
Enabling Interactivity
in GCC for
Fine-Grain
Optimizations
Cupertino Miranda∗, Grigori Fursin∗,
Sebastian Pop∗§, Albert Cohen∗1

∗ ALCHEMY Group, INRIA Futurs and LRI,
Paris-Sud University, France (HiPEAC members)
§ Advanced Micro Devices, Inc.

ABSTRACT

Current state-of-the-art compilers often fail to deliver best possible code on rapidly evolving
hardware due to hardwired optimization heuristics and inability to fine-tune applications for best
performance, parallelism, power consumption, code size and other constraints. Recently, we in-
troduced an Interactive Compilation Interface (ICI) for PathScale compiler (Open64) and GCC to
tackle the above problems by instrumenting the parts of the compiler where decisions about fine-
grain transformations are made. Though this solution enables quick prototyping of the system to
experiment with automatic program tuning using iterative compilation and machine learning, it
has potential extendibility and portability problems when keeping up-to-date with parallel GCC
developments. To solve these problems, we suggest to introduce an intermediate data layer to
GCC (GDL) to separate program analysis and transformation phases, and pass/synchronize all
necessary optimization information through GDL. This should simplify development and up-
dates of compiler procedures responsible with external optimization drivers. We believe that this
will also help to modularize internal GCC structure and move towards pluggable compiler archi-
tecture with automatically tunable compiler heuristics.

KEYWORDS: interactive compilers, interactive compilation interface, iterative compilation

1 Introduction

Fine-grain program optimizations are often used to improve program performance on top
of current state-of-the-art compilers [BKK+98, CSS99, FOK02, KZM+03, TVA05]. Recently,
we modified PathScale compiler (Open64) and GCC to enable interaction with the external
optimization drivers to be able to modify internal hardwired optimization heuristics and

1E-mail: {cupertino.miranda,grigori.fursin,sebastian.pop,albert.cohen}@inria.fr



Figure 1: GDL interface Figure 2: GDL use example

fine-tune programs for various constraints (performance, power, code size, parallelism, de-
sign space exploration, etc) [FC07]. By unifying and using Interactive Compilation Interface
(ICI) we expect to build modular compilers with pluggable transformations that can learn
optimization heuristics automatically and continuously on rapidly evolving architectures.
Unfortunately, current implementation of the ICI is also hardwired with the internal com-
piler optimization which makes it difficult to port to newer versions of the compiler. To solve
this problem, we introduced an intermediate data layer for GCC (GDL) that is used to un-
couple application of transformations for the program analysis (decision making). All nec-
essary information about optimizations is now passed through GDL to avoid hardwiring of
ICI instrumentation into compiler optimization heuristic thus considerably simplifying ICI
implementation, extendibility and interaction with the external tools.

2 GCC Data Layer Framework

The unique way to include a new transformation pass in GCC was by writing C code tightly
sealed within GCC’s framework, using the data structures and access functions of GCC’s in-
termediate representations. This incurred difficulties to write reliable tools that could inter-
act with GCC, such as “smart text editors” that could benefit of one of the best C++ parsers
available on the market, stand alone static analyzers that could benefit of the advanced inter-
mediate representations of GCC (CFG, SSA, call graph, etc.), or more generally stand alone
pluggable passes. In order to address the stability problem of GCC’s interfaces, we propose
the GCC Data Layer to uncouple passes from the format of the data they are using. This
data layer provides not only independence of the underlying data structures, but also an
interface for interactively observe and modify the data processed by the compiler.

2.1 Interface of GDL

We first describe the components building GDL, the interface that one can use to access
GDL, and then a concrete study of a test case. GDL is composed of three main objects:
GDL_pointer, GDL_container, and an object that gathers common parts of these two
objects, GDL_common. The relations between these objects is illustrated in Figure 1.

• GDL_common provides the common parts for GDL_pointer and GDL_container,
id uniquely identifies each GDL object, and parent connects to other GDL tree node,



creating relationship. lookup_node (path) returns pointers to the object reachable
by a string containing a path to an object. path is a composition of an id and name’s
representing a single GDL node, like a path specified in the XPath language.

• GDL_pointer contains a pointer to memory allowing it to be accessible. It is then
extended to contain type information.

• the GDL_container collects a set of objects and provides the interface to walk and it-
erate over these objects: walk (node, walk_helper) - walks through node and its
sub-nodes and walk_helper contains a call-back function and its input data. proxy
is an extension of GDL_container allowing maps to GCC structures.

To create more specific behavior in GDL framework, GDL_pointer functionality is ex-
tended to integer and string nodes, and GDL_container is extended to vector and
proxy nodes. integer and string nodes are capable of storing references to simple types,
vector node makes it possible to group several types of nodes in a single node, and proxy
nodes map GCC data structures allowing GDL to read/write from/to these structures. GDL
nodes are kept in a tree structure in which the leaves keep type information and pointers to
data. This tree structure organizes data hierarchically simplifying implementation of generic
walkers and enables exporting data to formats such as XML.

Proxy nodes contain only a pointer to the head of a data structure and no other sub-
nodes. For example, when storing a graph only the entry node is stored. Whenever the sub-
nodes are accessed (or traversed), the GDL framework dynamically allocates and initializes
these sub-nodes. Special care must be taken with proxy type nodes since memory leakage
can occur from bad usage and when the structure contains data recurrence, infinite loop can
occur, i.e. in graphs. Memory leakage can be controlled if a garbage collector is used.

2.2 Usage examples

We now consider the construction of an external system for static analysis and transforma-
tion using the GDL framework. First, a part of the structures of GCC are exposed to the
external tool using GDL data structures. Then a call to the interactive framework is inserted
at strategic points (pass managers, between analysis and optimizations, etc.), such that the
compiler relies on the external tool to take decisions. At these points, the compiler control
flow is stopped, and the external tool can observe and modify the data structures.

Figure 2 shows a small example of the internal data inside GDL and the possible XML
for it. GDL nodes content is being constantly updated during the compilation and for this
reason, GDL should always be accessed atomically, while the compiler process is locked.

Interactivity frameworks generally also require the possibility to change data inside the
compiler. For instance, ICI could be connected to a compilation driver which would decide,
by code analysis, to customize the unroll factor of a loop. GDL provides a way to up-
date data instead of only reading it. For this reason, every node contains an identification
code (id) which is also added to a hash table to minimize lookup performance. In case of a
proxy node, its sub-nodes cannot have an id since they are dynamically generated when-
ever the node is visited. To solve this issue, the GDL nodes also provide a path notion. For
example, if the node loops in Figure 2 contains id = 42 and the field unroll_factor
which is inside the node loop2 must be updated, the node unroll_factor can now be
referenced with the path 42/loop2/unroll_factor.



2.3 GDL and GCC Integration

In order to expose some GCC data structures using the GDL framework, the only thing to
modify in the compiler is at the allocation and deallocation of that data structure by regis-
tering a pointer to that data in a proxy node. GDL has no impact in the compiler running
time and memory consumption when GDL is not externally accessed. Accessing GDL lo-
cally in the compiler should be avoided, as there is an overhead to directly access the data:
i.e. building and accessing the wrapping structures.

3 Future work

GDL can clean and simplify interactivity frameworks, as it standardizes the interface to
access the data structures of the compiler. As a first concrete application, it is possible to
implement an external pass reordering tool by using a proxy node for registering the root
node of the passes structure that defines the static dependences between passes. Another
application of GDL is to provide a practical interface to create interactivity with GCC via
scripting languages.

One possible improvement in the usability of GDL is to use the garbage collector of the
compiler to register root pointers, and data structure layouts.

References

[BKK+98] F. Bodin, T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle, and E. Rohou. Iterative
compilation in a non-linear optimisation space. In Proceedings of the Workshop on
Profile and Feedback Directed Compilation, 1998.

[CSS99] K.D. Cooper, P.J. Schielke, and D. Subramanian. Optimizing for reduced code
space using genetic algorithms. In Proceedings of the Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES), pages 1–9, 1999.

[FC07] Grigori Fursin and Albert Cohen. Building a practical iterative interactive com-
piler. In 1st Workshop on Statistical and Machine Learning Approaches Applied to
Architectures and Compilation (SMART’07), colocated with HiPEAC 2007 conference,
January 2007.

[FOK02] G.G. Fursin, M.F.P. O’Boyle, and P.M.W. Knijnenburg. Evaluating iterative com-
pilation. In Proceedings of the Workshop on Languages and Compilers for Parallel
Computers (LCPC), pages 305–315, 2002.

[KZM+03] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley, J. Davidson, M. Bailey,
Y. Paek, and K. Gallivan. Finding effective optimization phase sequences. In
Proc. Languages, Compilers, and Tools for Embedded Systems (LCTES), pages 12–23,
2003.

[TVA05] S. Triantafyllis, M. Vachharajani, and D. August. Compiler optimization-space
exploration. In Journal of Instruction-level Parallelism, 2005.


	Introduction
	GCC Data Layer Framework
	Interface of GDL
	Usage examples
	GDL and GCC Integration

	Future work

