Crowdsourcing auto-tuning

challenges and possible solutions

Many thanks to Domingo Giménez, Takeshi Iwashita, Reji Suda for iWAPT organization and invitation

Grigori Fursin
INRIA, France

iWAPT 2013 @ ICCS 2013
June 2013, Barcelona, Spain
• Revisiting current computer design and optimization methodology
• Leveraging experience and computer resources of multiple users
• Systematizing auto-tuning, predictive modelling and data mining to improve computer systems
• Starting international initiative to build collaborative R&D infrastructure and public repository of knowledge (EU HiPEAC, USA OCCAM, various universities and companies)

Tools, benchmarks, datasets, models and repository are gradually released to public since 2006!
Teaser: back to 1993 ...

Semiconductor neural element - possible base of neural computers and specialized accelerators

Modeling and understanding brain functions

My problem with modeling:

- Slow
- Unreliable
- Costly
Motivation: back to basics

User requirements:
- most common:
 - minimize all costs (time, power consumption, price, size, faults, etc)
 - guarantee real-time constraints (bandwidth, QOS, etc)

Decision
- (depends on user requirements)

Available choices (solutions)

Service/application providers
- (supercomputing, cloud computing, mobile systems)
- Should provide choices and help with decisions

Hardware and software designers

Result
Problems in computer engineering

Task

Solutions

Result
1) Rising complexity of computer systems: too many design and optimization choices

2) Performance is not anymore the only requirement: multiple user objectives vs choices benefit vs optimization time

3) Complex relationship and interactions between ALL software and hardware components (co-design).

4) Too many tools with non-unified interfaces changing from version to version: technological chaos
Challenges for end-users and companies:

- finding the right solution for end-user is extremely challenging
- everyone is lost in choices
- dramatic increase in development time
- low ROI
- underperforming systems
- waste of energy
- ad-hoc, repetitive and error-prone manual tuning
- **slowing innovation in science and technology**
Challenges for end-users and companies:

- finding the right solution for end-user is extremely challenging
- everyone is lost in choices
- dramatic increase in development time
- low ROI
- underperforming systems
- waste of energy
- ad-hoc, repetitive and error-prone manual tuning
- **slowing innovation in science and technology**

Understanding and modeling of the overall relationship between end-user algorithms, applications, compiler optimizations, hardware designs, data sets and run-time behavior became simply infeasible!
Attempts to solve these problems: auto-tuning

- **Task**
 - Treat computer system as a black box

- **Result**

- **Algorithm**
- **Application**
- **Compilers and auxiliary tools**
- **Binary and libraries**
- **Data set**
- **State of the system**
- **Run-time environment**
- **Architecture**

Use auto-tuning:
Explore multiple choices empirically: learn behavior of computer systems across executions

Covered all components in the last 2 decades and showed high potential but …
Auto-tuning shows high potential for nearly 2 decades but still far from the mainstream in production environments.

Why?

- Optimization spaces are large and non-linear with many local minima
- Exploration is slow and ad-hoc (random, genetic, some heuristics)
- Only a few benchmarks are considered
- Often the same (one) dataset is used
- Only part of the system is taken into account (rarely reflect behavior of the whole system)
- No knowledge sharing
Attempts to solve these problems: machine learning

Treat computer system as a black box

Task

Result

Algorithm

Application

Compilers and auxiliary tools

Binary and libraries

Data set

State of the system

Run-time environment

Architecture

Use machine learning to speed up exploration

Covered all components in the last decade and showed high potential but ...
Attempts to solve these problems: machine learning

Machine learning (classification, predictive modeling) shows high potential during past decade but still far from the mainstream. Why?

• Selection of machine learning models and right properties is non-trivial: ad-hoc in most of the cases

• Limited training sets

• Only part of the system is taken into account (rarely reflect behavior of the whole system)

• No knowledge sharing
Attempts to solve these problems: co-design

Task

Treat computer system as a black box

Result

Algorithm

Application

Compilers and auxiliary tools

Binary and libraries

Data set

State of the system

Run-time environment

Architecture

Co-design:

Explore choices and behavior of the whole system.

Showed high potential in the last years but ...
Attempts to solve these problems: co-design

Co-design is currently a buzz word and a hot research topic but still far from the mainstream. Why?

- Even more choices to explore and analyze
- Often impossible to expose tuning choices or obtain characteristics at all levels
- Limited training sets
- Still no knowledge sharing
Problems in academic research

- Too much time wasted on very limited ad-hoc individual experimental setups
- Very small part of a system is usually considered - can be very misleading
- Sharing and reproducibility of results is rarely considered or even practically impossible
- Too many papers on the same topics with non-reproducible results (just for academic promotion)
- Slowing innovation in science and technology
- No trust from industry
Problems in academic research

• Too much time wasted on very limited ad-hoc individual experimental setups
• Very small part of a system is usually considered- can be very misleading
• Sharing and reproducibility of results is rarely considered or even practically impossible
• too many papers on the same topics with non-reproducible results (just for academic promotion)
• slowing innovation in science and technology
• no trust from industry

Research, development and educational methodology in computer engineering must be revisited!

Task

Solutions

Result

Our solutions

Due to our solutions

Can we crowdsource auto-tuning? My main focus since 2004

Got stuck with a limited number of benchmarks, datasets, architectures and a large number of optimizations and generated data; could not validate data mining and machine learning techniques

Needed dramatically new approach!

Millions of users run realistic applications on different architectures with different datasets, run-time systems, compilers, optimizations!

Can we leverage their experience and computational resources?

Can we build public repository of knowledge?
Simply too time consuming and costly to build, support and extend particularly with ever changing tools, interfaces, benchmarks, data sets, properties, models, etc.

Usually no public funding for such activities up to now.

Only big companies or projects can afford to build and support their own big repositories but they are either not public (Google, Intel, IBM, ARM) or used as a simple storage of information (SciDAC, SPEC).

Furthermore, public data and tools may cause competition.
Crowdsourcing design and optimization of computer systems

EU MILEPOST project (2006-2009):
We have proposed and started developing collective methodology and infrastructure to crowdsource auto-tuning (cTuning):

• repository, auto-tuning and machine learning is an integral part of co-design

• repository is dynamically evolving and contains all encountered benchmarks, data sets, tools, codelets, optimized binaries and libraries, choices, properties, characteristics, predictive models, decision trees

• repository and infrastructure are distributed among many users and can automatically exchange information about
 ▪ unexplored choices
 ▪ optimization areas with high variability
 ▪ optimal predictive models
 ▪ abnormal behavior to focus further exploration and validate or improve classification and models
Crowdsourcing design and optimization of computer systems

EU MILEPOST project (2006-2009):

We have proposed and started developing collective methodology and infrastructure to crowdsource auto-tuning (cTuning):

- repository, auto-tuning and machine learning is an integral part of co-design
- repository is dynamically evolving and contains all encountered benchmarks, data sets, tools, codelets, optimized binaries and libraries, choices, properties, characteristics, predictive models, decision trees
- repository and infrastructure are distributed among many users and can automatically exchange information about:
 - unexplored choices
 - optimization areas with high variability
 - optimal predictive models
 - abnormal behavior to focus further exploration and validate or improve classification and models

Main challenge:

how to make it simple, extensible and implement with very limited funding and 1..2 researchers instead of redesigning the whole software/hardware stack (like in IBM’s Liquid Metal project)?
Gradual decomposition, parameterization, tuning and learning of computer systems

User task

Complex hardwired computer system

System

Dataset

Compiler

Code

Runtime

Result
Gradual decomposition, parameterization, tuning and learning of computer systems

User task

Complex hardwired computer system

System

Dataset

Runtime

Compiler

Code

Result

Universal Tuning and Learning Module

Object plugin

Expose any object

information flow
Gradual decomposition, parameterization, tuning and learning of computer systems

User task

Complex hardwired computer system

System
Dataset
Runtime
Compiler
Code

Result

Universal Tuning and Learning Module

Object plugin and repository
continuously observe behavior and keep history
(history (experience))

expose system state
expose properties
expose characteristics
set requirements

expose

information flow

Expose any object

System Dataset Runtime Compiler Code

Code Compiler Runtime System Dataset

System Dataset Compiler Runtime Code

Grigori Fursin “Crowdsourcing auto-tuning: challenges and possible solutions”
Gradual decomposition, parameterization, tuning and learning of computer systems

User task

Complex hardwired computer system

System
Dataset
Compiler
Code

Result

Universal Tuning and Learning Module

Object plugin and repository
continuously observe behavior and keep history
(choices, properties, characteristics, system state, data)

Exposé any object

Expose information flow
continuously build, validate, prune and improve classification and predictive models on the fly

Expose characteristics
set requirements
Expose system state

Expose properties
output of other models

History (experience)
显露系统状态，继续探索可能的设计和优化选择

显露任何对象

Grigori Fursin
“Crowdsourcing auto-tuning: challenges and possible solutions”
Gradual decomposition, parameterization, tuning and learning of computer systems

Complex hardwired computer system

User task

Aggregate knowledge and expose to community at cTuning.org through unified Web services

System

Dataset

Run-time

Compiler

Code

Result

Universal Tuning and Learning Module

Object plugin and repository

continuously observe behavior and keep history

(choices, properties, characteristics, system state, data)

Expose any object

expose properties

set requirements

expose system state

output of other models

history (experience)

expose and continuously explore possible design and optimization choices

information flow

continuously build, validate, prune and improve classification and predictive models on the fly

information flow

expose characteristics

expose system state

expose

Exposure of any object

Aggregate knowledge and expose to community at cTuning.org through unified Web services

Grigori Fursin
Top-down decomposition of computer system to keep complexity under control

Treat computer system as a black box

- Task
- Result

- Algorithm
- Application
- Compilers and auxiliary tools
- Binary and libraries
- Data set
- State of the system
- Run-time environment
- Architecture
Top-down decomposition of computer system to keep complexity under control

Task
- **Treat computer system as a black box**

Result

<table>
<thead>
<tr>
<th>cTuning(_3) framework aka Collective Mind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm</td>
</tr>
<tr>
<td>Application</td>
</tr>
<tr>
<td>Compilers and auxiliary tools</td>
</tr>
<tr>
<td>Binary and libraries</td>
</tr>
<tr>
<td>Data set</td>
</tr>
<tr>
<td>State of the system</td>
</tr>
<tr>
<td>Run-time environment</td>
</tr>
<tr>
<td>Architecture</td>
</tr>
</tbody>
</table>
Top-down decomposition of computer system to keep complexity under control

Task

- Treat computer system as a black box

Result

cTuning\textsubscript{3} framework aka Collective Mind

- Algorithm
- Application
- Compilers and auxiliary tools
- Binary and libraries
- Data set
- State of the system
- Run-time environment
- Architecture

Light-weight interface to connect modules, data and models

Grigori Fursin “Crowdsourcing auto-tuning: challenges and possible solutions”
Top-down decomposition of computer system to keep complexity under control

<table>
<thead>
<tr>
<th></th>
<th>Gradually expose some characteristics</th>
<th>Gradually expose some properties/choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compile Program</td>
<td>time ...</td>
<td>compiler flags; pragmas ...</td>
</tr>
<tr>
<td>Run code</td>
<td>time; CPI, power consumption ...</td>
<td>pinning/scheduling ...</td>
</tr>
<tr>
<td>Run-time environment</td>
<td>cost;</td>
<td>architecture; frequency; cache size...</td>
</tr>
<tr>
<td>System</td>
<td>size; values; description ...</td>
<td>precision ...</td>
</tr>
<tr>
<td>Data set</td>
<td>time; size ...</td>
<td>instrumentation; profiling ...</td>
</tr>
</tbody>
</table>

Start coarse-grain decomposition of a system (detect coarse-grain effects first). Add universal learning modules.
Example of characterizing/explaining behavior of computer systems

How we can explain the following observations for some piece of code ("codelet object")? (LU-decomposition codelet, Intel Nehalem)
Example of characterizing/explaining behavior of computer systems

Add 1 property: matrix size
Try to build a model to correlate objectives (CPI) and features (matrix size).

Start from simple models: linear regression (detect coarse grain effects)
If more observations, validate model and detect discrepancies!

Continuously retrain models to fit new data!

Use model to “focus” exploration on “unusual” behavior!

Example of characterizing/explaining behavior of computer systems

- Program / architecture behavior: CPI
- Dataset properties: matrix size

Graph showing the relationship between dataset properties and program behavior.
Gradually increase model complexity if needed (hierarchical modeling). For example, detect fine-grain effects (singularities) and characterize them.
Start adding **more properties** (one more architecture with **twice bigger cache**)!

Use automatic approach to correlate all objectives and features.

![Graph showing program/architecture behavior vs. dataset properties (matrix size)](image)

- **L₃ = 4Mb**
- **L₃ = 8Mb**

Example of characterizing/explaining behavior of computer systems.
Continuously build and refine classification (decision trees for example) and predictive models on all collected data to improve predictions.

Continue exploring design and optimization spaces (evaluate different architectures, optimizations, compilers, etc.)

Focus exploration on unexplored areas, areas with high variability or with high mispredict rate of models

cM predictive model module

\[\text{CPI} = \varepsilon + 1000 \times \beta \times \text{data size} \]
Gradually increasing complexity

Algorithm selection

Compile Program

Code analysis & Transformations

Process

Thread

Function

Codelet

Loop

Run code

Run-time environment

System

Data set

Run-time analysis

Run-time state

Instruction

Gradually expose some characteristics

(time) productivity, variable-accuracy, complexity ...

Language, MPI, OpenMP, TBB, MapReduce ...

time ...

compiler flags; pragmas ...

time;

memory usage;

code size ...

transformation ordering;

polyhedral transformations;

transformation parameters;

instruction ordering ...

time; power consumption ...

pinning/scheduling ...

cost; size ...

CPU/GPU; frequency; memory hierarchy ...

size; values; description ...

precision ...

time; precision ...

hardware counters; power meters ...

processor state; cache state ...

helper threads; hardware counters ...

time; size ...

instrumentation; profiling ...

Coarse-grain vs. fine-grain effects: depends on user requirements and expected ROI
Multi-objective crowd-tuning using mobile phones

Program: cBench: susan corners
Compiler: Sourcery GCC for ARM v4.6.1
System: Samsung Galaxy Y
Processor: ARM v6, 830MHz
OS: Android OS v2.3.5
Data set: MiDataSet #1, image, 600x450x8b PGM, 263KB
Pool of best optimization classes across programs

<table>
<thead>
<tr>
<th>Optimization Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>-O1 -falign-loops=10 -fpeephole2 -fschedule-insns</td>
</tr>
<tr>
<td>-fschedule-insns2 -fno-tree-cmp</td>
</tr>
<tr>
<td>-fno-tree-dominator-optx -funroll-loops</td>
</tr>
<tr>
<td>-O2 -fno-guess-branch-probability -fprefetch-loop-arrays</td>
</tr>
<tr>
<td>-finline-functions -fno-tree-dce</td>
</tr>
<tr>
<td>-fno-tree-loop-im -funroll-all-loops</td>
</tr>
<tr>
<td>-O2 -fno-tree-lrs</td>
</tr>
<tr>
<td>-O2 -fpeephole -fno-piepeephole2 -fno-regmove -fno-unswitch-loops</td>
</tr>
<tr>
<td>-O3 -finline-limit=1481 -falign-functions=64 -fno-crossjumping</td>
</tr>
<tr>
<td>-fno-ivopts -fno-tree-dominator-optx -funroll-loops</td>
</tr>
<tr>
<td>-O3 -finline-limit=64</td>
</tr>
<tr>
<td>-O3 -fno-tree-dominator-optx -funroll-loops</td>
</tr>
<tr>
<td>-O3 -frename-registers</td>
</tr>
<tr>
<td>-O3 -fsched-stalled-insns=19 -fschedule-insns -funroll-all-loops</td>
</tr>
<tr>
<td>-O3 -fschedule-insns -fno-tree-loop-optimize -fno-tree-lrs</td>
</tr>
<tr>
<td>-fno-tree-ter -funroll-loops</td>
</tr>
<tr>
<td>-O3 -funroll-all-loops</td>
</tr>
<tr>
<td>-O3 -funroll-loops</td>
</tr>
</tbody>
</table>

Statistical filtering of hundreds combinations of flags
Optimization knowledge reuse across programs

Auto-tuning:
 systematizing knowledge per program across datasets and architectures

Program

Datasets

Architectures

Machine learning: speeding up exploration; reducing dimensionality; compacting experimental data; predicting optimizations

Program
Validate and improve existing predictive modeling techniques

Collecting data from multiple users in a unified way allows to apply various data mining (machine learning) techniques to detect relationship between the behaviour and features of all components of the computer systems

1) Gradually add/expose various program (features). Automate process or use expert knowledge:

MILEPOST GCC with Interactive Compilation Interface:
- ft1 - Number of basic blocks in the method
- ft19 - Number of direct calls in the method
- ft20 - Number of conditional branches in the method
- ft21 - Number of assignment instructions in the method
- ft22 - Number of binary integer operations in the method
- ft23 - Number of binary floating point operations in the method
- ft24 - Number of instructions in the method
- ft54 - Number of local variables that are pointers in the method
- ft55 - Number of static/extern variables that are pointers in the method

Code patterns:
```
for F
for F
for F
load ... L
mult ... A
store ... S
```

2) Collect run-time, architecture and OS properties (currently hardware counters and architecture descriptions)

3) Correlate features and objectives in cTuning using nearest neighbor classifiers, decision trees, SVM, fuzzy pattern matching, etc.

4) Given new program, dataset, architecture, predict behavior based on prior knowledge!
Statically enable dynamic optimizations (Split-compiler)

- **Statically-compiled adaptive binaries and libraries**
 - Extract dataset features
 - Monitor run-time behavior or architectural changes (in virtual, reconfigurable or heterogeneous environments) using timers or performance counters
 - **Selection mechanism optimized for low run-time overhead**
 - Representative set of versions for the following optimization cases to minimize execution time, power consumption and code-size across all available datasets:
 - Optimizations for different datasets
 - Optimizations/compilation for different architectures (heterogeneous or reconfigurable processors with different ISA such as GPGPU, CELL, etc or the same ISA with extensions such as 3dnow, SSE, etc or virtual environments)
 - Optimizations for different program phases or different run-time environment behavior

- **Dynamic**
 - Machine learning techniques to find mapping between different run-time contexts and representative versions
 - Iterative/collective compilation with multiple datasets
cTuning enabled the following research works

- **Grigori Fursin. Collective Tuning Initiative: automating and accelerating development and optimization of computing systems.** Proceedings of the GCC Summit’09, Montreal, Canada, June 2009

New publication model: reproducibility and validation by the community

- Grigori Fursin. **Collective Tuning Initiative: automating and accelerating development and optimization of computing systems.** Proceedings of the GCC Summit'09, Montreal, Canada, June 2009

Most of the tools, benchmarks, datasets, models are now available online at cTuning.org or added to mainline GCC or available in some commercial tools

Grigori Fursin “Crowdsourcing auto-tuning: challenges and possible solutions”
Collective Mind:
new collaborative R&D initiative and publication model

Address rising complexity of the design and optimization of computer systems through practical collaborative analysis, auto-tuning, machine learning and crowdsourcing!

- building collaborative extensible repository and infrastructure to collect statistics, benchmarks, codelets, tools, data sets and predictive models from the community
- preparing new publication model (workshops, conferences, journals) with validation of experimental results by the community
- systematizing and unifying optimization, design space exploration and run-time adaptation techniques (co-design and auto-tuning)
- evaluating various data mining, classification and predictive modeling techniques for off-line and on-line auto-tuning

http://cTuning.org/making-computer-engineering-a-science-2013
New idea?

Collective Mind: my wish since 1999

Current non-systematic, tedious R&D: easy to lose time and motivation.
New idea?

Crowdsourcing autotuning: challenges and possible solutions

Collective Mind Framework
systematize, unify, share, validate experiments and knowledge

Academia / Industry

• download experiment and all cM deps
• reproduce / validate
• improve
• rank
• use for teaching

Industry

Current non-systematic, tedious R&D:
easy to lose time and motivation.

Collective Mind: my wish since 1999

Community

cTuning.org
c-mind.org

Sharing using unified cM web services

Customized repository

Results

Statistical analysis

Models
Collective Mind: benefits of common infrastructure

• Researchers can quickly reproduce and validate existing results, and focus their effort on novel approaches combined with data mining, classification and predictive modeling

• Developers can produce tools immediately compatible with collective methodology and infrastructure

• Any person can join collaborative effort to build or extend global expert system that uses Collective Knowledge to:

 • quickly identify program and architecture behavior anomalies
 • suggest better multi-objective program optimizations and hardware configuration for a given user scenario (requirements)
 • suggest run-time adaptation scenarios (co-design and co-optimization)
 • eventually enable self-tuning computer systems
Collective Mind: current status

• Collective Mind: new plugin-based extensible infrastructure and schema-free repository for collaborative and holistic analysis and tuning of computer systems is currently in validation stage with 2 major companies and with HiPEAC community-plant to release in Autumn 2013
• OpenME interface to “open up” compilers, run-time systems and applications for unified fine-grain analysis and tuning (based on our ICI interface from mainline GCC)
• Hundreds of codelets, thousands of data sets, multiple packages prepared for various research scenarios on data mining
• Plugins for online auto-tuning and predictive modelling
• Portability across all major architectures and OS (Linux, Windows, Android)

Google groups:
- ctuning-discussions
- collective-mind

Web:
- http://cTuning.org

Twitter:
- c_tuning
- grigori_fursin

Stay tuned!
Acknowledgements

• PhD students and postdocs
 \textit{Abdul Memon, Yuriy Kashnikov}

• Colleagues from NCAR, USA
 \textit{Davide Del Vento and his colleagues/interns}

• Colleagues from IBM, CAPS, ARC (Synopsis), Intel, Google, ARM, ST

• Colleagues from Intel (USA)
 \textit{David Kuck and David Wong}

• cTuning community:

• EU FP6, FP7 program and HiPEAC network of excellence
 \url{http://www.hipeac.net}
Collective Mind Repository and Infrastructure
Systematic application and architecture analysis, characterization and optimization through collaborative knowledge discovery, systematization, sharing and reuse

Thank you for your attention!

Contact: Grigori.Fursin@cTuning.org
http://cTuning.org/lab/people/gfursin

Open repository to share optimization cases and programs
Gradual parameterization and unification of interfaces of computing systems
Modeling and advice system to predict optimizations, architecture designs, run-time adaptation, etc