macnine iearning basea researcn compler

Grigori Fursin Mircea Namolaru Phil Barnard Eric Courtois Edwin Bonilla
Cupertino Miranda Elad Yom-Tov Elton Ashton Francois Bodin John Thomson
Olivier Temam Ayal Zaks Hugh Leather

Bilha Mendelson Chris Williams
INRIA Saclay, France France Michael O'Boyle

IBM Haifa, Israel

ARC International CAPS Enterprise

N ~nf EArnhiirabh T ik

Motivation Challenges

Current state-of-the-art compilers often fail to deliver Optimization spaces (set of all possible program transformations)
Tuning hardwired compiler optimizations for rapidly best performance due to: are large, non-linear with many local minima
evolving hardware makes porting an optimizing I
compiler for each new platform extremely » hardwired optimization heuristics (COSt models) for
challenging. Our radical approach is to develop a rapidly evolving hardware (often impossible to fine- Finding a good solution may be
modular, extensible, self-optimizing compiler that tune programs externally) long and non-trivial
automatically learns the best optimization heuristics * interaction between optimizations matmul. 2 transformations
based on the behavior of the platform. In this poster * large irreqular optimization spaces searc,:h space = 2000 ’
we describe MILEPOST™ GCC, a machine-learning- « difficult to add new transformations to already tuned _ _
based compiler that automatically adjusts its optimization heuristics swim, 3 transformations,
optimization heuristics to improve the execution time, * Inability to reuse optimization knowledge among search space = 10+
code size, or compilation time of specific programs different programs and architectures
on different architectures. Our preliminary » lack of run-time information and inability to adapt to
experimental results show that it is possible to varying program and system behavior at run-time with Iterative compilation:
considerably reduce execution time of the MiBench low overhead learn program behavior across executions
benchmark suite on a range of platforms entirely : : , : .
automatically. Need modular self-tuning compilers that can Hl_gzlgvc\)/tentlal (O'Boyle, Cooper since 1995), but;
continuously and automatically learn how to optimize - the same dataset is used
* MILEPOST Project - Machlne Learning for programs, and have an ability to make program - no run-time adaptation
Embedded PrOgramS opTimization adaptable at run-time for different behavior and - no optimization knowledge reuse
http://www.milepost.eu constraints

Solving these problems is non-trivial

6CC IC Plugins

MILEPOST Framework

file: ic-framework.c file: save-executed-passes.c (IC Plugin) file: passes.c
f MILEPOSTGCC \ f cce \ _ High-level scripting seticint tinclude includefic-controllr boo!
- ngmm f“fl"ﬂl ICl and ML l"ﬂﬂﬁ"&S) Continuous Collective GCC with ICI ﬂ'ﬂ'l"’ﬂ, pﬁh Ll EII:} load _ici fchar *dynlib_file) tinclude "/ /gccigooic-interface.h” execute_one_pass (SIructiree_opt_pass *pass)
! s ~N Compilation Framework J - pass vois fﬂ o
Ic Pfugins - void executed _pass (vo ool initializing_dump;
5 — | | === (- fepuane ot e
§ - o Fecodngpass L) || e w0° <Dynamicaly linked | st s -
- and model shared libraries> ICILib = diopen(dynlib_file, RTLD_LAZY); gate_status = (pass->gate == NULL) ? true :
ngmm L{ Extracting static W__F_J / training > - Selectin B error |= check_for_dlerror{); M lterate through passes {obtained as features) pass-=gate(); T = -
-] program features : gp * o save original GCC pass order */ T~ -
b \ _) i SEQHEHI:ES ici_start = (func) disym{ ICILib, "start"); ici_ragister_parameter("gate_status", &yan% status);
K j &) e - error |= check_for_dlerror(); k func_name = (char *) ici_call_event{"avoid_gate”);
\ ,-/ E GGC c ontro HEI" Ic Extrat:ﬁng sraﬁ::] ici_stop = (func) disym{ ICILib, "sm::l"}’in‘"‘L ici_get_feature("function_name"); ici_unregister_parameter{"gate_status");
i error |= check_for_dlerror();
) / P e \ / \ ifFass Manager)| Event e & program features \\ oss. rame— char i toate o)
5 ¢ A\ m— ——— Compilatn i f \ T = <
Extracting static o " Interface f repjeser porsmetertpdts name”, (void*
E-. / exec.time, code size and Cﬂnﬂf’”?”‘g Collective ‘u ¥ ici_call_event("pass_execution”);
g \[Selecting "good” passes]' comp. time Compilation Framework char start (void) ~ =" ici_unregister_parameter("pass_name");
/N 4 (" ML drivers f 2
~ \) 10 Op rfmhe it:f_remsrer_evemr'p?ss_exer:uﬁun', &
pmgmms } &execured_pass);
andtune . .
Training: Gathering information about the structure of GCCDataLayer | IC compiler Modifications needed to enable GCC ICI:
rograms and record how they beh hen compiled under S curitc.
programs and record how they behave when complied unde \ / \ heuristic ic-framework.c: GCC plugin (dynamic library) invocation
different optimization settingsto build machine learning models. / . .
_ _ ST save-executed-passes.c: Plugin to monitor executed passes. It
Deployment: ML model is able to predict good optimization The ICI provides opportunities for external control and registers an event handler function executed_pass on an IC-Event
strategies for a given set of program features and is built as a examination of the compiler. Optimization settings at a called pass_execution.
lugin within MILEPOST GCC. ine-qgrai iliti i g .
piug f'nfj grained level, beyon%the Capab'clj'tt'ﬁs of ﬁolrgmlanc_j ine passes.c: Modifications in GCC Controller (Pass Manager) to
options or pragmas, can be managed throug plugins. enable manipulation with optimization passes.

A e

Optimization selection

THH e

Using Interactive Compilation Interface we can conduct e 14 s
research on optimization pass selection and reordering Caal - N :Z -

fixupcfg,init_datastructures,all_optimizations, ... ,retslot,copyrename,ccp, ...,dce,dom,phicprop,phiopt alias,tailr,
profile,ch,...,alias,copyrename,dom,phicprop,reassoc,dce,dse,alias,,copyprop,lim,unswitch,....cunroll,ivopts,

= T
1.3] § 1.1 H
2- G 1T
loopdone,reassoc,vrp,dom,phicprop,cddce,dse,forwprop,phiopt tailc,copyrename,uncprop,optimized,cse1, 11 09
gcsel,bypass,ce,...final, clean_state ik 1R ' H ‘|V] 0.8 [
i S X
o 5
é x
3

speedu

N s = o
Oitcouns s
[

I—I Ih 1 1
Sequence of compiler passes for -03 ' ' ' o ¥ o o o © T & & BV © T o & o T N £ 5 = O
-~ 30] <
' N o , ' ' , ' o © o O T T o T o o T N - =y I&l / I & & & & <l Sl ;5 / I3 & E S o
fixupcfg,init_datastructures,all_optimizations, ...,retslot,ccp,...,dce,phioptalias,profile,ch,...,alias,reassoc,dce,alias,..., s & & / 8,’ g < ! EI 3/ EI EI 8 g§ g’ ~§ _§ &> ,,‘,g g d'?) &9’ é’,’ ;’g » 9 .é? .é%’ g g 5 & é’ 5 o
cunroll, loopdone,reassoc,vrp,cddce,forwprop,phiopt,optimized, ..., csel,ce1,...,loop2_unroll,loop2_done,web,cse2, S & & S o X L 9 g & a [3) g & & 3 g g g S S ¥ Q9 ; E g £ 'oQ ~§~ é‘,’ q>'
. 3 5 =1 S S $; ; S < S .cQ O Q Q En E~] (] o))
life1,combine,ce2, regmove,split!,mode-swlife2,sched1,...final,clean_state w w o S & S S s ® 8 S 3 g
. . 3 Q L)
Sequence of GCC passes for the “good” set of compiler flags (ISSUE with UNROLLING, PEELING) Sy @
(7))

O AMD - a cluster with 16 AMD Athlon 64 3700+ processors running at 2.4GHz

I —————————————————————— B IA32 - a cluster with 4 Intel Xeon processors running at 2.8GHz O Iterative compilation B Predicted optimization passes using ML and MILEPOST GCC
Fe a‘ru r‘e e x"'r'ac'r i o n O 1A64 - a server with an ltanium2 processor running at 1.3GHz

_ _ We generate training data using Continuous Collective Once ML model is built, we can evaluate it by introducing a

We can now add new passes that are not included into default compilation Framework. We select 500 random sequences of new program to a system and measuring how well the
optimization heuristic but called through ICI and plugins: flags (or associated passes) either turned on or off. We can prediction performs. This graphs shows the speedups

ft1 - Number of basic blocks in the method already achieve considerable speedups across all platforms, obtained on ARC725D after iterative compilation (500

t20 - Number of conditional branches in the method however it is very time-consuming process motivating the use iterations) and after 1 prediction. It demonstrates that except

ftz1 - Number of assignment instructions in the method of machine learning to automatically build specialized compilers a few pathological cases using CCC Framework, MILEPOST

ft25 - Average of number of instructions in basic blocks and predict the best optimization flags or sequences of passes GCC and Machine Learning Models we can improve original

ft55 - Number ofst;;ic/extern variables that are pointers in the method for different arChiteCtureS' ARC GCC by around 1 1%

/

s

Future work

More information

- continue research on pass selection and reordering for
reconfigurable processors and design space exploration

- improve and automate selection of static and dynamic

(hardware counters) program features

Project news: http://www.milepost.eu
GCC-ICI: http://gcc-ici.sourceforge.net

010
111

- use ICI for adaptive libraries MILE-POST UNIDAPT: http://unidapt.org COMPILATION

- enable run-time adaptation and parallelization for static

\programs Extended version (GCC Summit'08): http://unidapt.org/papers/fmtp2008.pdf /

http://www.milepost.eu/
http://gcc-ici.sourceforge.net/
http://unidapt.org/
http://unidapt.org/papers/fmtp2008.pdf
http://www.milepost.eu/

