
cTuning.org
Collaborative initiative to create open-source repository
and tools to share and reuse knowledge about designs

and optimizations of computer systems Grigori Fursin

Current public version of cTuning infrastructure

Machine learning based compilers (cTuning CC/MILEPOST GCC)

Empirical analysis and auto-tuning using Interactive Compilation Interface (ICI)

Machine learning based run-time adaptation for self-tuning computing systems

cTuning long term interdisciplinary vision

Take the best of existing sciences that deal with complex systems:
computer science, physics, mathematics, chemistry, biology, etc

cTuning framework includes methodology, tools, and repository to
systematize, quantify, unify and automate architecture and code design, optimization

and run-time adaptation based on empirical, analytical and statistical techniques
combined with learning, classification, predictive modeling and expert advice web services:

• Extensible and collaborative infrastructure and repository to record the information flow within
computer systems
• Continuous data collection and sharing from multiple users
• Collection of unified benchmarks and datasets
• Continuous exploration of multiple design and optimization dimensions
• Data mining techniques to correlate program and architecture features and optimizations
• Embeddable web-services to suggest program optimizations or architecture designs
• Possibility to share and reproduce experimental results (particularly for academic publications)

Major publications available at http://fursin.net/research and include IJPP’11, ACM TACO’10, PLDI’10, CASES’10, HiPEAC’10,
MICRO’09, HiPEAC’09, CGO’07, HiPEAC’07, CGO’06, HiPEAC’05, PhD thesis’04, LCPC’02, CPC’01, etc.

Main challenges (2012-2018)

Performance is no longer the main requirement for new computing systems-multiple objectives must be carefully balanced:
power consumption, reliability, bandwidth, size, response, portability, design time, various costs

Too many dimensions and choices for code and architecture design and optimization:
parallelization and data partitioning; scheduling on heterogeneous architectures with NUMA; contention-aware
scheduling in data centers; high-level algorithm tuning; multiple compiler optimizations; polyhedral transformations;
instruction-level optimizations; run-time phase-aware optimizations; run-time architecture reconfiguration; multiple ISA
extensions

Complex relationships between all components:
not straightforward to correlate multiple objective functions with multiple design choices and optimizations

ADAPT or EXTINCT: the time to build self-tuning computer systems ranging from mobile devices to exascale data centers and supercomputers!

Current and future work (contact Grigori Fursin for more details):

 Redesigning cTuning based on user feedback and new research ideas

 Major upgrade with a focus on (heterogeneous) multicore systems;
 Open source release of cTuning2 framework in expected in summer 2012;
 Sponsorship and industrial support are very welcome!

Contact and further information: Grigori Fursin (cTuning founder and R&D leader)

 grigori.fursin@inria.fr

 http://fursin.net/research (publications, projects, presentations)

 http://cTuning.org (tools, benchmarks, datasets, web-services, collaborative wiki)
 http://groups.google.com/group/ctuning-discussions (public discussions)

Continuing innovation in science and technology is vital for
our society and requires ever increasing computational
resources. However, delivering such resources became

intolerably complex, ad-hoc, costly and error prone due to
multiple fundamental reasons:

Using outdated, non-adaptive technology results in an enormous waste of
expensive computing resources and energy, while considerably slowing down

time to market for new technology.

Current design and optimization methodology has to be dramatically
revisited particularly to achieve Exascale performance!

First proof-of-concept version of cTuning infrastructure has been actively used in EU FP6 MHAOTEU project and released
in 2009. It includes several empirical auto-tuning tools and machine learning compiler (cTuning CC and MILEPOST GCC)

connected to online repository through unified interfaces. cTuning infrastructure has been used and extended by
industry and academia. It is currently undergoing major upgrade, following Grigori Fursin’s return from industrial

sabbatical at Intel Exascale Lab in 2012.

Instead of building new source-to-source or
binary-to-binary analysis and optimization

infrastructure from scratch, we proposed to
“open up” and reuse existing production

compilers (Open64 and GCC) and tools using
light-weight event-based plugin framework.

In 2010, ICI has been added to the mainline GCC.
We currently investigate possibilities to open up LLVM.

ICI enables transparent for end-users empirical
multi-objective auto-tuning (exploration of
large optimization spaces) and extraction of

program features for further correlation using
machine learning techniques.

http://fursin.net/research

We developed novel concept to statistically
characterize programs and architectures similar to
physics through reactions to optimizations or even
semantically-non equivalent code modifications
(removing or adding individual instructions or code segments: for
example to detect memory and cache bottlenecks or contentions –
see our publications for more details)

First proof-of-concept machine learning compiler connected with cTuning database through unified web-services has
been released in 2009 (see IBM’s world wide press release “World's First Intelligent, Open Source Compiler Provides
Automated Advice on Software Code Optimization”) . Since then, it has been extended within multiple collaborative

projects and Google Summer of Code program. In 2012, cTuning CC will be undergoing major upgrade. More info can be
found at http://cTuning.org/ctuning-cc

Proof-of-concept version of UNIDAPT framework for run-time adaptation has been extended within several collaborative
projects funded by HIPEAC and ICT, and within Google Summer of Code (“Predictive runtime code scheduling for
heterogeneous architectures”, “Collective Optimization: A Practical Collaborative Approach”). In 2012, UNIDAPT

framework will be undergoing major upgrade. More info can be found at http://cTuning.org/unidapt

Collecting data from multiple
users in a unified way allowed us

to continuously apply various
data mining (machine learning)

techniques to correlate program
and architecture behaviour, static
and dynamic features, designs and

optimizations.

We use continuously updated
predictive models (accessible

through online web-services) to
quickly suggest better

optimizations for a given user
program, dataset and architecture

to balance multiple objectives
such as performance, power,
compilation time, code size…

Using statistical and machine

learning techniques on the

continously collected data

allows to detect representative

sets of optimizations that cover

varying program behavior due

to different datasets, run-time

local and system behavior, etc.

Combined with UNIDAPT

framework (see HiPEAC’05,

TACO’10), we can now create

self-tuning binaries and libraries

that can automatically select

appropriate optimizations or

reconfigure architectures as a

reaction to different program

behavior, architectural changes,
contentions, etc.

