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Abstract

In many cases� compiler�based optimizations for memory performance tuning are too limited and programmers

have to resort to manual optimization techniques� However� this process is tedious and time�consuming� especially

since there is no indication on when the process can stop� i�e�� when optimal memory performance has been achieved

or su�ciently approached� Architecture simulators can provide such information but designing an accurate model

of an existing architecture is very di�cult� and simulation times are excessively long� In this article� we propose a

technique that is both fast and reasonably accurate for estimating the memory performance upper�bound of many

scienti�c applications� This technique has been tested on several programs and can be used to guide a manual

optimization process� or even to drive iterative compilation techniques�

� Introduction

Memory optimization can bring signi�cant performance improvements but compiler memory optimizations
are still very limited because of the increasing complexity of memory and processor architecture� Up to now�
compilers assume a rather simpli�ed version of the memory hierarchy� registers and the �rst�level cache�
Some other components are naturally considered in production compilers but the model implicitly used
is necessarily far less complex than a full�blown memory system which includes� registers� di�erent cache
levels� TLB� write�bu�ers� buses� mainmemory� interactions with the operating system and between di�erent
processes� � �Moreover� interprocedural locality analysis is still in its infancy� so the scope of optimization
techniques is often restricted to a single procedure� Overall� memory architecture conscious optimization of
a program remains limited�

Therefore� whenever performance is at stake� manual program optimization remains a necessary comple�
ment for improving performance� Economics can also require that a program be �nely optimized� e�g�� a ���
execution time reduction on a critical application run on a farm of 	

 workstations �or an SMP with 	


processors� would require �� less workstations or processors with metacomputing� a ��� gain on an appli�
cation can translate into hundreds or thousands less machines necessary� In practice� manual optimizations�
as performed by hundreds of engineers� is a trial and error process� a program transformation is applied� the
program performance is evaluated� a new transformation is applied after analysis and so on� � � This process
can be long and tedious� requiring days� weeks or months depending on the program and the performance
goal� While this is acceptable in an academic environment� �engineer months� are very expensive in industry�
Consequently� companies would basically invest into a task without clear indication on how long it will take�
when it should stop and what is the potential return on investment�

These very practical considerations actually translate into a technical issue� we must �nd a way to
estimate beforehand the potential bene�t of memory program optimization� i�e�� how much the execution
time will improve after the whole transformation process is performed� While it is di�cult to provide an
accurate value of the expected execution time beforehand� we can seek a lower bound of the execution time�
Moreover� if we can obtain this lower bound quickly� we can compute it at each step during the iterative
manual optimization process� and decide whether we are close to the execution time lower bound or if it is
worth carrying on�

	



A program memory performance upper�bound can be de�ned here as a program with no miss� Other
memory parameters than misses naturally play an important role in program performance� but most opti�
mizations target misses �	�� �� 	���� � � so an upper bound must focus on this criterion if it is to be used to drive
an iterative optimization process� Note also that the minimum number of misses in a program is not zero
�i�e�� �no miss�� but the number of compulsory misses however� the fraction of compulsory misses is almost
always negligible compared to capacity and con�ict misses �	
� 	��� Until recently� deducing the no�miss
execution time from the normal execution time would have been rather easy using hardware counters ����
the execution time minus the number of misses �as recorded by hardware counters� times the latency would
provide with the optimal execution time� However� superscalar processors now have non�blocking caches�
out�of�order execution and complex memory hierarchies �		� which all make it impossible to deduce the
no�miss execution time based on the normal execution time and the number of misses�

Processor simulators� like SimpleScalar ���� provide a simple means to compute this memory performance
upper�bound� it is trivial to modify a processor simulator so that it mimicks a perfect cache behavior�
However� processor simulators have two severe drawbacks�

�	� they only model the processor while the whole system can have a strong impact on memory perfor�
mance� the way the TLB is reloaded� the bus arbitration mechanism� the physical to virtual mapping in lower
cache levels� the type of memory �SDRAM� DDRAM� � � �� cache interferences between several processes run
concurrently and numerous other speci�c architecture�dependent issues� � �Consequently� we need a system
simulator rather than a processor simulator� First� system simulators like SimOS �	�� are far less widespread
and mature than processor simulators� Second� it is already very di�cult to develop a processor simulator
that accurately models an existing processor without privileged access to the processor internal workings ����
so that an accurate system simulator would require a huge e�ort to accurately model the chipset� the memory
chips� the operating system and all other components�

��� a processor simulator is extremely slow� a simulated program on a current superscalar processor
several hundreds times slower than the normal execution ���� On a system simulator a �


�fold slowdown or
more is likely� Whether the simulator is used only once at the beginning of the optimization process or worse�
at each step� such a slowdown is barely acceptable for many programs and not tolerable for applications
whose execution time exceeds a few minutes �which is the case for many performance�critical applications��

Consequently� because we need to take into account the whole system architecture� and because we
cannot a�ord excessively long delays� simulators do not provide a satisfactory means� for our purposes� for
computing the performance upper�bound� In this article� we propose a technique that is both fast and
reasonably accurate for estimating the memory performance upper�bound of a class of programs� where
control structures are do�loops and data structures are arrays� which is the case for many performance�
critical scienti�c applications� This technique has been tested on several programs and our �nal goal is to
implement into a production compiler so that it can be used for manual optimization purposes� This research
was part of the European Esprit projet MHAOTEU �Memory Hierarchy Analysis and Optimization Tools
for the End�User��

� Principles

The general idea of our technique is to modify the program so that it retains almost all the characteristics of
the original program but induces almost no miss� Therefore� the execution time of the instrumented program
would provide the performance upper�bound of the original program once all cache misses have been solved�

Removing misses� In a program where do�loops and arrays dominate� almost all misses are due to
array references within loops� Let us assume now that all these array references are transformed into scalar
references� Then the memory footprint of the resulting program would be negligible compared to the original
footprint and the cache size� and the number of misses would be close to 
� The baseline of our technique is
to transform each individual array reference into a scalar reference� The real challenge is to make sure that
this transformation will not a�ect the rest of the program characteristics and its execution on a superscalar
processor�

Let us consider array reference A�i� in the following loop�



DO i � �� N

��� � A�i�

ENDDO

After compiling on a Compaq Alpha EV�� this reference would be translated as follows in assembly code�

��������

lda

���� �	���


ldt

�f��� 	���


��������

where register �� contains the current target address of the load instruction� i�e�� the base address of array
A plus loop counter i times the size of one memory element �� bytes in this example� lda is a misleading
acronym� it is not a load instruction but an add instruction dedicated to address computations� So in this
case� it increments register �� by � to fetch the next element of array A� The load instruction is ldt which
will fetch the data located at the address stored in register �� into register f��� These two instructions
combined correspond to array reference A�i��

Assume now that we modify the lda instruction as follows�

��������

lda

���� �	���


ldt

�f��� 	���


��������

where only the o�set has been modi�ed� the � has been replaced with a 
� All the instructions are the
same� the same number of computations is performed and the register dependences have not been
modi�ed� But now the address referenced by instruction ldt is constant over the whole loop execution�
Consequently� the memory footprint of reference A�i� is reduced from N � � bytes to just � bytes�
Considering the minimum cache size is around � kbytes� and that the number of references is usually much
smaller than 	


 in do�loops� the memory footprint of do�loops where array references have been
transformed as above will almost always �t in cache and then only induce as many cold�start misses as the
number of array references in a loop� which is negligible�
Correct code execution� Naturally� once the code has been transformed as above� it does not execute
properly anymore� Therefore� we make a copy of each procedure� for each procedure proc� we create a
procedure procmpc which is then instrumented as explained above� First� the instrumented procedure is
executed� then the original procedure is normally executed to enable normal program execution� However�
the instrumented procedure can still modify variables used by the original procedure� so we add a backup
and a restore procedure respectively before and after the instrumented procedure� The purpose of these
procedures is simply to backup and then restore all variables �constants and array references� that will be
modi�ed by the instrumented procedure� Recall that array references become constants� so that only a
small fraction of the original data set is a�ected and needs to be backuped�restored� Finally� the execution
time of the program without misses� i�e�� the upper�bound� is obtained by summing the execution time of all
instrumented procedures and ignoring the normal� backup and restore procedures�
Consider procedure calc from the SpecFP�


 program SWIM� The original code is the following�



SUBROUTINE CALC�

���

DO ��� J���N

DO ��� I���M

UNEW�I���J� � UOLD�I���J��

UNEW�I���J� � UOLD�I���J��

� TDTS	
�Z�I���J����Z�I���J��
�CV�I���J����CV�I�J����CV�I�J�

� �CV�I���J���TDTSDX
�H�I���J��H�I�J��

VNEW�I�J��� � VOLD�I�J����TDTS	
�Z�I���J����Z�I�J����

� 
�CU�I���J����CU�I�J����CU�I�J��CU�I���J��

� �TDTSDY
�H�I�J����H�I�J��

PNEW�I�J� � POLD�I�J��TDTSDX
�CU�I���J��CU�I�J��

� �TDTSDY
�CV�I�J����CV�I�J��

��� CONTINUE

���

The transformed code is the following� where calcmpc is the instrumented procedure�

SUBROUTINE CALC�

���

CALL CALC�SAVE

CALL CALC�MPC

CALL CALC�RESTORE

���

DO ��� J���N

DO ��� I���M

UNEW�I���J� � UOLD�I���J�����

���

��� CONTINUE

calcmpc is instrumented at the subroutine level� and only the following assembly instructions have been
a�ected in the inner loop body� in addition to similar instructions in the outer loop� These instructions
correspond to the above mentioned array references�

���

�loc � ��

lda �	� ���	�

lda ��� �����

lda ��� �����

lda ��	� ����	�

lda ���� ������

lda ���� ������

lda ���� ������

lda ��� �����

�loc � ���

lda ���� ������

�loc � ���

���

�loc � ��

lda �� ����

���

The backup and restore procedures are directly written in assembler because a single source array reference
can result in multiple load�store instructions� The procedures are shown below�



�mpc�start�save

ldiq �� �x���b����

ldq�u ��� 	�


ldiq �� �x��be�f�c�

stq�u ��� 	�


���

ldiq �� �x������d��

ldq�u ��� 	�


ldiq �� �x��be�f���

stq�u ��� 	�


�mpc�end�save

calc�save

�mpc�start�restore

ldiq �� �x��be�f�c�

ldq�u ��� 	�


ldiq �� �x���b����

stq�u ��� 	�


ldiq �� �x��be�f���

ldq�u ��� 	�


ldiq �� �x������d��

stq�u ��� 	�


�mpc�end�restore

calc�restore

� Experiments

��� Experimental Framework

All experiments were performed on a Compaq Alpha EV��� The Alpha EV�� is clocked at ���MHz� and it
is ��way superscalar� out�of�order� with an ��Mbyte second�level cache�
For our experiments� we have instrumented the most time�consuming routines of four SpecFP�



programs� ����swim� ���mgrid� ����applu and ����equake all programs were run using the Spec ref
data set� On a �rst pass� we copied each routine� inserted the calls to the backup� instrumented and restore
routines� and the assembly�level modi�cations were performed on a second pass� We have developed an
automatic tool for both passes� However� all instrumentations could be easily performed in a production
compiler where all the necessary information is already well�known �location of array references� and
expressions of the subscripts�� so adding the upper�bound computation capacity in a production compiler
would be rather simple� Note also that the way the instrumentation is performed� a single run is su�cient
to get both the normal program results and execution time as well as the upper�bound execution time�
with a reasonable overhead �at most a slowdown of ���

��� Experimental results

We show in the table below the upper�bound IPC and the expected IPC for all the instrumented
procedures� We can see that the expected percentage of improvement varies wildly� and that in some cases�
it is very high� For instance� the potential speedup for SWIM is ��	� while for MGRID it is only 	����
Obviously� the memory system has a tremendous impact on SWIM performance� Hardware counters ��� ��
would provide this information just as fast but they cannot quantify the performance gain that can be
achieved if misses are removed� So� besides application to program optimization� this technique is an
analysis tool that provides a means for evaluating the true impact of memory systems on overall program
performance�

Program Procedures Original IPC IPC after Potential
instrumentation improvement �speedup�

����SWIM calc� 
��	 	��� ����
calc 
��� 	��� ���	
calc� 
��� 	��	 ���


���MGRID resid 	��� 	��� 	���
psinv 	��� ��

 	���

����APPLU jacld 	�	� ��
� ����
����EQUAKE smvp 
��� 	��� ���	



IPC �Instructions Per Cycle��

To fully validate the fact that the instrumentation only a�ects memory behavior and that the upper�bound
can e�ectively be interpreted as a memory performance upper�bound� we have performed an additional
experiment using a full processor simulator� Using SimpleScalar ��� we modeled a superscalar processor
with similar characteristics as the Alpha EV�� �however this is not an accurate model of the EV��� we can
only state that it has roughly the same characteristics�� We modi�ed the simulator so that the cache and
the TLB are perfect� i�e�� all memory requests hit in the �rst�level cache and the TLB� Then� we have run
both the original and the instrumented SWIM code on this simulator� Since the memory system is perfect�
if both programs di�er only in terms of memory behavior� their performance on the processor simulator
with a perfect cache should be nearly identical� Results in the table below con�rm that instrumentation
barely a�ects the overall program behavior� Finally� we have run the same programs on the same simulator
but with a normal cache� and we can see that the di�erence between both programs becomes very high
both in terms of IPC and cache�TLB miss ratio�

Original program Transformed program

Normal cache ���� ��
�
Perfect cache and tlb ���� ��
�

IPC �Instructions Per Cycle��

Original program Transformed program

Number of L	 accesses �����
���
� �����	����	
L	 Miss ratio ����� 
�
�

Number of TLB accesses �����
���
� �����������
TLB Miss ratio 
��� 
�
�

Cache behavior �normal cache��

��� Guiding Optimizations

We have examined one program� SWIM� in more details and attempted to optimize it by hand� We have
applied a large array of transformations� blocking� padding� loop merging� forward substitution�� � �The
table below shows the execution time of the original program� the manually optimized program� and the
upper�bound �counting only the instrumented procedures��

Original Manually optimized Upper�bound
	
���	 ����
 ����	

Execution time in seconds�

These results show that additional improvements potentially exist� beyond what we have already achieved�
though the main limitation of our technique is that we provide an upper�bound� not a maximum� so we do
not know whether it is possible to achieve this performance threshold� However� the technique provides an
estimate of the potential gain� and while a small potential gain clearly means it is not worth pursuing the
optimization e�ort� a large potential gain is an additional motivation� For instance� this is re�ected in �	��
using iterative compilation techniques where a �
� improvement was achieved on SWIM and only 	
� on
MGRID� i�e�� a trend similar to the potential improvements of SWIM and MGRID indicated above�
Note also that the current technique would �t nicely in an iterative compilation framework� The goal of
iterative compilation is to explore a large optimization space of the application without knowledge of the
target machine� and to �nd out the optimal optimization sequence within that space� In practice� however�
since the number of transformations is potentially in�nite� the transformation space is necessarily
restricted �	��� Using the method described in this article we may target those sections of the application
pogram which have the potential to be improved so as to reduce the transformation space to be searched�
Thus our method both gives a memory performance upper�bound and information on whether an
application has a memory problem or not since� for example� all memory accesses may be hidden by
intensive computations on out�of�order execution processors�



� Caveats

The techniques mentioned above raise several issues that can sometimes complicate their implementation�

� With the Compaq Alpha compiler� the loop index� in the above examples� is usually distinct from the
array reference register index� If the loop index were the same as the array reference register index�
we would need an additional register to perform the same transformation since it is not possible to
set the loop iteration increment as 
� However� besides that di�culty� it is likely this technique can
be easily ported to other environments� especially if we have access to the production compiler�

� The scope of the techniques is restricted to loops and array references� It still encompasses a large set
of Fortran codes� including sparse codes with indirect array references �the increment of the index
array would then be set to 
�� However� if a loop body contains a branch instruction� especially a
branch instruction that depends on array values� then the technique cannot be applied as is� One
solution is to evaluate the probability distribution of the branch outcome and then modify the test so
that the branch outcome is generated by a random variable with this probability instead of the
original test� This solution can perform reasonably well but it is partly satisfactory since the
instrumented code instructions are not strictly identical to those of the original code� as for the loop
bodies without branch instructions� Fortunately� a signi�cant share of program loops in Fortran
programs do not contain conditional branch instructions that depend on a value computed within the
loop body�

� Superscalar processor architectures can include load�store queues that are designed to avoid
consecutive accesses to identical memory addresses� For instance if a load to address A is issued after
a store to A was performed and the store instruction is still in the queue� the load can directly access
the data and avoid a memory reference� Our technique would potentially increase the number of such
bypasses since� in a loop� an array reference is replaced by a reference to a constant so that the
corresponding address is referenced many times� As a consequence� with such queues� our technique
would provide an optimistic upper�bound� However� another related property may partially
compensate this bias� in the instrumented programs there are many more load�store dependencies
than in the original program since the overall number of addresses used is much smaller but the
number of load�store instructions is the same� Such dependencies can degrade the exploitation of ILP
in which case the upper�bound would be less optimistic than initially thought� Both e�ects must be
investigated and evaluated in more details�

� Related Work

There are several possible approaches to the problem of de�ning a program memory performance upper
bound�
First� several studies �	� �� �� rely on Belady�s MIN algorithm ��� to �nd the best possible memory
behaviour but these studies only target a single memory level and the associated architecture is capable of
selectively load� place and discard words and thus does not correspond to a real�life architecture�
The second most frequent approach is based on simulation� There is a very large amount of e�ort on
simulation technology in the micro�architecture community �	�� ��� including in the MHAOTEU project
where we have developed the cache pro�ler and the cache debugger �	��� In �	��� Martonosi et al� attempt
to speed up cache simulation using trace sampling and achieve reasonably accurate results� However�
simulation only provides a restricted view of the whole system performance� and it often ignores the impact
of the operating system� Besides� lots of information on the system architecture are often not available�

� Conclusions and Future work

We have developed a technique for quickly evaluating the execution time of a program assuming most
cache misses have been removed� The execution time upper bound is fairly accurate as the program is not



modi�ed and is actually run on the machine studied� Thus all system and architecture artefacts are taken
into account� The technique is way faster than simulation since the instrumented program execution time
is at most double the execution time of the original program versus a �

� slowdown for simulation
techniques� Our goal is to have this technique implemented in a production compiler to assist users who
whish to evaluate the impact of cache performance on their program execution time and to evaluate the
progress achieved at each step of an optimization process� The main limitation is the scope of the
techniques �loops loops with conditional branches are more di�cult to handle��
While this technique provides a program performance upper bound �a cache�TLB miss lower bound� it
does not de�ne whether or not this upper bound can be achieved although it allows us to spot the parts of
the application which have memory problems and which are candidates for memory optimizations� Future
research will focus on trying to de�ne tighter upper bounds that are close to what can be e�ectively
achieved through classic program transformation techniques� We can also use results from this research to
narrow down the transformation space for iterative compilation without knowledge of the target machine
which is particularly important in the prescence of rapidly evolving hardware�
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