Enhancing Fine-Grained Parallelism

Chapter 5 of Allen and Kennedy
Fine-Grained Parallelism

Techniques to enhance fine-grained parallelism:

• Loop Interchange
• Scalar Expansion
• Scalar Renaming
• Array Renaming
• Node Splitting
Can we do better?

- Codegen: tries to find parallelism using transformations of loop distribution and statement reordering
- If we deal with loops containing cyclic dependences early on in the loop nest, we can potentially vectorize more loops
- Goal in Chapter 5: To explore other transformations to exploit parallelism
Motivational Example

DO J = 1, M
 DO I = 1, N
 T = 0.0
 DO K = 1, L
 T = T + A(I,K) * B(K,J)
 ENDDO
 C(I,J) = T
 ENDDO
ENDDO

`codegen` will not uncover any vector operations. However, by scalar expansion, we can get:

DO J = 1, M
 DO I = 1, N
 T$(I) = 0.0
 DO K = 1, L
 T$(I) = T$(I) + A(I,K) * B(K,J)
 ENDDO
 C(I,J) = T$(I)
 ENDDO
ENDDO
Motivational Example

DO J = 1, M
 DO I = 1, N
 T$(I) = 0.0
 DO K = 1, L
 T$(I) = T$(I) + A(I,K) * B(K,J)
 ENDDO
 C(I,J) = T$(I)
 ENDDO
ENDDO
Motivational Example II

• Loop Distribution gives us:

\[
\begin{align*}
\text{DO } & J = 1, M \\
& \text{DO } I = 1, N \\
& \quad T$(I) = 0.0 \\
& \text{ENDDO} \\
& \text{DO } I = 1, N \\
& \quad \text{DO } K = 1, L \\
& \quad \quad T$(I) = T$(I) + A(I,K) \times B(K,J) \\
& \quad \text{ENDDO} \\
& \text{ENDDO} \\
& \text{DO } I = 1, N \\
& \quad C(I,J) = T$(I) \\
& \text{ENDDO} \\
& \text{ENDDO}
\end{align*}
\]
Motivational Example III

Finally, interchanging I and K loops, we get:

\[
\begin{align*}
&\text{DO } J = 1, M \\
&T$(1:N) = 0.0 \\
&\quad \text{DO } K = 1, L \\
&T$(1:N) = T$(1:N) + A(1:N,K) \times B(K,J) \\
&\quad \text{ENDDO} \\
&C(1:N,J) = T$(1:N) \\
&\text{ENDDO}
\end{align*}
\]

- A couple of new transformations used:
 - Loop interchange
 - Scalar Expansion
Loop Interchange

DO I = 1, N
 DO J = 1, M
 S A(I,J+1) = A(I,J) + B
 ENDDO
 ENDDO

• Applying loop interchange:

 DO J = 1, M
 DO I = 1, N
 S A(I,J+1) = A(I,J) + B
 ENDDO
 ENDDO

• leads to:

 DO J = 1, M
 S A(1:N,J+1) = A(1:N,J) + B
 ENDDO

• DV: (=, <)

• DV: (<, =)

Optimizing Compilers for Modern Architectures
Loop Interchange

• Loop interchange is a reordering transformation

• Why?
 — Think of statements being parameterized with the corresponding iteration vector
 — Loop interchange merely changes the execution order of these statements.
 — It does not create new instances, or delete existing instances

DO J = 1, M
 DO I = 1, N
 S <some statement>
 ENDDO
ENDDO

• If interchanged, S(2, 1) will execute before S(1, 2)
Loop Interchange: Safety

• Safety: not all loop interchanges are safe

```
DO I = 1, M
    DO J = 1, N
        A(I,J+1) = A(I+1,J) + B
    ENDDO
ENDDO
```

• Direction vector (<, >)

• If we interchange loops, we violate the dependence
Loop Interchange: Safety

• Theorem 5.1 Let $D(i,j)$ be a direction vector for a dependence in a perfect nest of n loops. Then the direction vector for the same dependence after a permutation of the loops in the nest is determined by applying the same permutation to the elements of $D(i,j)$.

• The direction matrix for a nest of loops is a matrix in which each row is a direction vector for some dependence between statements contained in the nest and every such direction vector is represented by a row.
DO I = 1, N
 DO J = 1, M
 DO K = 1, L
 A(I+1,J+1,K) = A(I,J,K) + A(I,J+1,K+1)
 ENDDO
 ENDDO
ENDDO

• The direction matrix for the loop nest is:

\[
\begin{bmatrix}
< & < & = \\
< & = & > \\
\end{bmatrix}
\]

• Theorem 5.2 A permutation of the loops in a perfect nest is legal if and only if the direction matrix, after the same permutation is applied to its columns, has no "\(>\)" direction as the leftmost non-"\(=\)" direction in any row.

• Follows from Theorem 5.1 and Theorem 2.3
DO I = 1, N
S1 T = A(I)
S2 A(I) = B(I)
S3 B(I) = T
ENDDO

• Scalar Expansion:
 DO I = 1, N
 S1 T$(I) = A(I)
 S2 A(I) = B(I)
 S3 B(I) = T$(I)
 ENDDO
 T = T$(N)

• leads to:
 S1 T$(1:N) = A(1:N)
 S2 A(1:N) = B(1:N)
 S3 B(1:N) = T$(1:N)
 T = T$(N)
Scalar Expansion: Safety

- Scalar expansion is always safe
- When is it profitable?
 - Naïve approach: Expand all scalars, vectorize, shrink all unnecessary expansions.
 - However, we want to predict when expansion is profitable
Scalar Expansion: Drawbacks

- Expansion increases memory requirements

- Solutions:
 - Expand in a single loop
 - Forward substitution:

 \[
 \text{DO } I = 1, N \\
 T = A(I) + A(I+1) \\
 A(I) = T + B(I) \\
 \text{ENDDO}
 \]

 \[
 \text{DO } I = 1, N \\
 A(I) = A(I) + A(I+1) + B(I) \\
 \text{ENDDO}
 \]
Scalar Renaming

DO I = 1, 100
S1 T = A(I) + B(I)
S2 C(I) = T + T
S3 T = D(I) - B(I)
S4 A(I+1) = T * T
ENDDO

• Renaming scalar T:
DO I = 1, 100
S1 T1 = A(I) + B(I)
S2 C(I) = T1 + T1
S3 T2 = D(I) - B(I)
S4 A(I+1) = T2 * T2
ENDDO
Scalar Renaming

• will lead to:

S₃ \[T₂$(1:100) = D(1:100) - B(1:100) \]

S₄ \[A(2:101) = T₂$(1:100) \times T₂$(1:100) \]

S₁ \[T₁$(1:100) = A(1:100) + B(1:100) \]

S₂ \[C(1:100) = T₁$(1:100) + T₁$(1:100) \]

T = T₂$(100)