
A Cost-Aware Parallel Workload Allocation Approach 
based on Machine Learning Techniques 

Shun Long1,  Grigori Fursin2,   Björn Franke 3 

 
1 Department of Computer Science, Jinan University, Guangzhou 510632, 

P.R.China  {long.shun@gmail.com} 
2 Member of HiPEAC, ALCHEMY Group, INRIA Futurs and LRI, Paris-Sud University, 

France  {grigori.fursin@inria.fr} 
3 Member of HiPEAC, Institute for Computing Systems Architecture, The University of 

Edinburgh, UK  {bfranke@inf.ed.ac.uk} 

Abstract. Parallelism is one of the main sources for performance improvement 
in modern computing environment, but the efficient exploitation of the 
available parallelism depends on a number of parameters. Determining the 
optimum number of threads for a given data parallel loop, for example, is a 
difficult problem and dependent on the specific parallel platform. This paper 
presents a learning-based approach to parallel workload allocation in a cost-
aware manner. This approach uses static program features to classify programs, 
before deciding the best workload allocation scheme based on its prior 
experience with similar programs. Experimental results on 12 Java benchmarks 
(76 test cases with different workloads in total) show that it can efficiently 
allocate the parallel workload among Java threads and achieve an efficiency of 
86% on average. 
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1  Introduction 

Parallelism is one of the main sources for performance improvement [4][11] in 
modern computing environment. This is particularly true in the area of high 
performance computing, where the cost of parallelism (on thread creation, scheduling 
and communication) is usually negligible when compared to heavy workload. 
However, the rapidly evolving hardware technology enables parallelization in most 
modern computing systems, for instance embedded devices. In many of these systems, 
the cost of parallelization becomes non-negligible when compared to workload. 
Moreover, inefficient workload allocation could even degrade the performance 
considerably, which is not acceptable. Therefore, it is vitally important to allocate the 
workload in a cost-aware manner in order to achieve optimal performance.  

Java is a widely used programming language with multi-threading features. But  
the development of efficient parallel Java programs requires careful consideration to 
avoid performance degradation due to the cost of thread creation, scheduling and 
communication. This cost depends on many environment-specific factors (CPU, 



cache, memory, operating system, Java virtual machine, etc). The interaction of these 
factors is hard to model or predict in advance. In search for optimal performance in a 
given execution environment, it is expected that the compiler or virtual machines uses 
an adaptive workload allocation approach, so that the workload can be allocated 
among Java threads in a cost-aware manner. This can be achieved statically or in a 
dynamic manner via speculative parallelization, both approaches have their specific 
advantages and disadvantages as discussed in [12].  

This paper presents a cost-aware parallel workload allocation approach based on 
machine learning techniques [15]. It learns from training examples how to allocate 
parallel workload among Java threads. When a new program is encountered, the 
compiler extracts its static program features for classification purpose, retrieves its 
prior experience with similar training examples, and uses this knowledge to decide the 
best parallel scheme for the new program. Experimental results suggest that this 
approach can effectively allocate workload among various numbers of threads and 
achieve optimal or sub-optimal performance.  

The outline of this paper is as follows. Section 2 presents a Java multi-threaded 
framework, before demonstrating via some preliminary experiments the demand for a 
cost-aware parallel workload allocation approach. Section 3 presents our adaptive 
approach. Section 4 evaluates its performance and analyzes the results. Section 5 
briefly reviews some related work, before some concluding remarks in section 6. 

2 Motivation 

We first present a Java multi-threaded framework which uses the class 
ExecutorService in package java.util.concurrent to parallelize a given for loop. For 
example, the sequential loop presented on the left of Table.1 can be parallelized as 
that on the right. The modification to the original code is given in bold font. Most of 
these modifications are loop-irrelevant and therefore can be implemented as a code 
template in advance. When a for loop is encountered, the compiler replaces the loop 
with the code template, copies the loop body into the run method of an inner class 
Task, before embedding Task into the class. The only question remains to be solved is 
the parallel scheme, i.e. how many threads should be used to share the workload in 
order to achieve optimal performance. Because this experiment aims to evaluate how 
a loop’s performance varies under different schemes. They are decided in advance. 
This framework is evaluated on a platform containing dual Xeon processors (each 
with two 2.80GHz cores) and 4G RAM, with Java Platform Standard Edition 
1.5.0_02 running under Redhat Linux 2.6.12-1.1372_FC3cmp. Twelve benchmarks 
are chosen from the Java version of the DSPStone benchmark suite [22]. In total, 
there are 76 test cases derived from these benchmarks, each containing one for loop of 
a specific workload. benchmark_n is used to label the test case of benchmark with a 
workload of 2n , and parallel level m is used to denote the scheme which allocates the 
workload evenly among 2m threads. For simplicity concern, the experiment only 
considers workloads and thread numbers proportional to 2, so that the workload can 
be evenly distributed among threads. The discussion about more general workload  



Table 1. A sequential Java loop (Example_Squential,on the left) and its parallel version 
(Example_Parallel, on the right) via the Java multi-threading framework.  

public class Example_Sequential { 
int size; 
public static void main( 

String[] args) 
throws InterruptedException { 
… 
for (int i = 0; i < size ; i++) { 
  system.out.println(i));  } 

… 
} 
…  
} 

 

import java.util.concurrent.*; 
public class Example_Parallel { 

static int size; 
static int numberofThreads; 
static ExecutorService service; 
public static void main(String[] args)  

throws InterruptedException {  
… 

Service =  
Executors.newFixedThreadPool( 

numberofThreads);  
for (int i = 0; i<numberofThreads; i++) 
{  service.execute(new Task(i));  } 
service.shutdown();  

… 
} 
private static class Task 

implements Runnable { 
private final int id;   
private int lbound, ubound;   
public Task(int id) {   

this.id = id;   
lbound = id *  size  

/ numberofThreads;  
ubound=  
(id==numberofThread-1) ? size : 

 (id+1)*size/numberofThreads; 
} 
public void run() {  

for (int i=lbound; i<ubound; i++) { 
  system.out.println(i);  } 

} 
    …  

} 
} 

  
sharing and load imbalance is left to future work. 

The impact of different parallel schemes on each benchmark is summarized in 
Fig.1. It demonstrates that parallelism can significantly improve the performance of 
most test cases. Take Matrix_3 as an example, when parallel level m increases, there 
are more threads to share its workload. This results in a rising speedup, which reaches 
its highest (37.36) when the workload is shared among 25=32 threads.  However, 
further increasing m means that more threads are created. This implies more time 
spent on thread creation and scheduling, which diminishes the performance 
improvement achieved via parallelism. 

When applicable, all for loops in Java programs can be parallelized in the above 
manner. Due to different cost in thread creation, scheduling and communication, a 
program’s performance may vary significantly when parallelized with different 
schemes (i.e. numberofThreads). In some cases, improper schemes may even degrade 



 
Fig.1. Performance improvement via parallelism, over 12 benchmarks with different workloads 
(2n) and different workload allocation schemes (2m), where the speedup achieved is plotted 
against the number of threads used to share the workload. 

the performance. In search for higher performance via multi-threading, the compiler 
or virtual machine should decide the scheme in a cost-aware manner. 



Analysis of experimental results reveals that programs with similar workloads are 
likely to benefit from the same or similar parallel scheme. This is best illustrated by 
Matrix1 and Matrix2 in Fig.1. Although coded in different manner, they actually do 
the same job, which results in performance curves almost identical. If good 
performance improvement can be achieved by using N threads to parallelize Matrix1 
of workload W, it is likely that a similar improvement can also be achieved by using 
N threads on Matrix2 of the same workload, and vice versa.  

This observation hints that a compiler could make the parallel scheme decision 
based on its previous experience with other programs. Each time a program is 
parallelized, the scheme and the resulting performance are stored in a database along 
with a description of the program. When a new program is encountered, this database 
is searched for programs similar to it. The best scheme for the most similar programs 
is then considered for the new one. This idea has long been used in static compilation 
analysis, which usually examines a few features of a program to see if it fits a model 
for a specific optimization.  

3 Parallel Workload Allocation – Instance-Based Learning 

Machine learning [15] is a natural approach to exploit such similarities. There are 
many machine learning approaches available. They vary in cost, complexity, 
efficiency and applicability. We believe that instance-based learning fits our 
objectives in effectiveness, timeliness and applicability better. Therefore, a Parallel 
Workload Allocation approach based on Instance-Based Learning (PWA-IBL) is 
developed. 

PWA-IBL is based on the above observation that programs with similar workload 
are likely to benefit from the same or similar parallel scheme. It allocates the 
workload of a loop based on its previous experience with other similar loops. PWA-
IBL consists of two steps: first it learns parallel schemes by being trained with a set  
of examples either carefully or randomly chosen; then it applies the knowledge when 
a new loop is encountered. 

During the training phase, each time a loop is parallelized, its features are captured 
for classification. This can be considered as making an implicit estimate of its 
workload. Such an implicit estimate is not only easier to make but also sufficient for 
our purpose (as demonstrated later), whilst an explicit estimate is more difficult to 
achieve. A new category is created in the database if none of the existing ones has a 
similar workload. Then, the loop description is stored within the category, together 
with different parallel schemes and the corresponding performance improvement  
(for example, the resulting speedup or of other metrics). 

When a new loop is encountered, PWA-IBL captures its features and classifies it. 
The most similar loop category within the database is identified. Then, based on its 
prior parallelization experience with the loops of this category, PWA-IBL selects the 
best scheme, before creating the threads and allocating the workload among them.  

To implement PWA-IBL, the compiler must correlate loops, number of parallel 
threads and the resulting performance improvement in a systematic manner. In 
machine learning terms, the inputs or features of the problem are a description of the 



program and the workload allocation scheme, and the output is the performance 
improvement. These features not only reveal important details of the program but also 
help a compiler in classification. Therefore, they must be formally specified in order 
to enable instance-based learning. 

PWA-IBL uses five program features for loop description and classification 
purposes. They are 1) loop depth; 2) loop size; 3) number of arrays used; 4) number 
of statements within the loop body, and 5) number of array references. It is 
understandable that not all program features play an equal role in workload estimation. 
Therefore, different weights are assigned to different features during classification, 
with higher weights given to feature 1), 2) and 4). Other features that can better 
describe the loop for PWA-IBL, but this set of features can be readily obtained from 
most compilers’ internal representation of a program. 

4  Evaluation 

PWA-IBL is tested in the same environment as specified in section 2. The 
experiment aims to evaluate the impact of the training set selection on the 
performance of PWA-IBL, i.e. how enlarging the training set can improve its 
predictability. It is carried out in a cross-validation manner. For each benchmark_n, 
the size of training set is first decided, before the set itself is formed by selecting 
examples from the other 75 programs. For simplicity, only sizes 1, 5, 10, 15, 30, 45, 
60 and 75 are considered, as it is unnecessary to increase the training set size by one 
each time. In addition, training examples are randomly chosen from all the other 75 
programs. This is repeated for t times (t=30 in our test), each time with a different 
training set, before an average speedup is obtained. 

For each benchmark_n, PWA-IBL applies its knowledge learned from a training set 
of a certain size s. If the chosen scheme cannot improve the performance, the 
resulting speedup is considered 0. Let r be the highest speedup achieved on 
benchmark_n. The performance of PWA-IBL with size s is defined as r’/r, where r’ 
the average speedup achieved across t different training sets of size s. Take 
DotProduct_20 as an example, when the training set size s=30, PWA-IBL achieves an 
average speedup of 5.36 over t=30 evaluations. Fig.1 shows that the highest speedup 
for DotProduct_20 is 6.46 (when its workload is shared among 24=16 threads), i.e. the 
performance of PWA-IBL is 5.36/6.46=83% with the training set size s=30. 

Fig.2 summarizes the performance of PWA-IBL on all 76 test cases, where it is 
plotted against the training set size s. Take DotProduct_20 as an example, when the 
training set size s=1, PWA-IBL is equivalent to a random algorithm, as it learns only 
from one randomly selected example. The average speedup it achieves is 3.81, and 
the resulting performance is 3.81/6.46 =59%. When s=5, the average speedup is 4.07 
and its performance is 63%, and so on. When s=75, PWA-IBL learns from all the 
other 75 test cases. This is equivalent to the “leave one out” cross validation test. The 
best scheme (share the workload among 24= 16 threads) from the one most similar to 
DotProduct_20 is selected, resulting in a speedup of 6.46, when its performance 
reaches 100%. Similar results are found on most curves in Fig.2, which shows that as 
the training set size increases, the performance of PWA-IBL improves accordingly,  



Fig. 2. The performance of PWA-IBL, where it is plotted against the size of training example 
set. The performance is defined as r’/r, where r’ the average speedup achieved on a particular 
training set size s and r the highest speedup achieved on the given test case, regardless of 
training set size. 
 
because it can learn from more examples and therefore select better parallel schemes.  

However, there are some surges in the PWA-IBL curves on some test cases which 
deserve further analysis. These test cases include Convolution_17, EdgeDetect_8, 



EdgeDetect_10 when the training set size s=5, MAT1x3_7 when s=20, and 
Matrix2_10 when s>45. In the case of EdgeDetect_8 and _10, the surges are noise, as 
the actual variance is insignificant (between 96% and 98%), indicating that the 
training set selection has little impact on PWA-IBL performance. In the case of 
MAT1x3_7, a closer look at learning process shows that the training set contain many 
not-very-similar cases, which in turn affect the performance. Nevertheless, the highest 
speedup on MAT1x3_7 is relatively modest at 1.74, with the variance less than 0.35. 

Experimental results on Convolution _17 show that speedup is achieved only with 
a scheme of 24=16 threads. No other scheme can improve its performance. Because 
the training cases are randomly chosen, when s increases, it becomes less likely that 
PWA-IBL can effectively predict this scheme, and its performance decreases instead. 

In the case of Matrix2_10, higher speedups can be achieved as the number of 
threads increases. It reaches the highest when there are 210=1024 threads sharing the 
workload. A closer look at the raw experimental results show that besides Matrix2_10 
itself, only on Matrix1_10, Matrix1_11 and Matrix2_11 (all considered similar 
enough to Matrix2_10) similar speedup can be achieved with such a large number of 
threads. When the training set is small, the possibility is low for these programs to be 
included. PWA-IBL can only select a scheme of smaller number of threads, which 
results in a lower speedup. Therefore, the performance curve starts low. It starts rising 
when PWA-IBL is trained with a larger set of examples. When the size reaches a 
certain threshold (60 as indicated in Fig.2), it becomes more likely that one or more of 
these three programs be included in the training set. However, only on Matrix1_10 the 
highest speedup is achieved with a scheme of 1024 threads, whilst on Matrix1_11 and 
Matrix2_11, the highest speedup is achieved with 211=2048 threads. Therefore, PWA-
IBL reaches the highest speedup only when it correctly selects Matrix1_10 as the one 
most similar to Matrix2_10. Otherwise, no speedup is found since sharing the 
workload among 2048 threads degrades the performance. For Matrix1_10 and 
Matrix1_11, sub-optimal speedups are achieved when PWA-IBL decides that 1024 is 
the best parallel scheme from its prior experience from Matrix2_10 and Matrix2_11.  

In brief, PWA-IBL finds the optimal parallel schemes for 36 out of the 76 test cases 
and over 80% of the highest speedups on the other 33. On average, its efficiency over 
these 76 test cases is 86%. It shows that PWA-IBL should be trained with at least 30 
training examples to achieve a reasonable accuracy, In addition, whenever possible, 
training examples should be selected as diverse as possible to cover most of the also 
be able to adapt to such cases. 

It is worth noting that the current experiment only considers test cases with both 
thread numbers and workloads proportional to 2, where the workload is evenly 
distributed among the threads. We leave cases with arbitrary workload and thread 
numbers for the future work, though preliminary results show that PWA-IBL should 
also be able to adapt to such cases. 

5  Related Work 

Parallelism [4][11] is one of the main sources for performance improvement in 
modern computing environments. Key techniques for automatic detection of 



parallelism are discussed in [5]. A prototype compiler is presented in [3], where loop 
transformation and parallelization techniques are used to achieve high performance on 
numerical Java codes. Jikes[2] compiler uses runtime feedback to direct its adaptive 
optimization. Dynamic optimization is presented in [21] to measure the cost of thread 
creation and parallelize code insides a Jikes RVM at run time. The dynamic 
parallelizing compiler in [17] uses runtime feedback to adapt both application and 
operating system to the JAMAICA chip multiprocessor (CMP) architecture on the fly. 
Speculative techniques[9][16] are developed to exploit parallelism[14][17]. Jrpm[8] is 
a CMP-based runtime parallelizing JVM with thread-level speculation support. Most 
of these work focus on the search of parallelism opportunity, load balancing and 
thread migration[14][21], and give little concern to the cost of parallelism and its 
impact on performance[18]. PWA-IBL can be considered a complement to them in 
helping the compiler to decide how the workload should be allocated at the first place. 
It can accelerate the search for best parallel scheme. 

Machine learning[15] has recently been introduced to compiler optimization at 
system level. Various learning approaches are used in iterative optimization[1][10] to 
explore a large optimization space. Machine learning is used in [6] to build a 
performance model based on a small number of evaluations. It first tests a small set of 
sample optimizations on a prior set of benchmarks, then analyzes the results in order 
to identify characteristic optimizations, based on which some further test runs are 
carried out on the target program. This technique significantly reduces the cost of 
evaluating the impact of compiler optimizations. Logistic regression is used in [7] to 
derive a predictive model that selects suitable optimizations to apply to each method 
based on code features. Instance-based learning is used in [13] to select suitable loop 
transformations within an optimization space of various loop re-ordering 
transformations. 

6  Conclusion 

This paper presents a fast and efficient machine learning based parallel workload 
allocation approach. It uses static program features to classify programs, before 
deciding the best workload allocation based on its prior experience with similar 
programs. It can decide, in a cost-aware manner, the best number of threads to share 
the workload of a given loop in order to achieve optimal performance via 
multithreading. Experimental results show that PWA-IBL can find the best parallel 
schemes for 36 out of the 76 test cases and over 80% of the best speedups on the other 
33. On average its efficiency over these 76 test cases is 86%. Its performance 
improves when trained with more examples.  

We plan to use PWA-IBL to achieve runtime adaptability, where features such as 
the hardware counter reading could be used to estimate not only program but also 
system workload. Portability of a PWA-IBL-enabled compiler could be achieved via 
the introduction of some architectural features. In addition, PWA-IBL shall be 
enhanced for more general code block and arbitrary workload. Methods could be 
developed to select better training examples, identify less representative ones and 
eliminate them when necessary. 
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