that can potentially interfere with the internal compiler

optimisations and thus reduce the performance improvements. Therefore, the subject

of future research is to analyse these interferences and to implement program

transformations on the assembler level, preferably inside the compiler.

142

Though all the developed techniques are platform and language independent, the

current software implementation is limited to two platforms and supports only

Fortran transformations. In the future, other languages will be supported such as C,

C++, Fortran 90 or even Java where iterative compilation engine could be embedded

into just-in-time compiler to optimise programs at run time in the background. New

platforms will be also supported in the future such as various DSPs or EPIC

architectures.

One of the drawbacks of the performance prediction technique is that it is

currently unable to fully handle programs with branches whose outcome depends on

array values. This is the matter of the ongoing research and potentially can be

handled by recording the frequency of the branch taken or by excluding these

instructions from the prediction transformation.

The performance prediction technique provides a lower bound of the program

execution time if all cache misses are removed. It will be combined with the memory

and cache throughput so that it could not only predict the potential performance

improvement but it could drive transformations to balance the calculations and

memory access within a loop. It can work in a similar way to that described in

[CK94] and [CG97] but is more precise and platform-independent as it does not

require any approximations and simulations.

The performance prediction technique will be useful in analysing and optimising

programs and can be implemented inside a production compiler as a profiling or

feedback-directed optimisation option.

Finally, search strategies for iterative compilation will be improved to reduce

compilation time even further by using current static and dynamic approaches to

predict best transformation parameters and then to use them as a basis for a guided

search strategy. The possibility to apply multiple transformations for various

program sections in one step will be investigated as it can also reduce search time. In

order to predict the overall iterative compilation time a set number of iterations will

be used that can be spent on optimising the whole program. These iterations should

be redistributed between sections of the program in such a way, that more iterations

are used for the parts of the program where the potential for the improvement is

higher.

143

Appendix A

Description of platforms

A.1 Alpha platform

Processor: Digital Alpha 21264

Core frequency: 500 MHz

Bus frequency: 200 MHz

L1 data cache

 size: 64 KB

 associativity: 2-way

 line size: 64 bytes

L1 code cache

 size: 64 KB

 associativity: 2-way

 line size: 64 bytes

L2 cache

 size: 2048 KB

 associativity: direct-mapped

 frequency: 200 MHz

 line size: 64 bytes

 bus width: 128 bits

Main memory: 512 MB

OS: Digital Unix V4.0E (Rev. 1091)

Fortran: Digital Fortran 77 Driver V5.2-10

 Digital Fortran 77 V5.2-171-428BH

C: DEC C V5.8-009

Java: Sun JDK 1.1.6-2

144

A.2 Pentium platform

Processor: Intel Pentium III E

Core frequency: 650 MHz

Bus frequency: 100 MHz

L1 data cache

 size: 16 KB

 associativity: 4-way

 line size: 32 bytes

L1 code cache

 size: 16 KB

 associativity: 4-way

 line size: 32 bytes

L2 cache

 size: 256 KB

 associativity: 8-way

 frequency: 650 MHz

 line size: 32 bytes

 bus width: 256 bits

Main memory: 192 MB

OS: Windows 2000 Professional (SP3)

Fortran: Intel Fortran 6.0 Build 020321Z

C: Intel C 6.0 Build 020321Z

Java: Sun JDK 1.1.8

145

Bibliography

[ABD+97] J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, S-

T.A. Leung, R.L. Sites, M.T. Vandevoorde, C.A. Waldspurger, and

W.E. Weihl. Continuous profiling: where have all the cycles gone?

ACM Transactions on Computer Systems, 15(4), pages 357-390,

November 1997.

[AI91] C. Ancourt and F. Irigoin. Scanning Polyhedra with DO Loops.

Proceedings of the Third ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, pages 39-50, April 1991.

[AJL+95] V.H. Allan, R.B. Jones, R.M. Lee, and S.J. Allan. Software pipelining.

ACM Computing Surveys, 27(3), pages 367-432, September 1995.

[ALE02] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure for

computer system modelling. IEEE Computer, 35(2), pages 59-67,

February 2002.

[AMP00] N. Ahmed, N. Mateev, and K. Pingali. Tiling imperfectly-nested loop

nests. Proceedings of the IEEE/ACM Conference on Supercomputing

(SC’2000), November 2000.

[AP93] A. Agarwal and S.D. Pudar. Column-associative caches: a technique

for reducing the miss rate of direct-mapped caches. Proceedings of the

20th annual international symposium on Computer architecture

(ISCA), pages 179-190, May 1993.

[ASU86] A. Aho, R. Sethi, and J.D. Ullman. Compilers – principles, techniques

and tools. Addison-Wesley, 1986.

146

[ATA+00] J. Abella, S.A.A. Touati, A. Anderson, C. Ciuraneta, J.M. Codina, M.

Dai, C. Eisenbeis, G. Fursin, A. Gonzalez, J. Llosa, M. O'Boyle, A.

Randrianatoavina, J. Sanchez, O. Temam, X. Vera, and G. Watts. The

MHAOTEU toolset for memory hierarchy management. IMACS’2000,

16th IMACS World Congress on Scientific Computation, Applied

Mathematics and Simulation, August 2000.

[BAB96] D. Burger, T.M. Austin, and S. Bennett. Evaluating future

microprocessors: the SimpleScalar tool set. University of Wisconsin

Computer Sciences Technical Report CS-TR-1996-1308. July 1996.

[Ban88] U.K. Banerjee. Dependence analysis for supercomputing. Kluwer

Academic Publishers, Norwell, MA, 1988.

[BDG02] M. Butts, A. DeHon, S.C. Goldstein. Molecular electronics: devices,

systems and tools for gigagate, gigabit chips. Proceedings of the 2002

IEEE/ACM international conference on Computer-aided design

(ICCAD), pages 433-440, November 2002.

[BG97] D. Burger and J.R. Goodman. Billion-transistor architectures. IEEE

Computer, 30(9), pages 46-48, September 1997.

[BGN63] A.W. Burks, H.H. Goldstine, and J. von Neumann. Preliminary

discussion of the logical design of an electronic computing instrument.

John von Neumann Collected Works, Vol. 5, A. H. Taub Editor, The

Macmillian Co., New York, pages 34-79, 1963.

[BGS94] David F. Bacon, Susan L. Graham, and Olivier J. Sharp. Compiler

transformations for high-performance computing. ACM Computing

Surveys, 26(4), pages 345-420, 1994.

147

[BH00] B.R. Buck and J.K. Hollingsworth. Using hardware performance

monitors to isolate memory bottlenecks. Proceedings of the

IEEE/ACM Conference on Supercomputing (SC’2000), November

2000.

[BJW+92] F. Bodin, W. Jalby, D. Windheiser, and C. Eisenbeis. A quantitative

algorithm for data locality optimization. Code Generation: Concepts,

Tools, Techniques, Springer-Verlag, pages 119-145, 1992.

[Blo59] E. Bloch. The engineering design of the Stretch computer. Proceedings

of the Eastern Joint Computer Conference, pages 48-59, 1959.

[BS95] F. Bodin and A. Seznec. Skewed associativity enhances performance

predictability. Proceedings of the 22th Annual International

Symposium on Computer Architecture (ISCA), pages 265-274, June

1995.

[CG97] S. Carr and Y. Guan. Unroll-and-jam using uniformly generated sets.

Proceedings of the 30th Annual ACM/IEEE International Symposium

on Microarchitecture, pages 349-357, December 1997.

[CJD+01] Vinodh Cuppu, Bruce Jacob, Brian Davis, and Trevor Mudge. High-

performance DRAMs in workstation environments. IEEE Transactions

on Computers, 50(11), pages 1133-1153, November 2001.

[CK94] S. Carr and K. Kennedy. Improving the ratio of memory operations to

floating-point operations in loops. ACM Transactions on

Programming Languages and Systems (TOPLAS), 16(6), pages 1768-

1810, November 1994.

[CKP91] D. Callahan, K. Kennedy, and A. Porterfield. Software prefetching.

Proceedings of the 4th International Conference on Architectural

Support for Programming Languages and Operating Systems

(ASPLOS), pages 40-52, April 1991.

148

[CL99] R. Cohn and P.G. Lowney. Feedback directed optimization in

Compaq's compilation tools for Alpha. Proceedings of the 2nd ACM

Workshop on Feedback-Directed Optimization, pages 3-12, November

1999.

[CM95] S. Coleman and K. McKinley. Tile size selection using cache

organization and data layout. Proceedings of the ACM SIGPLAN 1995

Conference on Programming Language Design and Implementation

(PLDI), pages 279-290, June 1995.

[CMH91] P.P. Chang, S.A. Mahlke, and W.W. Hwu. Using profile information

to assist classic code optimizations. Software Practice and Experience,

21(12), pages 1301-1321, 1991.

[DH79] J.J. Dongarra and A.R. Hinds. Unrolling loops in Fortran. Software

Practice and Experience, 9(3), pages 219-226, 1979.

[DHP+77] J. Davidson, W. Hathaway, J. Postel, N. Mimno, R. Thomas, and D.

Walden. The arpanet telnet protocol: Its purpose, principles,

implementation, and impact on host operating system design. ACM

Proceedings of the 5th Symposium on Data Communications, pages

4.10-4.18, September 1977.

[DHW+97] J. Dean, J.E. Hicks, C.A. Waldspurger, W.E. Weihl, and G. Chrysos.

ProfileMe: Hardware support for instruction-level profiling on out-of-

order processors. Proceedings of the 30st Annual IEEE International

Symposium on Microarchitecture, pages 292-302, December 1997.

[Dun90] R. Duncan. A survey of parallel computer architectures. IEEE

Computer, 23(2), pages 5-16, February 1990.

149

[EVD02] L. Eeckhout, Hans Vandierendonck, and De Bosschere. Workload

design: selecting representative program-input pairs. IEEE

Proceedings of the International Conference on Parallel Architectures

and Compilation Techniques (PACT’02), pages 83-94, 2002.

[Fea92] P. Feautrier. Some efficient solutions to the affine scheduling problem.

Part {II}. Multidimensional time. International Journal of Parallel

Programming, 21(6), pages 389-420, 1992.

[FHM+96] F. Faggin, M. Hoff Jr., S. Mazor, and M. Shima. The history of the

4004. IEEE Micro, 16(6), pages 10-20, December 1996.

[Fis83] Joseph A. Fisher. Very Long Instruction Word architectures and the

ELI-512. Proceedings of the 10th annual international symposium on

Computer architecture (ISCA), pages 140-150, June 1983.

[Fly72] M.J. Flynn. Some computer organisations and their effectiveness.

IEEE Transactions on Computers, C-21(9), pages 948-960, September

1972

[Fra02] M.P. Frank. The physical limits of computing. IEEE Computing in

Science & Engineering, 4(3), pages 16-26, May/June 2002.

[GH88] J.R. Goodman and W.C. Hsu. Code scheduling and register allocation

in large basic blocks. Proceedings of the 2nd International Conference

on Supercomputing (ICS), pages 442-452, 1988.

[GKM82] S.L. Graham, P.B. Kessler, and M.K. McKusick. Gprof: A call graph

execution profiler. Proceedings of the 1982 SIGPLAN Symposium on

Compiler Construction, pages 120-126, June 1982.

150

[GMM98] S. Ghosh, M. Martonosi, and S. Malik. Precise miss analysis for

program transformations with caches of arbitrary associativity.

Proceedings of the 8th International Conference on Architectural

Support for Programming Languages and Operating Systems

(ASPLOS), pages 228-239, October 1998.

[HP96] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative

Approach. Morgan Kaufmann, San Mateo, CA, second edition, 1996.

[HMR+00] J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder, R. Zahir.

Introducing the IA-64 architecture. IEEE Micro, 20(5), pages 12-23,

September 2000.

[Int03a] Intel® Itanium® 2 processor datasheet. Document number 250945-

002, June 2003, http://developer.intel.com/design/itanium2

[Int03b] Intel Corporation. VTune performance analyzer. Website:

http://developer.intel.com/software/products/vtune/index.htm, 2003.

[Joh91] M. Johnson. Superscalar microprocessor design. Prentice-Hall,

Englewood Cliffs, NJ, 1991.

[KCR+98] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee.

Improving locality using loop and data transformations in an integrated

framework. Proceedings of the 31st Annual ACM/IEEE International

Symposium on Microarchitecture, pages 285-297, 1998.

[KE62] T. Kilburn, D.B.C. Edwards, M.I. Lanigan, and F.H. Sumner. One-

level storage system. IRE Transactions on Electronic Computers, EC-

11(2), pages 223-235, April 1962.

[KF03] T. Kistler and M. Franz. Continuous program optimization: A case

study. ACM Transactions on Programming Languages and Systems,

25(4), pages 500-548, July 2003.

151

[KKO+00] T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle, and H.A.G.

Wijshoff. Iterative compilation in program optimization. Proceedings

of the 8th International Workshop on Compilers for Parallel

Computers (CPC’2000), pages 35-44, January 2000.

[Lam88] M. Lam. Software pipelining: an effective scheduling technique for

VLIW machines. Proceedings of the ACM SIGPLAN 1988 Conference

on Programming Language Design and Implementation (PLDI), pages

318-328, June 1988.

[LL97] A.W. Lim and M.S. Lam. Maximizing parallelism and minimizing

synchronization with affine transforms. Proceedings of the 24th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 201-214, January 1997.

[LLL01] A.W. Lim, S-W. Liao, and M.S. Lam. Blocking and array contraction

across arbitrarily nested loops using affine partitioning. Proceedings of

the 8th ACM SIGPLAN Symposium on Principles and Practices of

Parallel Programming, pages 103-112, 2001.

[Llo00] S. Lloyd. Ultimate physical limits to computation. Nature 406, pages

1047-1054, August 2000.

[LP92] W. Li and K. Pingali. A singular loop transformation framework based

on non-singular matrices. Languages and Compilers for Parallel

Computing, Lecture Notes in Computer Science 757, Springer-Verlag,

pages 391-405, 1992.

[LRW91] M.S. Lam, E.E. Rothberg, and M.E. Wolf. The cache performance and

optimizations of blocked algorithms. Proceedings of the 4th

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pages 63-74, April

1991.

152

[Lun02] M. Lundstrom. Is nanoelectronics the future of microelectronics?

Proceedings of the 2002 International Symposium on Low Power

Electronics and Design (ISLPED), pages 172-177, August 2002.

[LW94] A.R. Lebeck and D.A. Wood. Cache profiling and the SPEC

benchmarks: A case study. IEEE Computer, 27(10), pages 15-26,

October 1994.

[MB76] A. Madison and A. Batson. Characteristics of program localities.

Communications of the ACM, 19(5), pages 285-294, May 1976.

[MRB+99] P. van der Mark, E. Rohou, F. Bodin, Z. Chamski, and C. Eisenbeis.

Using iterative compilation for managing software pipeline-unrolling

trade-offs. Proceedings of SCOPES’99, 1999

[MCT96] K.S. McKinley, S. Carr, and CW. Tseng. Improving data locality with

loop transformations. ACM Transactions on Programming Languages

and Systems (TOPLAS), 18(4), pages 424-453, July 1996.

[MLG92] T.C. Mowry, M.S. Lam, and A. Gupta. Design and evaluation of a

compiler algorithm for prefetching. Proceedings of the 5th

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pages 62-73, October

1992.

[MN03] C. McNairy and D. Soltis. Itanium 2 processor microarchitecture.

IEEE Micro, 23(2), pages 44-55, March-April 2003.

[Moo65] Gordon E. Moore. Cramming more components onto integrated

circuits. Electronics, 38(8), pages 114-117, April 1965.

[MT96] K.S. McKinley and O. Temam. A quantitative analysis of loop nest

locality. Proceedings of the 7th International Conference on

Architectural Support for Programming Languages and Operating

Systems (ASPLOS), pages 94-104, October 1996.

153

[MT99] K.S. McKinley and O. Temam. Quantifying loop nest locality using

SPEC'95 and the perfect benchmarks. ACM Transactions on Computer

Systems, 17(4), pages 288-336, November 1999.

[Nis98] A. Nisbet. GAPS: Genetic algorithm optimised parallelization.

Proceedings of the Workshop on Profile and Feedback Directed

Compilation, 1998.

[NS97] D.B. Noonburg and J.P. Shen. A framework for statistical modeling of

superscalar processor performance. Proceedings of the 3rd

International Symposium on High-Performance Computer

Architecture (HPCA), pages 298-309, February 1997.

[OK99] M.F.P. O’Boyle and P.M.W. Knijnenburg. Non-singular data

transformations: definition, validity, applications. International

Journal on Parallel Programming, 17(3), pages 131-159, 1999.

[PD80] D.A. Patterson and D.R. Ditzel. The case for the reduced instruction

set computer. ACM SIGARCH Computer Architecture News, 8(6),

pages 25-33, October 1980.

[PH90] K. Pettis and R.C. Hensen. Profile guided code partitioning.

Proceedings of the ACM SIGPLAN 1990 Conference on Programming

Language Design and Implementation (PLDI), pages 16-27, June

1990.

[PTV+92] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling.

Numerical Recipes in Fortran: The Art of Scientific Computing.

Cambridge University Press, second edition, 1992.

[Pug91] W. Pugh. The Omega Test: a fast and practical integer programming

algorithm for dependence analysis. Proceedings of the ACM/IEEE

Conference on Supercomputing, pages 4-13, November 1991.

154

[RL77] C.V. Ramamoorthy and H.F. Li. Pipeline architecture. ACM

Computing Surveys, 9(1), pages 61-102, March 1977.

[RP96] J.M. Rabaey and M. Pedram (Eds). Low power design methodologies.

Kluwer Academic Publishers, 1996.

[RT98] G. Rivera and CW. Tseng. Data transformations for eliminating

conflict misses. Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), pages

38-49, June 1998.

[RT99] G. Rivera and CW. Tseng. A comparison of compiler tiling algorithms.

Proceedings of the 8th International Conference on Compiler

Construction, pages 168-182, March 1999.

[Sar00] V. Sarkar. Optimized unrolling of nested loops. Proceedings of the 14th

International Conference on Supercomputing, pages 153-166, May

2000.

[SCD+97] M. Schlansker, T.M. Conte, J. Dehnert, K. Ebcioglu, J.Z. Fang, and

C.L. Thompson. Compilers for instruction-level parallelism. IEEE

Computer, 30(12), pages 63-69, December 1997.

[Sch02] J.P. Scheible. A survey of storage options. IEEE Computer, 35(12),

pages 42-46, December 2002.

[SE94] A. Srivastava and A. Eustace. ATOM: a system for building

customized program analysis tools. Proceedings of the ACM SIGPLAN

1994 Conference on Programming Language Design and

Implementation (PLDI), pages 196-205, June 1994.

[SG00] J. Sánchez and A. González. Analyzing data locality in numeric

applications. IEEE Micro, 20(4), pages 58-66, July/August 2000.

155

[Sin92] A. Sinha. Client-server computing. Communications of the ACM,

35(7), pages 77-98, July 1992.

[Smi82] A.J. Smith. Cache memories. ACM Computing Surveys, 14(3), pages

473-530, September 1982.

[Smi91] M.D. Smith. Tracing with pixie. Technical report CSL-TR-91-497,

Computer Systems Laboratory, Stanford University, November 1991.

[Smi00] M.D. Smith. Overcoming the challenges to feedback-directed

optimization. Proceedings of the ACM SIGPLAN Workshop on

Dynamic and Adaptive Compilation and Optimization, pages 1-11,

2000.

[SPE03] The Standard Performance Evaluation Corporation. Website:

http://www.specbench.org, 2003.

[SR00] M.S. Schlansker and B.R. Rau. EPIC: Explicitly parallel instruction

computing. IEEE Computer, 33(2), pages 37-45, February 2000.

[TFJ94] O. Temam, C. Fricker, and W. Jalby. Cache interference phenomena.

Proceedings of the 1994 ACM SIGMETRICS Conference on

Measurement and Modeling of Computer Systems, pages 261-271,

May 1994.

[TG99] N. Topham and A. González. Randomized cache placement for

eliminating conflicts. IEEE Transactions on Computers, 48(2), pages

185-192, February 1999.

[TGJ93] O. Temam, E.D. Granston, and W. Jalby. To Copy or Not to Copy: A

compile-time technique for assessing when data copying should be

used to eliminate cache conflicts. Proceedings of the 1993 ACE/IEEE

Conference on Supercomputing, pages 410-419, 1993.

156

[Tou02] Sid-Ahmed-Ali Touati. Register pressure in instruction level

parallelism. Ph.D. thesis, Université de Versailles Saint-Quentin, June

2002.

[UM97] R.A. Uhlig and T.N. Mudge. Trace-driven memory simulation: a

survey. ACM Computing Surveys, 29(2), pages 128-170, June 1997.

[VE00] M.J. Voss and R. Eigenmann. ADAPT: Automated de-coupled

adaptive program transformation. Proceedings of the 2000

International Conference on Parallel Processing, pages 163-172,

August 2000.

[VKT+97] E. van der Deijl, G. Kanbier, O. Temam, and E.D. Granston. A cache

visualization tool. IEEE Computer, 30(7), pages 71-78, July 1997.

[VL00] S.P. VanderWiel and D.J. Lilja. Data prefetch mechanisms. ACM

Computing Surveys, 32(2), pages 174-199, June 2000.

[VX02] X. Vera and J. Xue. Let’s study whole-program cache behaviour

analytically. Proceedings of the 8th International Symposium on High-

Performance Computer Architecture (HPCA), pages 176-185, 2002.

[WD98] R.C. Whaley and J.J. Dongarra. Automatically tuned linear algebra

software. Proceedings of the IEEE/ACM Conference on

Supercomputing (SC’98), November 1998.

[WL91a] M.E. Wolf and M.S. Lam. A data locality optimizing algorithm.

Proceedings of the ACM SIGPLAN 1991 Conference on Programming

Language Design and Implementation (PLDI), pages 30-44, June

1991.

[WL91b] M.E. Wolf and M.S. Lam. A loop transformation theory and an

algorithm to maximize parallelism. IEEE Transactions on Parallel and

Distributed Systems, 2(4), pages 452-471, October 1991.

157

[Wol89] M.J. Wolfe. More iteration space tiling. Proceedings of the 1989

ACM/IEEE Conference on Supercomputing, pages 655-664, November

1989.

[Xue97a] J. Xue. Unimodular transformations of non-perfectly nested loops.

Parallel Computing, 22(12), pages 1621-1645, 1997.

[Xue97b] J. Xue. On tiling as a loop transformation. Parallel Processing Letters,

7(4), pages 409-424, 1997.

[YBH01] Y. Yu, K. Beyls, E.H. Hollander. Visualizing the impact of the cache

on program execution. Proceedings of the 5th International Conference

on Information Visualisation (IV’01), pages 336-341, July 2001.

[ZWG+97] X. Zhang, Z. Wang, N. Gloy, J.B. Chen, and M.D. Smith. System

support for automatic profiling and optimization. Proceedings of the

16th ACM Symposium on Operating Systems Principles, pages 15-26,

October 1997.

