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Abstract

This article provides an overview of the Collective Knowledge technology (CK or cKnowledge). CK attempts to
make it easier to reproduce ML&systems research, deploy ML models in production, and adapt them to continuously
changing data sets, models, research techniques, software, and hardware. The CK concept is to decompose com-
plex systems and ad-hoc research projects into reusable sub-components with unified APIs, CLI, and JSON meta
description. Such components can be connected into portable workflows using DevOps principles combined with
reusable automation actions, software detection plugins, meta packages, and exposed optimization parameters. CK
workflows can automatically plug in different models, data and tools from different vendors while building, running
and benchmarking research code in a unified way across diverse platforms and environments. Such workflows also
help to perform whole system optimization, reproduce results, and compare them using public or private scoreboards
on the cKnowledge.io platform. For example, the modular CK approach was successfully validated with industrial
partners to automatically co-design and optimize software, hardware, and machine learning models for reproducible
and efficient object detection in terms of speed, accuracy, energy, size, and other characteristics. The long-term goal
is to simplify and accelerate the development and deployment of ML models and systems by helping researchers and
practitioners to share and reuse their knowledge, experience, best practices, artifacts, and techniques using open CK
APIs.
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1 Motivation

10 years ago I developed the cTuning.org platform and
released all my research code and data to the public to
crowdsource the training of our machine learning based
compiler (MILEPOST GCC) [19]. I intended to accel-
erate this very time consuming autotuning process and
help our compiler to learn the most efficient optimizations
across real programs, data sets, platforms, and environ-
ments provided by volunteers.

We had a great response from the community and it
took me just a few days to collect as many optimization
results as during my entire PhD research. However, the
initial excitement quickly faded when I struggled to re-
produce most of the performance numbers and ML model
predictions because even a tiny change in software, hard-
ware, environment and the run-time state of the system
could influence performance while I did not have a mech-

anism to detect such changes [29, 22]. Even worse, I could
not compare these empirical results with other published
techniques because they rarely included the full exper-
iment specification and all the necessary artifacts along
with shared research code to be able to reproduce results.
Furthermore, it was always a nightmare to add new tools,
benchmarks and data sets to any research code because
it required numerous changes in different ad-hoc scripts,
repetitive recompilation of the whole project when new
software was released, complex updates of database ta-
bles with results, and so on.

These problems motivated me to establish the non-
profit cTuning foundation and work on a common
methodology and open-source tools to enable collabo-
rative, reproducible, reusable, and trustable R&D. My
foundation has supported multiple reproducibility initia-
tives at systems and machine learning conferences in col-
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Figure 1: Reproducing research papers and adopting novel techniques in production is a tedious, repetitive and time
consuming process because of continuously changing software, hardware, models and datasets, and a lack of common
formats and APIs for shared code, models, and artifacts.

laboration with ACM. We also promoted sharing of code,
artifacts and results in a unified way along with research
papers [3, 18]. It gave me a unique chance to partici-
pate in reproducibility studies of more than 100 research
papers at MLSys, ASPLOS, CGO, PPoPP, Supercom-
puting, and other computer science conferences during
the past 5 years [12]. I also started deploying some of
these techniques in production in collaboration with my
industrial partners to better understand all the problems
when building trustable, reproducible, and production-
ready computational systems.

This practical experience confirmed my previous find-
ings: while sharing ad-hoc research code, artifacts, and
trained models along with research papers is a great step
forward, it is only a tip of the reproducibility iceberg [21].
The major challenge afterwards is to figure out how to
integrate such code and models with complex produc-
tion systems and run them in a reliable and efficient way
across rapidly evolving software, heterogeneous hardware
and legacy platforms with continuously changing inter-
faces and data formats while balancing multiple charac-
teristics including speed, latency, accuracy, memory size,
power consumption, reliability, and costs (Figure 1).

2 Collective Knowledge frame-
work

As the first step to deal with this chaos, I introduced an
Artifact Appendix and a reproducibility checklist. My

goal was to help researchers describe how to reproduce
their research techniques in a unified way across different
conferences and journals [2, 12]. It was striking to no-
tice that most of the research projects used some ad-hoc
scripts often with hardwired paths to perform the same
repetitive tasks including downloading models and data
sets, detecting required software, building and testing re-
search code, preparing target platforms, running exper-
iments, validating outputs, reproducing results, plotting
graphs, and generating papers. This motivated me to
search for a solution to automate such common tasks and
make them reusable and customizable across different re-
search projects.

First, I started looking at related tools that were in-
troduced to automate experiments, make research more
reproducible and make it easier to deploy machine learn-
ing in production:

• ML workflow frameworks such as MLFlow [32], Ke-
dro [30] and Amazon SageMaker [1] help to abstract
and automate high-level ML operations. However,
unless used inside AWS or DataBricks cloud they still
have limited support for the complex system inte-
gration and optimization particularly when targeting
embedded devices and IoT - the last mile of MLOps.

• ML benchmarking initiatives such as MLPerf [31],
MLModelScope [28] and Deep500 [17] attempt to
standardize benchmarking and co-design of models
and systems. However, production deployment, in-
tegration with complex systems and adaptation to
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Figure 2: Collective Knowledge framework helps to convert ad-hoc research artifacts (code, data, models, results)
into reusable components, automation actions and portable workflows with a unified CLI, Python API and JSON
meta description shared along with papers. The goal is to make it easier to reproduce, reuse, adopt and build upon
ML&systems research.

continuously changing tools, user environments and
data are out of their scope.

• Package managers such as Spack [25] and Easy-
Build [26] are very useful to rebuild the whole en-
vironment with fixed software versions. However
adaptation to existing environments, native cross-
compilation and support for non-software packages
(models, data sets) is still in progress.

• Docker, Kubernetes and other container-based tech-
nology is very useful to prepare and share stable
software releases. However, it hides all the software
chaos rather than solving it, has some performance
overheads, requires an enormous amount of space,
have very poor support for embedded devices and do
not help to integrate models to existing projects and
user data.

• PapersWithCode.com platform helps to find relevant
research code for published machine learning pa-
pers and keep track of the state-of-the-art machine
learning research using public scoreboards. However,
my experience suggests that sharing ad-hoc research
code is not enough to make research techniques re-
producible, customizable, portable and trustable.

While working with these useful tools and platforms I
realized that a higher-level API can help to connect them
into portable workflows with reusable artifacts that can

adapt to never-ending changes in systems and environ-
ments. That’s why I decided to develop the Collective
Knowledge framework (CK or cKnowledge) [23, 20] - a
small and cross-platform Python framework that helps to
convert ad-hoc research projects into a file-based database
of reusable CK components [13] (code, data, models, pre-
/post-processing scripts, experimental results, R&D au-
tomation actions [4], best research practices to reproduce
results, and live papers) with unified Python and REST
APIs, common command-line interface, JSON meta in-
formation and JSON input/output (Figure 2). I also
provided reusable API to automatically detect differ-
ent software, models and datasets on a user machine or
install/cross-compile the missing ones while supporting
different operating systems (Linux, Windows, MacOS,
Android) and hardware (Nvidia, Arm, Intel, AMD ...).

Such an approach allows researchers to create, share
and reuse flexible APIs with JSON input/output for dif-
ferent AI/ML frameworks, libraries, compilers, models
and datasets, connect them into unified workflows instead
of hardwired scripts, and make them portable [11] us-
ing automatic software detection plugins [15] and meta-
packages [14]. It also helps to make research more reliable
and reproducible by decomposing complex computational
systems into reusable, portable, customizable, and non-
virtualized CK components. Finally, the CK concept is
to be non-intrusive and complement, abstract and inter-
connect all existing tools including MLFlow, SageMaker,
Kedro, Spack, EasyBuild, MLPerf, Docker, and Kuber-
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Figure 3: Portable CK workflows with reusable components can connect researchers and practitioners to co-design
complex computational systems using DevOps principles while adapting to continuously changing software, hardware,
models and data sets. CK framework also helps to unify, automate and crowdsource the benchmarking and autotuning
process across diverse components from different vendors to automatically find the most efficient systems on the
Pareto frontier.

netes while making them more adaptive and system aware
rather than replacing or rewriting them.

My long-term objective is to provide a common re-
search infrastructure with different levels of abstraction
that can bridge the gap between researchers and practi-
tioners and help them to collaboratively co-design com-
plex computational systems that can be immediately used
in production as shown in Figure 3. Scientists can then
work with a higher-level abstraction of such a system
while allowing engineers to continue improving the lower-
level abstractions for evolving software and hardware
without breaking the system.

Furthermore, the unified interfaces and meta descrip-
tions of all CK components and workflows make it possi-
ble to better understand what is happening inside com-
plex and ”black box” computational systems, integrate
them with production and legacy systems, use them in-
side Docker and Kubernetes, share them along with pub-
lished papers, and apply the DevOps methodology and
agile principles in scientific research.

3 Collective Knowledge platform

During the past 4 years, CK has been validated in dif-
ferent academic and industrial projects as a portable and
modular workflow framework. CK helped to enable re-
producible experiments, optimize software and hardware
stacks for emerging AI, ML and quantum workloads,
bridge the gap between high-level ML operations and sys-

tems, and support MLOps [7]. The authors of 18 research
papers used CK to share their research artifacts and work-
flows at different ML&systems conferences [16].

While CK helped to automate benchmarking, opti-
mization and co-design of complex computational systems
and make it easier to deploy them in production [6] I also
noticed three major limitations:

• The distributed nature of the CK technology, the
lack of a centralized place to keep all CK APIs,
workflows and components, and the lack of conve-
nient GUIs made it very challenging to keep track
of all contributions from the community, add new
components, assemble workflows, automatically test
them across diverse platforms, and connect them
with legacy systems.

• The concept of backward compatibility of CK APIs
and the lack of versioning similar to Java made it
challenging to keep stable and bug-free workflows
in real life - any bug in a reusable CK component
from one GitHub project could easily break depen-
dent workflows in another GitHub project.

• CK command-line interface was too low-level and not
very user friendly.

The feedback from CK users motivated me to start
developing cKnowledge.io (Figure 4) - an open web-
based platform to aggregate, version and test all CK
components, APIs, and portable CK workflows. This
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Figure 4: cKnowledge.io: a prototype of an open platform to share and reuse all the basic blocks and APIs needed
to co-design efficient and self-optimizing computational systems, enable live papers validated by the community, and
keep track of the state-of-the-art machine learning and systems research with the help of portable workflows and
reproducible crowd-benchmarking.

is necessary to support collaborative and reproducible
ML&systems research and deploy ML models in produc-
tion across diverse systems, data sets and environments
from IoT to data centers. The CK platform is inspired
by GitHub and PyPI: I see it as a collaborative plat-
form to share reusable research APIs, portable workflows,
reproducible solutions, and associated reproducible re-
sults. It also includes the open-source CK client [8] to
provide a common API to initialize, build, run and vali-
date different research projects based on a simple JSON
manifest describing all CK dependencies and installa-
tion/execution/validation recipes for different tasks and
target platforms. Such a platform can be used to keep
track of reproducible and reusable state-of-the-art AI, ML
and systems research by connecting portable workflows
and reusable artifacts with live scoreboards to validate
and compare experimental results during Artifact Evalu-
ation at different conferences [9].

I believe that the combination of the CK framework
and the CK platform can make it easier to implement
and share portable workflows for research code assembled
from stable and versioned CK components with unified
APIs. Such modular workflows can help to keep track
of all the information flow within such workflows, expose
and modify all configuration and optimization parame-
ters via simple JSON input files, combine public and pri-
vate code and data, monitor system behavior, retarget
research code and machine learning models to different
platforms from IoT to cloud, use them inside containers,

integrate them with legacy systems, reproduce results,
and generate reproducible papers with live scoreboards.

4 Collective Knowledge use cases

As the first practical use case, I decided to convert all
artifacts, workflows and automation tasks from my past
research related to self-learning and self-optimizing com-
puter systems into reusable CK components. I shared
them with the community in CK-compatible Git reposi-
tories [5] and started reproducing my past research results
with new software, hardware, data sets and deep learn-
ing models [9]. I also implemented a customizable and
portable benchmarking and autotuning pipeline (work-
flow) that could perform software/hardware co-design in
a unified way across different programs, data sets, frame-
works, compilers and platforms as shown in Figure 5.

Such a pipeline helped to gradually expose different
design choices and optimization parameters from all sub-
components (models, frameworks, compilers, run-time
systems, hardware) via unified CK APIs and enable the
whole system autotuning. It also helped to keep track of
all information passed between sub-components in com-
plex computational systems to ensure the reproducibility
of results while finding the most efficient configuration on
a Pareto frontier in terms of speed, accuracy, energy and
other characteristics also exposed via unified CK APIs.

I then decided to validate the CK concept of reusabil-
ity by using the same pipeline in another collaborative
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Figure 5: Reusable benchmarking and autotuning pipeline assembled from portable CK components with unified
APIs.

project with the Raspberry Pi foundation. The practi-
cal task was to crowdsource compiler autotuning across
multiple Raspberry Pi devices to improve their perfor-
mance. CK helped to automate experiments, collect per-
formance numbers on live CK scoreboards, and plug in
CK components with various machine learning and pre-
dictive analytics techniques including decision trees, near-
est neighbor classifiers, support vector machines (SVM)
and deep learning to automatically learn the most effi-
cient optimizations [24]. It also demonstrated the possi-
bility to reduce the growing technology transfer gap be-
tween academia and industry by reusing portable work-
flows that can adapt to evolving systems and can be in-
tegrated with existing and legacy projects. For exam-
ple, the same pipeline was successfully reused by Gen-
eral Motors to collaboratively benchmark and optimizing
deep learning implementations [6] and by Amazon to en-
able scaling of deep learning on AWS using C5 instances
with MXNet, TensorFlow, and BigDL from the edge to
the cloud [27]. Finally, my CK autotuning pipeline was
reused and extended by dividiti to make it easier to pre-
pare, submit and reproduce MLPerf inference benchmark
results [10].

5 Collective Knowledge demo:
automating, sharing and repro-
ducing MLPerf inference bench-
marks

I prepared a live and interactive demo of the CK solu-
tion that automates the MLPerf inference benchmark,
connects it with the live CK dashboard and crowdsource
benchmarking across diverse platforms provided by vol-
unteers similar to SETI@home: cKnowledge.io/demo.
This demo shows how to use CK APIs to automatically
build, run and validate object detection based on SSD-
Mobilenet, TensorFlow and COCO dataset across Rasp-
berry Pi computers, Android phones, laptops, desktops,
and data centers. This solution is based on a simple JSON
file describing the following tasks and their dependencies
on CK components:

• prepare a Python virtual environment (can be

skipped for the native installation),

• download and install the Coco dataset (50 or 5000
images),

• detect C++ compilers or Python interpreters needed
for object detection,

• install Tensorflow framework with a specified version
for a given target machine,

• download and install the SSD-MobileNet model com-
patible with selected Tensorflow,

• manage the installation of all other dependencies and
libraries,

• compile object detection for a given machine and pre-
pare pre/post-processing scripts.

This solution was published on the cKnowledge.io plat-
form using the open-source CK client [8] to help users to
participate in crowd-benchmarking using their own ma-
chines as follows:

1. install CK client from PyPi using:

pip install cbench

2. download and install the solution on a given machine
(example for Linux):

cb init demo-obj-detection-coco-tf-cpu-benchmark-
linux-portable-workflows

3. run the solution on a given machine:

cb benchmark demo-obj-detection-coco-tf-cpu-
benchmark-linux-portable-workflows

The users can then see their measurements (speed, la-
tency, accuracy and other exposed characteristics) and
compare them against the official MLPerf results or
with the results shared by other users with the help
of the live CK dashboard associated with this solu-
tion: cKnowledge.io/result/sota-mlperf-object-detection-
v0.5-crowd-benchmarking.

After validating this solution on a given platform, the
users can also clone it and update the JSON description
to retarget this benchmark to other devices and operating
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systems such as macOS, Windows with Docker, Android
phones, servers with CUDA-enabled GPUs, and so on.

Finally, the users can integrate such ML solutions
with production systems with the help of unified CK
APIs as demonstrated by connecting above CK so-
lution for object detection with the webcam in the
browser: cKnowledge.io/solution/demo-obj-detection-
coco-tf-cpu-webcam-linux-azure.

6 Conclusions and future work

My very first research project to prototype semiconductor
neural network stalled in the late 90s because it took me
way too long to build all the infrastructure from scratch
to generate data sets, train neural networks, prepare and
optimize hardware, run all experiments and optimize the
NN implementation. Since then, I have always been look-
ing for solutions to enable more efficient computer sys-
tems and accelerate ML&systems research.

I have developed the CK framework and cKnowledge.io
platform to bring DevOps, MLOps, reusability and ag-
ile principles to ML&systems research, and connect re-
searchers and practitioners to co-design more reliable, re-
producible and efficient computational systems that can
adapt to continuously changing software, hardware, mod-
els, and data sets. I hope that CK will help to share and
reuse best practices and pack research techniques and ar-
tifacts along with research papers to make it easier to
reproduce results and deploy them in production. I also
want to enable ”live” research papers by connecting CK
workflows with live dashboards to let the community re-
produce results, detect unexpected behavior, and collab-
oratively fix problems in shared workflows and compo-
nents [24].

However, CK is still a proof-of-concept and there is a lot
to be improved. For example, I would like to make it more
user friendly, standardize APIs and JSON meta descrip-
tions of all CK components and workflows, and develop a
simple GUI to share CK components, assemble workflows,
run experiments, and compare research techniques simi-
lar to LEGO. My dream is to use CK to build a virtual
world (playground) where researchers and practitioners
assemble AI, ML and other novel algorithms similar to
live species that can continue to evolve, self-optimize and
compete with each other across devices and data provided
by volunteers. At the same time, the winning solutions
with the best trade-off in terms of speed, latency, accu-
racy, energy, size, and costs can be simplify picked from
the Pareto frontier at any time and immediately deployed
in production thus accelerating AI, ML and systems re-
search and making AI practical.

Software and Data

All code and data can be found at cKnowledge.io under
permissive license.
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