
Adaptive & Feedback Driven Compilation

Grigori Fursin

http : //homepages.inf.ed.ac.uk/gfursin/research desc.html

based on the lecture course written by Michael O’Boyle
from Edinburgh University

October, 2005

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

1

Course overview

Assume all understand basics of processor architecture and compilation process.

Focus not on individual components but the way we construct and frame
compilation.

• Background and motivation

• Feedback directed approaches

• Dynamic compilation

• Machine Learning and future directions

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

2

Background and motivation:

• Compiler construction

• Compiler optimisation - is it worthwhile?

• Classical optimisation

• Why we fail to fully optimise

• How to overcome this

• Classification of optimisation approaches

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

3

Compilation: translation + automation

• Compilers : map user programs to hardware. Translation - must be correct

• Tackling a universal systems problems: C to x86, VHDL to netlists etc.

• Hide underlying complexity. Machines are not von Neumann

• Computer Science is the study of automation. Compilers automatically
translate. Can we automate compiler construction?

• Compiler compilers exist. Retargettable systems eg gcc, CoSy

• Automatic construction of compiler optimisation is notoriously difficult. Return
to this later

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

4

Compiler Construction

• Little changed in structure since the 1950s

• Consists of a linear sequences of passes over an intermediate format (IR). Each
pass operates in near linear time over IR

• The sequence of passes or phases makes sense but we have no hard evidence
that it is the best

• Breakdown the program text into smaller items and check if the make sense.
Structure similar to that of natural language processing

• If so, try to understand the meaning of the program and generate an equivalent
version executable by the hardware

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

5

Phase Order

• Lexical Analysis: Finds and verifies basic syntactic items lexemes,tokens using
Finite state automata

• Syntax Analysis: Checks tokens follow a grammar based on a context free
grammar and builds an Abstract Syntax Tree (AST)

• Semantic Analysis: Checks all names are consistently used, varies type checking
schemes employed. Builds a symbol table

• Optimisation + Code generation: Most effort here, little automation

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

6

Compiler structure

source Front
End

HL
AST

Restruct HL
AST

Middle
End

Low
IR

Back
End

assembler

• Front end translates “strings of characters” into a structured abstract syntax
tree (AST)

• Middle end attempt machine independent optimisation. Can also include
“source to source” transformations - restructurer - outputs a lower level
intermediate format

• Many choices for IRs. Affect form and strength of later analysis or optimisation

• Backend: code generation, instruction scheduling and register allocation

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

7

Compilation

• Compilers map user programs to hardware. Machines are not von Neumann -
designed for speed.

• Compilers always have been essential component in performance. Current
focus : Optimisation go faster, smaller, cooler.

• However, we have been trying to solve this problem for more than 40+ years.

• Are we ever going to solve this? What reasons do we have for optimism?

• Gap between potential performance and actual widening

• Can compilers help or have they been shown to be poor performers?

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

8

Importance of compilers (1)

• Increase in performance is largely due to technology

• However, technology alone provides nothing - it needs new architectures to
exploit potential

• Similarly new architectures need new compilers to exploit features

• Next generation of multi-core chips will not deliver performance without
improved compiler technology

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

9

Importance of compilers (2)

• Assembler programming and manual tuning are still wide-spread in the
embedded world but hard, not portable and time consuming

• Challenge: compiler should automatically produce highly optimised code
comparable to hand-tuning versions.

• Question: what percentage of optimum do we get - very hard question.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

10

Room for improvement? Matrix multiplication example

Demonstration later ...

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

11

Compilation as translation vs optimisation

• Modern focus is on exploiting architecture features. Exploiting instruction and
thread level parallelism

• Effective management of memory hierarchy registers,L1,L2,L3,Mem,Disk

• Small architectural changes have big impact. Changes in memory hierarchy do
not affect ISA but have large performance impact.

• Compilers have to be architecture aware

• Optimisation at many levels source, internal formats, assembler and scopes,
basic block, super/hyper blocks, loop, procedure, whole program.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

12

Machine dependent vs independent optimisation

• Optimisations typically split into those that are always worthwhile and machine
specific.

• Example: Common sub-expression elimination

• Aim: Prevent redundant recalculation of terms

a = b + c + f
f = b + c + e

t = b + c
a = t + f
d = t + e

Seems always a good idea: 4 adds vs 3

BUT potentially additional variable - pressure on register allocation

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

13

Machine dependent vs independent optimisation

• Architectural features strongly determine the best code sequence.

• Rarely are all instructions of equal cost. Even if they have the same latency,
not all function units support all functions

• The “stranger”/ more complex the hardware, the harder it is to determine the
the best

• Code selection for embedded systems a good example - heterogeneous
instruction set (CISC vs RISC)

• Example MAC (multiply accumulate a = a + x*y)

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

14

MAC example

t = b * c
a = a + t
d = d + t

a = a + b*c
d = d + b*c

MUL t,b,c
ADD a,a,t
ADD d,d,t

MAC a,b,c
MAC d,b,c

Simple example.

Which version to select?

Much more complex in practice especially with multimedia instructions.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

15

Classic optimisation: Static analysis and transformation

• Standard view. Statically (at compile time) analyse the program based on
requirements e.g. register requirements or type checking.

• Transform program accordingly . Example stride-1 access. C has row-major
layout. Makes sense to traverse data row-wise.

for (i = 0; i<n;i++)
for (j = 0; j<n;j++)
a[j][i] + b[i];

• This code traverses the array column-wise

• Does not exploit spatial locality. Can have excessive cache misses.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

16

Poor Stide

• Neighbouring fetched elements not referenced until much later

• Cache line probably evicted by then

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

17

Classic optimisation: Static analysis and transformation

• Analysis states that the innermost iterator should be in outermost subscript -
make it so!

• Transform - apply code restructuring to achieve this - loop interchange

for (j = 0; j<n;j++)
for (i = 0; i<n;i++)
a[j][i] + b[i];

• This code now traverses the array row-wise

• Advantage linear analysis and transformation, dramatic performance
improvement

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

18

Improved Stride

• Neighbouring fetched elements referenced immediately

• Cache line unlikely to be evicted

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

19

Classic optimisation: Static analysis and transformation

• However does not consider other costs. e.g. b[i] is no longer invariant -
temporal locality lost

• Uses idealised model of machine. No account of memory hierarchy , cache
replacement policy etc.

• If any of this were to change, no way of changing the compiler

• Fundamentally each analysis has a small focused scope and hardware issue to
reduce complexity.

• No theory/practise to integrate views.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

20

Poor results

Compiler only achieve a small percentage of the maximum processor performance

Phase order means there is a long chain from source to machine code.

• Along the path there is inevitably a loss of information

• Example : Memory accesses. At assembler level virtually impossible to
determine memory locations, accesses and patterns.

• Make conservative assumptions - assume accesses are to same location

• Lose parallelism/latency tolerance

• Such a problem that program languages are modified to solve it.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

21

Poor results

Modern architectures is technology driven.

• Not the best fit for programs written in high level languages

• How would you rewrite your Java program if the processor changed from
in-order to out-of order execution ?

• Architectures designed around binaries of previous generation. SPEC Alpha
binaries are set in stone!

• Compiler and architectures out of sync - compilers target yesterday’s hardware.

• Application-specific systems have greater integration and performance e.g.
DSP chips.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

22

Why fail

• Fundamental reason for failure is complexity and undecidability

• At compile time we do not know the data to be read in, so impossible to know
the best code sequence

• The processor architecture behaviour is so complex that it is almost impossible
to determine what the best code sequence should be even if we knew the data
to be processed.

• Although individual components are simple, together impossible to derive
realistic model

• O-O execution and cache have non-deterministic behaviour!

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

23

Case Study

Problem Matrix multiplication

Problem size N = 400 and N = 512

Processors UltraSparc, R10000, Pentium Pro, Alpha, TriMedia

Transformation space Loop unrolling 1 – 20, Tiling 1 – 100, Padding 1 – 10

Well studied by static techniques (PFDC ’98 with PACT’98)

What do the spaces look like. How easy is it to model and find good points.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

24

Transformations

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

25

Performance UltraSparc for N = 512

0
20

40
60

80
100

0

5

10

15

20
0

5

10

15

20

25

30

Tile SizeUnroll

T
im

e

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

26

UltraSparc: space within 20% of minimum N = 400

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

Tile Size

U
nr

ol
l

Minimum at: Unroll = 3 and Tile size = 57.

Near minimum: 2.6%. Original 4.99 secs, Minimum 0.56 secs

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

27

UltraSparc: space within 20% of minimum N = 512

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

Tile Size

U
nr

ol
l

Minimum at: Unroll = 3 and Tile size = 73.

Near minimum: 1.5%. Original 11.53, Minimum 1.54

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

28

Alpha: space within 20% of minimum N = 400

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

Tile Size

U
nr

ol
l

Minimum at: Unroll = 4 and Tile size = 44.

Near minimum: 4.3%. Original 12.04, Minimum 1.23

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

29

Alpha: space within 20% of minimum N = 512

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

U
nr

ol
l

Tile Size

Minimum at: Unroll = 4 and Tile size = 85.

Near minimum: 0.9%. Original 31.72, Minimum 3.34, Max 81.40 !

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

30

R10000: N = 512

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

Tile Size

U
nr

ol
l

Minimum at: Unroll = 4 and Tile size = 85.

Near minimum: 7.2%. Original 2.79, Minimum 1.09

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

31

R10000: N = 400

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

U
nr

ol
l

Tile Size

Minimum at: Unroll = 4 and Tile size = 57.

Near minimum: 7.8%. Original 0.71, Minimum 0.41

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

32

Pentium Pro: space within 20% of minimum N = 400

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

Tile Size

U
nr

ol
l

Minimum at: Unroll = 19 and Tile size = 57.

Near minimum: 4.3%. Original 4.88 Minimum 1.43

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

33

Pentium Pro: space within 20% of minimum N = 512

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

Tile Size

U
nr

ol
l

Minimum at: Unroll = 17 and Tile size = 51.

Near minimum: 4.6%. Original 30.93, Minimum 3.34

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

34

Conclusion for Effects

• Graph of execution times is periodic with high frequency oscillations and many
local minima. Hence difficult to find absolute minimum.

• Best transformation is highly dependent on type of processor.

• Impossible for static analysis to determine the best optimisation

• Even harder if the processor changes!

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

35

Compilation as Optimisation

• Express as a “formal” optimisation problem. Minimise objective function over
a space of options.

• Objective function is execution time, though space and power may be
important.

• Optimisation space:All possible equivalent programs

• Objective function is undecidable in general

• Optimisation space: infinite

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

36

Compilation as Optimisation

• Solving an undecidable problem over an infinite space is clearly not feasible so
simplification is necessary

• Try to solve undecidable problem in less time than execution! In general
undecidable, but in practice, people aim to write programs that terminate

• We know that it is possible to tune performance

• Traditionally have broken the problem into sub-problems based on certain
assumptions

• Each of these problems are themselves at least NP-complete

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

37

Intractability

Solve the problem by looking at each prob in isolation

• Code generation - determining the best code for an expression is NP

• Scheduling - determining the best order of instruction is NP

• Register allocation determining the best use of registers to minimise memory
traffic - NP

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

38

How do we overcome this

Two main problems

• Complexity of processor architecture, Undecidability of program

Both problems arise from trying to optimise statically at compile time

• Have to guess a tractable model, Have to guess about data input

• Pros and Cons to all approaches .Depends highly on application scenario

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

39

Taxonomy - a roadmap of a new landscape

• 2 main causes program undecidability and processor complexity

• Variables (what): Program (P), Data (D) and Processor (proc)

• Variables (when): design, compile or runtime.

• 2 sides of adaption: portability and specialisation

• Examine all techniques in this light

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

40

Taxonomy

• Program (P), Data (D) and Processor (proc)

• time = f(T(P),D,proc), Pick Transformation T to minimise f

• Standard compilation (SC) typically has a hardwired model of proc built in.

• SC also has an ad hoc view of typical programs (biased by SPEC!) with a
compiler strategy that is biased to them

• SC applies the strategy at compile time making no reference to data

• Data in no way affects SC behaviour - just guess a “typical” input set

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

41

Taxonomy

Design time:

• Build a compiler: encode compiler optimisation strategy. Typically a time
consuming manual process. Takes many person-years. Particular to one
processor, data and programs unknown

Compile time:

• Examine program and apply transformations based on design time encoded
strategy. Can take a reasonable amount of time. Must be less than accumulated
runtime throughout lifetime of program

• Processor assumed, program known, data unknown

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

42

Taxonomy

Runtime:

• Most knowledge about application available: processor, program and data

• Least amount of time available to do anything about it!

• Typically compilers do nothing - leave to independent runtime system/OS

Most room for improvement at runtime - and design time

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

43

Taxonomy: Adaption = Portability + Specialisation

Compiler technology not normally discussed in this manner. Appears an
infrastructure rather than optimisation issue.

Portability

• ability to MODIFY behaviour to changing circumstances, changing data,
program, processor

Specialisation

• ability to EXPLOIT fixed, known features: processor, program and data

Natural tension between the two . Flexibility vs rigidity

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

44

Taxonomy -current static compilers

• What and when to port/specialise: processor, program, data;design, compile,
runtime

• Currently: specialise to processor at design time BUT cannot port to a new
processor

• Portable across a wide range of programs and data at compile and runtime
BUT

• Do not specialise to runtime data or program/processor interaction

• Very little exploitation of dynamic runtime knowledge/Adaption to changing
processor or data not considered

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

45

Summary

• Traditional view of compilation

• Compilation as optimisation

• Failure of compiler to deliver and the complexity of the task

• Taxonomy of compiler options as a means to investigate compiler design space

• Next: look at different ways to build compilers that overcome these problems

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

46

Feedback Directed Compilation

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

47

Overview

• Profile Directed Compilation

• Application Tuning

• Iterative Compilation

• Efficient searching

• Critical evaluation and conclusion

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

48

Overcoming the limits of static compilation

Examined limits of current static compilation

• hard optimisation + undecidable problem in general

• complex hardware - processor behaviour massively non-linear

Interested in new techniques that go beyond standard approach

Examine new approaches in terms of

• Adaption: portability vs specialisation

• What: processor, program, data. When: design, compile and runtime.

Focus on exploiting knowledge about data and processor

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

49

Profile directed compilation

• Direct addresses problem of compile time unknown data

• Key(simple) idea: run program once and collect some useful information

• Use this runtime information to better improve program performance

• In effect move the first runtime into the compile time phase

• Makes sense if gathering the profile data is cheap and user willing to pay for 2
compiles. Can still use after first compile.

• Allows specialisation to runtime data - pros and cons?

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

50

Offline vs on-line

• Profile directed compilation is one example of off-line optimisation

• Information is gathered and utilised before the the “production” run

• On-line schemes gather information and dynamically change program as it
runs.

• Off-line schemes work on basis that costs incurred at compile-time are
outweighed by improved runtime. Can be more aggressive than on-line
schemes.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

51

PDC schematic

Compiler executableprogram

data

results

Traditional compilation model.

Executable is an output and a process

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

52

PDC schematic

Compiler executableprogram

data

results

0

Compiler executable

data

profile

results0 1

1

Profile information is an additional output.

Data can change from run to run. Executable still correct.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

53

Brief History

The use of profiling to aid program performance has been around for a while.

• prof, gprof (1982). A tool to help developers to understand their code.
Instrumentation at compile time and then sampled at runtime.

• Hardware analysis (1980s). Monitor program behaviour and adapt. Branch
prediction - pipelines means need to guess which branch to take

• Edge/node based profile information for compilers 1990s.

• Path based profiling Larus + Ball late 1990s, Smith 2000

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

54

PDC for classic optimisation

• Record frequently taken edges of program control-flow graph

• IMPACT compiler in 1990s good example of this but also used earlier - Josh
Fisher et al, Multiflow.

• Use weight information of edges and paths in graph to restructure control-flow
graph to enable greater optimisation

• Main idea: merge frequently executed basic blocks increasing sizes of basic
block if possible (superblock/hyperblock) formation. Fix up rest of code.

• Allows improved scheduling of instructions and more aggressive scalar
optimisations at expense of code size.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

55

PDC Example 1

Sequence of basic blocks
Frequency of execution on edges and
nodes
Primarily ABEF
Other entry/exit control-flow
prevents merging
Super-block - frequently executed path
Merge and tidy-up
Optimise larger unit

D E

F

C

A
100

10
B
90

90

100

0

10

10

0

0

90

90

90

199

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

56

PDC Example 2

Selecting the trace

Start at most frequent block
Add blocks on most frequent successors
Repeat on other nodes
Done in both control-flow directions
Do on remaining nodes

D E

F

C

A
100

10
B
90

900

10

10

0

0

90

90

90

199

F
100

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

57

PDC Example 3

Tail Duplication

Duplicate first block with
external entry edges
But not the head
Redirect incoming edges
Duplicate outgoing
Repeat
Much code duplication

E

F

A
100

B
90

90

10

90

90

90

1

C
10

F

D
0

90

90
10

10

0

0

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

58

PDC Example 1

a = b + c

d = b + c

z = d +1

9 1

9 1

d = a + x

Common b + c on frequently taken path

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

59

PDC Example 2

a = b + c
1

1

z = d +1

9

9

z = d +1

d = b +c d = a + x

Replicate first node on main path with external incoming edge
Now separate paths

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

60

PDC Example 3

a = b + c
1

1

z = d +1

9

9

d = a

z = a + 1

d = a + x

Applying cse eliminates redundant computation at cost of additional code

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

61

Edge vs Path profiling

• Overlapping paths cannot be distinguished by edge profiling

• Path profiling allows much greater accuracy

• However, combinatorial explosion in paths. Cycles in graphs leads to potentially
unbounded number (e.g.400 + way switch inside a loop in gcc!)

• In practise Edge/node profiling only captures around 40-50

• Larus and Ball ’99 developed an efficient path profiler that avoids these
problems. In practise the benefit achieved was small though

• Mike Smith at Harvard extended this idea for more targeted optimisation

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

62

So how does this work in practice?

-25

-20

-15

-10

-5

0

5

10

15

20

to
m

ca
tv

sw
im

su
2c

or

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

w
av

e5

A
V

E
R

A
G

E

ex
ec

u
ti

o
n

 t
im

e
im

p
ro

ve
m

en
t,

 %

Opt.2 over Opt.1 Opt.3 over Opt.1

Alpha compiler 21264
Opt 2 feedback directed Opt 3 feedback directed and HLT

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

63

So how does this work in practice?

-3

-2

-1

0

1

2

3

4

to
m

ca
tv

sw
im

su
2c

or

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

w
av

e5

A
V

E
R

A
G

E

ex
ec

u
ti

o
n

 t
im

e
im

p
ro

ve
m

en
t,

 %

Opt.2 over Opt.1 Opt.3 over Opt.1

Pentium III on SPEC’95 benchmarks - poor improvement by icc
Extremely well studied benchmarks

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

64

Beyond Path profiling

• Although useful, the performance gains are modest

• Challenge of undecidability and processor behaviour not addressed.

• What happens if data changes on the second run??

• Really focuses on persistent control-flow behaviour

• All other information eg runtime values, memory locations accessed ignored

• Can we get more out of knowing data and its impact on program behaviour?

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

65

Evolution of PDC

PDC with one compile vs. PDC with multiple (iterative) compiles

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

66

Automatic Library tuning

• A different off-line approach that exploits knowledge gained by running the
program in the optimisation process

• There is a (growing) family of application specific approaches to library tuning

• Rather than recording path information for later optimisation - just record
execution time

• Try many different versions of the program and select the best for that machine.
Key issue is how different programs are generated.

• In effect move runtime into design time. Main examples ATLAS, PHiPAC and
FFTW

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

67

ATLAS

• An automatic method of tuning linear algebraic libraries for differing processors

• It is domain specific and only focuses on tuning the core GEMM routine for a
specific processor.

• Takes an ad hoc approach - generate different versions and measure them
against anything available - including vendor supplied libraries and pick the
best

• It tries different software pipelining and register tiling parameters and
enumerates them all, selecting the best. The space of options is derived
from explicit knowledge of the application behaviour.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

68

ATLAS

Master Search

Multiple
Implementation

Tester/
Timer

Source
Generator

ANSI C
Compiler

Assembler/Linker

Timer
Executable

Mult Imp
Search

Source Gen
 Search

Broken down into application specific,generic and platform specific sections

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

69

ATLAS

• Regularly outperforms the best existing approaches. Now the standard
approach to library generation.

• Adaption?: Very portable - works on any platform AND specialises to the
particular processor

• BUT specialised to a particular application - no portability across programs -
no exploitation of runtime data as static control-flow

• PHiPAC tries to exploit data patterns in sparse structures by trying simple
optimisations off-line and applying them at runtime when data encountered.

• However - domain specific, not generalisable or widely automatable

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

70

Iterative compilation

• Iterative compilation really started in 1997 with the OCEANS project

• Similar in spirit to automatic tuning except the space of tuning is in fact the
entire program transformation space

• In a sense it is a direct implementation of the formal compiler optimisation
problem. Find a transformation T that minimises cost.

• Main ideas was to combine high and low level optimisation and use cost models
to guide selection

• Highly ambitious but immature infrastructure prevented much progress

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

71

OCEANS

Similar iterative
structure to ATLAS.

Novel notion of
two communication
compiler infrastructures

Main work on
searching for best
tile and unroll
parameters
PFDC ’98

Source code

High level restruct

Assembly code

SALTO

executable

PILO

LORA

cost model

information
profile

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

72

UltraSparc: space within 20% of minimum N = 400

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

Tile Size

U
nr

ol
l

Minimum at: Unroll = 3 and Tile size = 57.

Near minimum: 2.6%. Original 4.99 secs, Minimum 0.56 secs

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

73

UltraSparc N = 400

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

Number of Evaluations

W
ith

in
 %

 o
f m

in
im

iu
m

50 steps: within 0.0%. Initially 2.65 times slower than minimum

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

74

Alpha: space within 20% of minimum N = 512

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

U
nr

ol
l

Tile Size

Minimum at: Unroll = 4 and Tile size = 85.

Near minimum: 0.9%. Original 31.72, Minimum 3.34, Max 81.40 !

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

75

Alpha N = 512

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

Number of Evaluations

W
ith

in
 %

 o
f m

in
im

iu
m

50 steps: within 21.9%.Originally 5.25 times slower than minimum

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

76

Pentium Pro: space within 20% of minimum N = 400

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

Tile Size

U
nr

ol
l

Minimum at: Unroll = 19 and Tile size = 57.

Near minimum: 4.3%. Original 4.88 Minimum 1.43

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

77

Pentium Pro N = 400

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

W
ith

in
 %

 o
f m

in
im

iu
m

Number of Evaluations

50 steps: within 10.5%.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

78

R10000: N = 512

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

Tile Size

U
nr

ol
l

Minimum at: Unroll = 4 and Tile size = 85.

Near minimum: 7.2%. Original 2.79, Minimum 1.09

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

79

R10000 N = 512

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Number of Evaluations

W
ith

in
 %

 o
f m

in
im

iu
m

50 steps: within 4.9%.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

80

Phase Order

• Oceans work looked at parameterised high level search spaces (tiling, unrolling).
Restricted by compilers and only small kernel exploration

• Impressive search results due to “tuned” heuristic and small spaces. In practise
depends on space shape

• Keith Cooper et al ’99 onwards also looked at iterative compilation

• Cooper’s search space was the orderings of phases within a compiler

• Lower level and not tied to any language. More generic and explores the
age-old phase ordering problem more directly

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

81

Phase Order

Steering

Front end Back End

Objective
Function

code

Cooper has found improvements up to 25% over default sequences.

Examined search heuristics that find good points quickly.

However, evaluation approach is strange and results don’t seem portable.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

82

DSP systems

• Iterative compilation proved to be useful for embedded applications or libraries.
Cooper’s work presented at embedded forum but not embedded applications

• It is difficult to improve on embedded compilers and hard to get access to
internals. HLT is attractive but pointers cause problems

• In Franke et al 2005 we overcome this with a pointer recovery + SUIF based
transformation explorer. Uses 2 search strategies.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

83

DSP Framework

Using this framework to exhaustively explore the space and characterise

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

84

Franke

• Looks through space of 8080 transformations on 3 platforms for UTDSP
benchmark suite. Not feasible to do exhaustively. Really stresses SUIF

• 2 algorithms. Trade-off between coverage and focus.Random - select a random
length up to 80. Then randomly select any transformation for each location.
Lots of redundant transformations.

• PBIL:Population based inference learning. Modify probability of selecting
transformation based on previous trials. Only examine effective transformations

• Average 41% reduction. PBIL finds the best in majority of cases but Random
best has a higher speed up.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

85

Impact of Transformations

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

86

Results

• Tried 500 runs. On UTDSP benchmark: TriMedia average speedup of 1.43
and 1.73 for TigerSharc

• Shows that HLT can give a big win compared to backend optimisations

• Also compared GCC and ICC on embedded Celeron

• Original: ICC 1.22 faster than GCC

• GCC + it: speedup of 1.54 - better than ICC

• BUT ICC + it: speedup of 2.14

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

87

Search Speed

• The main problem is optimisation space size and speed to solution

• Many use a cut down transformation space - but this just imposes ad hoc non
portable bias

• Need to have a large interesting transformation space. Orthogonal - no
repetition. SUIF is ad hoc. UTF framework from Shun et al 2004 very
systematic but doesn’t cover everything

• Build search techniques to find good points quickly

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

88

Search Speed Alpha

-30

-20

-10

0

10

20

30

40

50

to
m

ca
tv

sw
im

su
2c

or

m
gr

id

ap
p

lu

tu
rb

3d

ap
si

w
av

e5

ex
ec

u
ti

o
n

 t
im

e
im

p
ro

ve
m

en
t,

 %

Opt.2 Opt.3 iter. comp. (basic search strategy) iter. comp. (random search strategy)

[Fursin 2002] uses phase order, profile info and potential benefit to reduce search

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

89

Search Speed Pentium

-10

-5

0

5

10

15

20

25

30

to
m

ca
tv

sw
im

su
2c

or

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

w
av

e5ex
ec

u
ti

o
n

 t
im

e
im

p
ro

ve
m

en
t,

 %

Opt.2 Opt.3 iter. comp. (basic search strategy) iter. comp. (random search strategy)

Reduces number of searches by orders of magnitude. Currently investigating
increasing number of searches per run

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

90

Using models

• Obvious approach is to use cheap static modes to help reduce number of runs

• Difficulty is to balance savings gained by model against hardwiring strategy

• Wolfe and Mayadan generate many versions of a program and check against
an internal cache models rather than generate the best by construction

• Although more successful doesn’t address problem of processor complexity.No
real feedback (Pugh A* search). Cannot adapt

• Knijnenburg et al PACT 2000 use simple cache models as filters. Used to
eliminate bad options rather than as a substitute for feedback. Significant
speed up

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

91

Search space

• Understanding the shape or structure of search space is vital to determining
good ways to search it

• Unfortunately little agreement. FDO showed large number of minima with
structure. Vuduc ’99 shows that minima dramatically vary across processor

• Cooper shows that reasonable minima are very near any given point.

• However, our recent work shows that it strongly depends on scenario. Rich
space on a TriMedia -golf green on the TI. Should use structure to aid search

• Vuduc uses distribution of good points as a stopping criteria. Fursin use upper
bound of performance as a guide.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

92

Taxonomy based evaluation

• All techniques move runtime either into compile or design time. Application
tuning is not portable across programs.

• Iterative compilation allows great adaption to and specialisation to a processor
than PDC.

• However, over specialises to a data set. Makes sense when the behaviour of
a program is relatively data independent in the case of linear algebra or DSP
programs.

• Excessive design/compile time means only currently suitable for embedded
apps or libraries.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

93

Summary

• Profile directed compilation uses a light weight approach to guide primarily
scheduling decisions.

• Automatic tuning used as application specific way to achieve portable high
performance

• Iterative compilation broadens this for general purpose programs

• All techniques examined are off-line approaches where optimisation happens
prior to ’production’ run

• Next focus on on-line dynamic approaches which aim to optimise on the fly

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

94

Dynamic Compilation

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

95

Overview

• Specialisation

• Dynamic code generation - DyC

• Dynamic Binary Translation - DAISY

• Just in time compilation -Jikes

• Critical evaluation and conclusion

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

96

Summary

• Introduced profile directed compilation, program tuning and iterative
compilation

• All used runtime behaviour at compile/design time to select better
transformations

• Trade-off in number of runs vs eventual performance

• Iterative techniques very good at porting and specialising to new platforms

• However, all rely on eventual on-line runtime data to be same as that visited
off-line. Poor at adapting to new data

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

97

Dynamic techniques

• All today’s techniques focus on delaying some or all of the optimisations to
runtime

• This has the benefit of knowing the exact runtime control-flow, hotspots, data
values, memory locations and hence complete program knowledge

• It thus largely eliminates many of the undecidable issues of compile-time
optimisation by delaying until runtime

• However, the cost of analysis/optimisation is now crucial as it forms a runtime
overhead. All techniques characterised by trying to exploit runtime knowledge
with minimal cost

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

98

Background

• Delaying compiler operations until runtime has been used for many years

• Interpreters translates and execute at runtime

• Languages developed in the 60s eg Algol 68 allowed dynamic memory allocation
relying on language specific runtime system to mange memory

• Lisp more fundamentally has runtime type checking of objects

• Smalltalk in the 80s deferred compilation to runtime to reduce the amount of
compilation otherwise required in the 00 setting

• Java uses dynamic class loading to allow easy upgrading of software

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

99

Runtime specialisation

• For many, runtime optimisation is “adaptive optimisation”

• Although wide range of techniques, all are based around runtime specialisation.
Constant propagation is a simple example.

• Specialisation is a technique that has been used in compiler technology for
many years especially in more theoretical work

• Specialising an interpreter with respect to a program gives a compiler

• Can we specialise at runtime to gain benefit with minimal overhead? Statically
inserted selection code vs parameterised code vs runtime generation.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

100

Static code selection, parameterised and code generation

IF (N<M) THEN
DO I =1,N
DO J =1,M
...

ENDDO
ENDDO

ELSE
DO J =1,M
DO I =1,N
...

ENDDO
ENDDO

ENDIF

IF (N<M) THEN
U1 = N
U2 = M
ELSE
U1 = M
U2 = N
ENDIF
DO I1 =1,U1
DO I2= 1,U2
...
ENDDO

ENDDO

gen_nest1(fp,N,M)
(*fp)()

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

101

DyC

• One of the best known dynamic program specialisation techniques based on
dynamic code generation.

• The user annotates the program defining where there may be opportunities for
runtime specialisation. Marks variables and memory locations that are static
within a particular scope.

• The system generates code that checks the annotated values at runtime and
regenerates code on the fly.

• By using annotation, the system avoids over-checking and hence runtime
overhead. This is at the cost of additional user overhead.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

102

DyC

Binding analysis
examines all uses
of static variables
within scope

Dynamic compiler
exploits invariancy
and specialises the code
when invoked

Optimizations
Traditional

Binding Time
Analysis

Dynamic−Compiler
Generator

Statically
Generated

Code

Dynamic
Compiler

Dynamically
Generated
Code

Run Time

Static Compile
Time

Program

input

Annotated Program Source

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

103

DyC Results

• Asymptotic speedup and a range programs varies from 1.05 to 4.6

• Strongly depends on percentage of time spent in the dynamically compiled
region. Varies from 9.9 to 100 %

• Low overhead from 13 cycles to 823 cycles per instruction generated

• However relies on user intervention which may not be realistic in large
applications

• Relies on user correctly annotating the code

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

104

Calpa for DyC

• Calpa is a system aimed at automatically identifying opportunities for
specialisation without user intervention

• It analyses the program for potential opportunities and determines the possible
cost vs the potential benefit

• For example if a variable is multiplied by another variable which is known to
be constant in a particular scope, then if this is equal to 0 or 1 then cheaper
code maybe generated

• If this is inside a deep loop then a quick test for 0 or 1 outside the loop will
be profitable

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

105

Calpa for DyC

Calpa is a front
end to DyC

It uses
instrumentation
to guide
annotation
insertion compiled

C program

dynamic
compiler

C program

instrumented
C program

annotated
C program

DyC
compiler

Calpa
instrumenter

Calpa
Annotation

value
profile

sample

input

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

106

Calpa for DyC

• Instruments code and sees have often variables change value. Given this data
determined the cost and benefit for a region of code

• Number of different variants, cost of generating code, cache lookup. Main
benefit determined by estimating new critical path

• Explores all specialisation up to a threshold. Widely different overheads 2
seconds to 8 hours. In two cases improves - from 6.6% to 22.6%

• Calpa and DyC utilise selective dynamic code generation. Now look at fully
dynamic schemes.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

107

Dynamic Binary Translation

• The key idea is to take one ISA binary and translate it into another ISA binary
at runtime.

• In fact this happens inside Intel processors where x86 is unpacked and translated
into an internal RISC opcode which is then scheduled. The TransMeta Crusoe
processor does the same. Same with IBM legacy ISAs.

• Why don’t we do this statically? Many reasons!

• The source ISA is legacy but the processor internal ISA changes. It is
impossible to determine statically what is the program. It is not legal to store
a translation. It can be applied to a local ISA for long term optimisation

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

108

DAISY

• One of the best known schemes came out of IBM headed by Kemal Ebcioglu

• Aimed at translating PowerPC binaries to the IBM vliw machine

• Idea was to have a simple powerful in-order machine with a software layer
handling complexities of PowerPC ISA

• Dynamic translation opens up opportunities for dynamic optimisation.

• Concerned for industrial strength usage. Exceptions, self-modifying code etc.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

109

DAISY

• At runtime, program path and data known. But need a low overhead scheme
to make worthwhile

• Specialisation happens naturally as we know runtime value of variables

• Can bias code generation to check for profitable cases

• DAISY uses a code cache of recently translated code segment.

• Automatic superblock formation and scheduling

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

110

DAISY structure overview

Translations

VMM Code

VMM Data

DAISY ROM

VMM Code
Boot code Icache Hierarchy

PowerPC

MemoryPowerPC
Boot ROM

Dcache Hierarchy

DAISY

processor

Power PC code runs without modification

DAISY specific additions separated by dotted line.

Initially interpret PowerPC instructions and then compile after hitting threshold

Then schedule and save instruction in cache (2-4k). Untaken branches are
translated as (unused) calls to the binary translator

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

111

DAISY

Here the group
is expanded
to contain two
conditionals

Path A is
encountered and
translated

TR 0:

cr1. gt

F T

call translator

cr0 .eq

goto TR1

EXIT #1

EXIT #2
call translatorPATH A

F T

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

112

DAISY

When Path B
is encountered
for the first
time

Translator is called

TR 0:

cr1. gt

F T

call translator

cr0 .eq

goto TR1

EXIT #1

EXIT #2
call translator

F T

PATH B

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

113

DAISY
Code in cache
is now updated

Paths A and B
require no further
translation

One untranslated
path remaining

TR 0:

cr1. gt

F T

call translator

cr0 .eq

goto TR1

EXIT #1
F T

goto TR2

Only translate and store code if needed

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

114

DYNAMO

• Similar to Daisy though focuses on binary to binary optimisations on the same
ISA. One of the claims is that it allows compilation with -01 but overtime
provides -03 performance.

• Catches dynamic cross module optimisation opportunities missed by the static
compiler. Code layout optimisation allowing improved scheduling due to bigger
segments. Branch alignment and partial procedural inlining form part of the
optimisations

• Aimed as way of improving performance from a shipped binary overtime

• Unlike DAISY, have to use existing hardware - no additional fragment cache
available

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

115

DYNAMO

• Initially interprets code. This is very fast as the code is native. When a branch
is encountered check if already translated

• If it has been translated jump and context switch to the fragment cache code
and execute. Otherwise if hot translate and put in cache

• Over time the working set forms in the cache and Dynamo overhead reduces -
less than 1.5

• Cheap profiling, predictability and few counters are necessary

• Linear code structure in cache makes optimisation cheap. Standard redundancy
elimination applied

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

116

Evolution of PDC

PDC with one compile vs. PDC with multiple (iterative) compiles

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

117

Just in Time Compilation

• Key idea: lazy compilation. Defer compiling a section of high level code until
it is encountered during program execution. For OO programs it has been
shown that this greatly reduces the amount of code to compile. Krintz’00
shows 14 to 26% reduction in total time.

• Greater knowledge of runtime context allowing optimisation to be focused on
important parts of program

• However is Just in time really Just too late? Why wait until execution time to
compile when the code may be lying around on disk for months beforehand.

• Main reason - dynamic linking of code especially in Java. This restricts the
optimisations available

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

118

Jikes

• Most Java compilers initially interpret, then compile and finally optimise based
on frequency of use

• Normally done on a per method basis -exception Whaley 2000 - very similar
to DBT.

• Jikes instead directly compiles code when encountered to native machine code

• Well known robust research compiler freely available

• Much work centred around what level of optimisation to apply and when to
apply it.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

119

Jikes

Adaptive
Optimisation
System

Dynamic
Linker

Executing
Code

ClassLoader

Compilers
Base, Opt

Profiling Data
Machine

Code

Recompilation
Plan

Class Init

Compile

LoadClass Request

Unresolved
References

Resolution

Lazy
Compilation

Main interacting components

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

120

Jikes Example

iload x
iconst 5
iadd
istore y

INT_ADD tint,xint,5
INT_MOVE yint,tint

INT_ADD yint,xint,5

Simple example showing translation of byte code into native code

Simple optimisations to remove redundant temporaries have a significant impact
on later virtual to register mapping phases .

First version corresponds to baseline compiler, second to most basic optimising
compilation

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

121

Method Life Cycle

Compiling

Installed

Obsolete

Dead

Freed

compilation/recompilation

invalidated by the class loader

if still valid

invalidated by
classloader or
recompilation no activations remain

garbage collected

Uncompiled

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

122

Jikes

• Jikes makes use of multiple optimisation levels and uses these to carefully trade
off cost vs gain.

• Baseline translates directly into native code simulating operand stack. No IR,
no reg alloc. Slightly faster code than interpretation

• Optimising compiler. Translate into an IR with linear register allocation. 3
further optimisation levels.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

123

Jikes

• Level 0. Effective and cheap optimisations. Simple scalar optimisations and
inlining trivial methods. All tend to reduce size of IR

• Level 1 as 0 but with more aggressive speculative inlining. Multiple passes of
level 0 opts and some code reorganising algs.

• Level 2 employs simple loop optimisations. Normalisation and unrolling. SSA
based flow-sensitive algorithms also employed.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

124

Jikes

Compiler Bytecodes/ Millisecond Speed
Baseline 377.8 1.0
Level 0 9.29 4.26
Level 1 5.69 6.07
Level 2 1.81 6.61

Only worthwhile compiling at a higher level if benefit outweighs cost

Adaptive algorithm compares cost of code under current level vs an increased
level.

Crucially depends on anticipated future profile which is unavailable. Solution -
just guess - currently assume twice as long as now!

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

125

Jikes

Krintz evaluates the adaptive approach

Compiler Total Time Compile Time
Baseline 29.24 0.44
Opt 9.98 0.36
Adapt 8.97 0.48

Figures are time in seconds for SPECjvm98

Total time is better fr Adapt even though it has increased compile-time.

Conclusion - knowing hotspots really helps optimisation

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

126

Java JIT

• JITs suffer from having the necessary info too late. Need to anticipate
optimisation opportunities.

• Many different optimisation scenarios available. Adaptive option increases level
of optimisation when it recompiles increasingly used hotspots.

• As compile-time is part of runtime, trade-off between two depends on program
type

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

127

ADAPT

• ADAPT is a mixed approach to optimisation that combines static and iterative
compilation in an on-line manner.

• Basically at runtime different options of a code section are run concurrently
and the best-one selected. This is done in parallel on remote servers.

• Really trading space for time making an off-line technique viable as an on-line
technique as long as sufficient space available

• Online iterative compilation main contribution.

• Only works for scientific programs with relatively static behaviour

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

128

Continuous compilation

• Obvious question: can we combine off-line and on-line techniques getting the
best from both worlds?

• Childer and Soffa propose continuous compilation. Static compilation followed
by dynamic compilation.

• Results are stored for off-line analysis and possible recompilation

• Key structure is the use of models to statically determine if it is worthwhile
applying an optimisation.

• Allows cheap runtime mechanism to decide what to optimise.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

129

Continuous compilation

Source
Code

Application
Models

Optimisation Model

Op 1 Op n......

Resource Model

Rm1 Rmn......

prediction

Allows more targeted optimisation. However, models are hardwired and based on
compiler writer intuition - not actual behaviour.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

130

Analysis via taxonomy

• All schemes allow specialisation at runtime to program and data

• Staged schemes such as DyC are more powerful as they only incur runtime
overhead for specialisation regions

• JIT and DBT delay everything to runtime leaving little optimisation
opportunities

• All except ADAPT have a hardwired heuristic of what the best strategy is.
Poor at adapting to new platforms.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

131

Analysis via taxonomy

• Apart from ADAPT and continuous, none looked at processor specific
optimisation. Mainly looked at architecture independent optimisations or
standard backend scheduling or register allocation.

• Like PDC only used the data really for limited preconceived optimisation goals
rather than overcoming undecidability or processor behaviour

• None of the techniques would adapt their compilation approach in the light of
experience

• Design time opportunities (apart from continuous compilation) largely ignored.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

132

Summary and conclusions

• Examined dynamic on-line approaches that optimise at runtime at various
program levels

• Focus of each system depends on its overall setting. DBT fits into a particular
niche and is constrained in its scope.

• Selective specialisation at runtime (DyC) seems to be a universal good thing
and there is much room there for further work

• None of the systems really tackle processor behaviour

• None tackle portability/specialisation of strategy

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

133

Machine Learning based Compilation

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

134

Overview

• Machine learning - what is it and why is it useful?

• Predictive modelling

• Scheduling and low level optimisation

• Loop unrolling and inlining

• Limits and other uses of machine learning

• Future work and summary

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

135

Failings of previous approaches

• Through we have looked at techniques to overcome data dependent behaviour
and and adaption to new processors

• However, we have not looked fundamentally at process of designing a compiler.

• All rely on a “clever” algorithm inserted into the compiler that determines at
compile-time or runtime what optimisations to apply

• Iterative compilation goes beyond this with no a priori knowledge but is not
suitable for general compilations and does not adapt to changing data

• What we want is a smart compiler that adapts its strategy to changes in
program, data and processor.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

136

Machine Learning as a solution

• Well established area of AI, neural networks, genetic algorithms etc. but what
has AI got to do with compilation?

• In a very simplistic sense machine learning can be considered as sophisticated
form of curve fitting.

INPUTS

OUTPUTS

. .

.
.

. . .

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

137

Machine Learning

• The inputs are characteristics of the program and processor. Outputs, the
optimisation function we are interested in, execution time power or code size

• Theoretically predict future behaviour and find the best optimisation

. .

.
.

. . .

Program characteristics

Execution

time

. .

.
.

. . .

Program characteristics

Best
Transformation

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

138

Hardware based AI

• As in many areas of optimisation, computer architects have been here before
us. Architects tend to be more radical then compiler writers.

• Hind (2005) characterises this architect vs compiler distinction as gamblers vs
mathematicians.

• Hardware speculation preceded compiler speculation. Again we can learn form
them.

• Branch/value prediction is an on-line machine learning process using perceptron
based mechanisms (Calder static prediction)

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

139

Global Optimisation and Predictive modelling

• For our purposes it is possible to consider machine learning as global
optimisation and predictive modelling

• Global optimisation tries to find the best point in a space. This is achieved
by selecting new points, evaluating them and then based on accumulated
information selecting a new point as a potential optimum.

• Hill walking and genetic algorithms are obvious examples. Very strong link
with iterative compilation

• Predictive modelling learns about the optimisation space to build a model.
Then uses this model to select the optimum point. Closely related to global
optimisation

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

140

Predictive Modelling

Predictive
Modelling

MODEL

Training data features

Execution
time
or other
metric

Test features

Predicted time

• Predictive modelling techniques all have the property that they try to learn a
model that describes the correlation between inputs and outputs

• This can be a classification or a function or Bayesian probability distribution

• Distinct training and test data. Compiler writers don’t make this distinction!

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

141

Predictive Modelling as a proxy

Apply opt

Extract
Features

MODEL

Select or

try again?

User program

output program

Transformed program

Predicted time

• The model acts as a fast evaluator for program. Automates Soffa’s performance
prediction framework and speeds up iterative compilation

• Nobody has done this yet!! Feature selection and accuracy main problems

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

142

Training data

• Crucial to this working is correct selection of training data.

• The data has to be rich enough to cover the space of programs likely to be be
encountered.

• If we wish to learn over different processors so that the system can port then
we also need sufficient coverage here too

• In practice it is very difficult to formally state the space of possibly interesting
programs

• Ideas include typical kernels and compositions of them. Hierarchical benchmark
suites could help here

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

143

Feature selection of programs

• The real crux problem with machine learning is feature selection What features
of a program are likely to predict it’s eventual behaviour?

• In a sense, features should be a compact representation of a program that
capture the essential performance related aspects and ignore the irrelevant

• Clearly, the number of vowels in the program is unlikely to be significant nor
the user comments

• Compiler IRs are a good starting point as they are condensed reps.

• Loop nest depth, control-flow graph structure, recursion, pointer based
accesses, data structure

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

144

Supervised learning

• Building a model based on given inputs and outputs is an example of classical
supervised learning. We direct the system to find correlations between selected
input features and output behaviour

• In fact unsupervised learning may be more useful in the long run. Generate a
large number of examples and features and allow the system to classify them
into related groups with shared behaviour.

• This prevents missing important features and provide clues as to what aspects
of a program are performance determining

• However, we need many combinatorially more programs than features to
distinguish between them

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

145

Space to learn over

• Formalisation of compiler optimisation has not been taken really seriously

• However, in order to utilise predictive modelling, we need a descriptions of the
program space that allows discrimination between different choices.

• Rather than just having a sophisticated model, what we want is a system that
given a program automatically provides the best optimisation

• To do this means that we must have a good description of the transformation
space

• The shape of the optimisation space will be critical for learning. Clearly linear
regression will not fit the spaces seen before.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

146

Case studies

Predictive
Modelling

MODEL

Execution
time
or other
metric

Test features
Program Features

assumed proc

Transformation
Description

Predicted
Optimal
Transformation

Original Test

• All of the techniques have the above characterisation

• In fact it is often easier to select a good transformation rather than determine
execution time. Relative vs absolute reasoning

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

147

What techniques work and when

• Short answer: Noone knows

• It depends on the structure of the problem space (distribution of minima) and
representation of the problem

• One problem particular to compilation is that feature inputs vary in size :
length of program, length of transformation sequence

• Also we have no agreed way of representing our problem. Several of the
following examples have used different techniques

• Safe to say that the level of ML sophistication is low. Compiler writers tend
to try simple things without too much maths or available on the internet!

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

148

Learning to schedule Moss, ..,Cavazos et al

Given partial schedule 2, which instruction to schedule next 1 or 4?

2

3 4

1 scheduledavailable

availablenot
available

• One of the first papers to investigate machine learning for compiler optimisation

• Appeared at NIPS ’07 - not picked up by compiler community till later.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

149

Learning to schedule

• The approach taken is to look at many (small to medium) basic blocks and to
exhaustively determine all possible schedules.

• Next go through each block and given a (potentially empty) partial schedule
and the choice of two or more instructions that may be schedule d next, select
each in turn and determine which is best.

• If there is a difference, record the input tuple (P, Ii, Ij) where P is a partial
schedule, Ii is the instruction that should be scheduled earlier than Ij. Record
TRUE as the output. Record FALSE with (P, Ij, Ii)

• For each variable size tuple record a fixed length vector summary based on
features.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

150

Learning to schedule

Feature selection can be a black art. Here dual issue of alpha biases choice.

• Odd Partial : odd or even length schedule

• Actual Dual: can this instruction dual issue with previous

• Instruction Class: which class corresponds to function unit

• weighted critical path: length of dependent instructions

• maxdelay: earliest cycle this instruction can go

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

151

Feature extraction
2

3 4

1 scheduledavailable

availablenot
available

Tuple ({2}, 1, 4) : [odd:T, ic:0, wcp:1, d:T, e:0]: TRUE,

Tuple ({2}, 4, 1) : [odd:T, ic:0, wcp:0, d:T, e:0]: FALSE

• Given these tuples apply different learning techniques on data to derive a model

• Use model to select scheduling for test problems. One of the easiest is table
lookup/nearest neighbour

• Others used to include neural net with hidden layer, induction rule and decision
tree

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

152

Example - table lookup

2,1,4

2,4,1 T, 0, 0, T, 0

T, 0, 1 ,T ,0

odd ic wcp d e T F

15 8

3 7

Schedule choice

• The first schedule is selected as previous training has shown that it is better

• If feature vector not stored, then find nearest example. Very similar to
instance-based learning

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

153

Induction heuristics

e = second
e = same ∧ wcp = first
e = same ∧ wcp = same ∧ d = first ∧ ico = load
e = same ∧ wcp = same ∧ d = first ∧ ico = store
e = same ∧ wcp = same ∧ d = first ∧ ico = ilogical
e = same ∧ wcp = same ∧ d = first ∧ ico = fpop
e = same ∧ wcp = same ∧ d = first ∧ ico = iarith ∧ ic1 = load ...

• Schedule the first Ii if the max time of the second is greater

• If the same, schedule the one with the greatest number of critical dependent
instruction ...

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

154

Results

• Basically all techniques were very good compared to the native scheduler
Approximately 98% of the performance of the hand-tuned heuristic

• Small basic blocks were good training data for larger blocks. Relied on
exhaustive search for training data - not realistic for other domains

• Technique relied on features that were machine specific so questionable
portability though induction heuristic is pretty generic

• There is little head room in basic bock scheduler so hard to see benefit over
standard schemes. Picked a hard problem to show improvement

• It seems leaning relative merit i vs j is easier than absolute time

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

155

Learning to unroll Monsifort

• Monsifort uses machine learning to determine whether or not it is worthwhile
unrolling a loop

• Rather than building a model to determine the performance benefit of loop
unrolling, try to classify whether or not loop unrolling is worthwhile

• For each training loop, loop unrolling was performed and speedup recorded.
This output was translated into good bad,or no change

• The loop features were then stored alongside the output ready for learning

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

156

Learning to unroll Monsifort

• Features used were based on inner loop characteristics.

• The model induced is a partitioning of the feature space. The space was
partitioned into those sections where unrolling is good, bad or unchanged .

• This division was hyperplanes in the feature space that can easily be represented
by a decision tree.

• This learnt model is the easily used at compile time. Extract the features of
the loop and see which section they belong too

• Although easy to construct requires regions in space to be convex. Not true
for combined transformations.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

157

Learning to unroll Monsifort

do i = 2, 100

enddo

 a(i) = a(i) + a(i−1) + a(i+1)

statements 1
aritmetic op 2
iterations 99
array access 4
resuses 3
ifs 0

• Features try to capture structure that may affect unrolling decisions

• Again allows programs to be mapped to fixed feature vector

• Feature selection can be guided by metrics used in existing hand-written
heuristics

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

158

Results

• Classified examples correctly 85% of time. Better at picking negative casses
due to bias in training set

• Gave an average 4% and 6% reduction in execution time on Ultrasparc and
IA64 compared to 1

• However g77 is an easy compiler to improve upon. Although small unrolling
only beneficial on 17/22% of benchmarks

• Basic approach - unroll factor not considered.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

159

Meta-compilation

• Name comes from optimising a heuristic rather than optimising a program.

• Stephenson et al 2003 used genetic programming to tune hyperblock selection,
register allocation, and data prefetching within the Trimaran’s IMPACT
compiler.

• Represent heuristic as a parse tree. Apply mutation and cross over to a
population of parse trees and measure fitness.

• Crossover = swap nodes from 2 random parse trees

• Mutate randomly: selected a node and replace with a random expression

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

160

Results

• Two of the pre-existing heuristics were not well implemented .

• For hyperblock selection speedup of 1.09 on test set

• For data prefetching the results are worse - just 1.01 speedup.

• The authors even admit that turning off data prefetching completely is
preferable and reduces many of their gains.

• The third optimisation, register allocation is better implemented but only able
to achieve on average a 2% increase over the manually tuned heuristic.

• GP is not a focused technique, IMPACT not a commercially quality.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

161

Learning over UTF

• Shun 2004 uses Pugh’s UTF framework to search for good Java optimisations

• Space of optimisation to learn included entire UTF. Training data gathered by
using a smart iterative search

• Then using a similar feature extraction to Monsifort classify all found results.

• Uses nearest neighbour based learning able to achieve 70% of the possible
performance found using iterative compilation on cross-validated test data

• Larger experimental set needed to validate results. Going beyond loop based
transformations for Java

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

162

Learning to inline Cavazos

• Inlining is the number one optimisation in JIT compilers. Many papers from
IBM on adaptive algorithms to get it right in Jikes

• Can we use machine learning to improve this highly tuned heuristic? Tough
problem. Similar to meta-optimisation goal

• Cavazos(2005) looked at automatically determining inline heuristics under
different scenarios.

• Opt vs Adapt -different user compiler options. Total time vs run time vs a
balance - compile time is part of runtime

• x86 vs PPC - can the strategy port across platform

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

163

Learning to inline Cavazos

• Initially tried rule induction - failed miserably. Not clear at this stage why.
Difficult to determine whether optimisation has impact

• Next used a genetic algorithm to find a good heuristic.

• For each scenario asked the GA to find the best geometric mean over the
training set. Using search for learning.

• Training set used - Specjvm98, test set - DaCapo including Specjbb

• Focused learning on choosing the right numeric parameters of a fixed heuristic.

• Applied this to a test set comparing against IBM heuristic.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

164

Learning a heuristic

inliningHeuristic(calleeSize, inlineDepth, callerSize)
if (calleeSize > CALLEE MAX SIZE)

return NO;

if (calleeSize < ALWAYS INLINE SIZE)

return YES;

if (inlineDepth > MAX INLINE DEPTH)

return NO;

if (callerSize > CALLER MAX SIZE)

return NO;

// Passed all tests so we inline

return YES;

Focus on tuning parameters of an existing heuristic rather than generating a new
one from scratch

Features are dynamic. Learn off-line and applied heuristic on-line

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

165

Impact of inline depth on performance: Compress

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

166

Impact of inline depth on performance: Jess

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

167

Parameters found

Parameters Compilation Scenarios

Orig Adapt Opt:Bal Opt:Tot Adapt (PPC) Opt:Bal (PPC)

CalleeMSize 23 49 10 10 47 35

AlwaysSize 11 15 16 6 10 9

MaxDepth 5 10 8 8 2 3

CallerMSize 2048 60 402 2419 1215 3946

HotCalleeMSize 135 138 NA NA 352 NA

• Considerable variation across scenario.

• For instance on x86, Bal and Total similar except for the CallerMaxSize

• A priori these values could not be predetermined

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

168

Results

Compilation SPECjvm98 DaCapo+JBB
Scenarios Running Total Running Total
Adapt 6% 3% 0% 29%
Opt:Bal 4% 16% 3% 26%
Opt:Tot 1% 17% -4% 37%
Adapt (PPC) 5% 1% -1% 6%
Opt:Bal (PPC) 1% 6% 8% 7%

• Does considerably better on the test data relative to inbuilt heuristic than on
Spec

• Suspect Jikes writers tuned their algorithm with SPEC in mind.

• Shows that an automatic approach ports better than hand-written

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

169

Not a universal panacea

• We believe that machine learning will revolutionise compiler optimisation and
will become mainstream within a decade.

• However, it is not a panacea, solving all our problems.

• Fundamentally, it is an automatic curve fitter. We still have to choose the
parameters to fit and the space to optimise over

• Runtime undecidability will not go away.

• Complexity of space makes a big difference. Tried using Gaussian process
predicting on PFDC ’98 spaces - worse than random selection!

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

170

Future Directions

• Using machine learning for automatic performance prediction is an obvious
next step. Can be used as a proxy in dynamic or iterative compilation

• Understanding characteristics of optimisation space to guide algorithm selection

• Learning over data is a challenge. Given a short sample of the input data,
predict eventual program behaviour and adapt accordingly

• Given the space of processor, just provide the new features of processor and
automatically learn how to optimise for the new machine

• Applying this work to auto-parallelisation.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

171

Future Directions

• Machine learning will play a key part in design space exploration.

• Given an arch space and limited applications/programs - predict the
performance of an optimising compiler - then build it!

• Form part of continuous optimisation. Rather than just learning once, record
all information everywhere about program/data/processor/transformation
behaviour.

• At suitable intervals learn over this data and update behaviour. At macro
level - equivalent to a new compiler release. At micro level dynamic runtime
modification of binary

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

172

Summary

• Introduced machine learning as a basic curve fitting/classification approach.
Playing catch up with architects.

• It is automatic and can be used to learn compiler strategies which are currently
ad hoc and time consuming to develop

• Techniques applied to static and dynamic compilation with promising early
results

• Much remains to be done - fertile research area.

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

173

Background (1)

• Hennessy, Patterson: Computer Architecture, a Quantitative Approach, Third
Edition. Morgan Kaufmann, 2003.

• Steven Muchnick: Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997

• Randy Allen, Ken Kennedy: Optimizing compilers for modern architectures.
Morgan Kaufmann, 2002

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

174

Background (2)

• David Bacon, Susan Graham, Oliver Sharp: Compiler Transformations for
High-Performance Computing. ACM Computing Surveys, December 1994,
Volume 26 Issue 4. preprint

• Keith Cooper, Linda Torczon: Engineering a Compiler

Grigori Fursin Adaptive & Feedback Driven Compilation October, 2005

