Beta scoreboard for ReQuEST@ASPLOS'18 AI/SW/HW co-design competition (see ACM proceedings and results report).
# | Algorithm species | Workload (program,model,library) | Model species | Precision | Dataset species | Dataset size | Farm | Platform species | Platform name | CPU name | CPU freq (MHz) | GPGPU name | GPU freq (MHz) | OS name | SW deps and versions | Model design | Compiler | Library | Environment | Classification time per 1 image (sec. min/max) | Inference latency for 1 image (min, sec.) | Inference throughput (max, images per sec.) | Accuracy (Top1 / Top5) | Batch size | Model size (B) | Memory usage (B) | Platform peak power (W) | Platform price ($) | Platform price date | Usage cost per image ($) | Reproducibility |
1 | 4b8bbc192ec57f63 | request-mxnet-inference | d41bbf1e489ab5e0 | fp32 | ImageNet | 25000 | embedded | Rockchip (Rockchip RK3399 Firefly Board (Linux Opensource)) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd08-2 | 1416 | Ubuntu 16.04.4 LTS | lib-mxnet: MXNet library (built, cpu) master-fb50257 (fb50257) mxnet-model: MXNet model (net and weights) (mxnet, resnet-18) resnet-18 python: python 3.5.2 |
MXNet model (net and weights) (mxnet, resnet-18) resnet-18 | GNU C compiler 7.2.0 | MXNet library (built, cpu) master-fb50257 (fb50257) | CK_BATCH_SIZE=1 CK_CPU_FREQUENCY=max CK_DATASET_FILENAME=snake.jpg CK_GPU_FREQUENCY=max CK_MXNET_MODEL=mobilenet STAT_REPEAT=5 |
0.4930 .. 0.5887 | 0.4930 .. 0.5887 | 2.0 .. 1.7 | 0.613 / 0.837 | 1 | 46803089 | None | 6.050 | 149 (20180416) | 20180416 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
||||
2 | f4f75a0a6b65e4cd | request-iot-benchmark | c0ad9b9800422f98 | fp32 | None | None | RPi farm: 5 devices (Avro) | embedded | Raspberry Pi (Raspberry Pi 3 Model B) | BCM2709 | 1200 | Ubuntu 16.04.2 LTS | lib-keras: Keras API, TensorFlow based (prebuilt, ReQuEST@ASPLOS'18 artifact) 2.1.3 lib-tensorflow: TensorFlow library 1.5 python: python 2.7.10 |
AlexNet (authors' implementation) | None | TensorFlow library 1.5 | CK_CPU_FREQUENCY=max CK_GPU_FREQUENCY=max CK_TARGET_PATH=/Users/jiashenc/CK/local/machine/farm-5 |
0.1748 .. 0.1965 | 0.1748 .. 0.1965 | 5.7 .. 5.1 | 0.000 / 0.000 | 1 | None | 25.000 | 200 (20170811) | 20170811 | Repositories ACM badges
available, reusable, replicated
|
||||
3 | f4f75a0a6b65e4cd | request-iot-benchmark | c0ad9b9800422f98 | fp32 | None | None | embedded | Raspberry Pi (Raspberry Pi 3 Model B) | BCM2709 | 1200 | Ubuntu 16.04.2 LTS | lib-keras: Keras API, TensorFlow based (prebuilt, ReQuEST@ASPLOS'18 artifact) 2.1.3 lib-tensorflow: TensorFlow library 1.5 python: python 2.7.12 |
AlexNet (authors' implementation) | None | TensorFlow library 1.5 | CK_CPU_FREQUENCY=max CK_GPU_FREQUENCY=max CK_TARGET_PATH=/home/pi/CK/local/machine/farm-5 CUDA_VISIBLE_DEVICES= |
0.5187 .. 0.5321 | 0.5187 .. 0.5321 | 1.9 .. 1.9 | 0.000 / 0.000 | 1 | None | 5.000 | 40 (20170811) | 20170811 | Repositories ACM badges
available, reusable, replicated
|
|||||
4 | 4b8bbc192ec57f63 | classification-tensorflow | 07d4e7aa3750ddc6 | fp32 | ImageNet | 500 | embedded | HiKey960 (HiKey960) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd09-1 | 2362 | Debian GNU/Linux 9 (stretch) | imagenet-aux: ImageNet dataset (aux) 2012 imagenet-val: ImageNet dataset (validation) 2012 lib-tensorflow: TensorFlow library (from sources, cpu, xla) 1.7 library: TensorFlow library (from sources, cpu) 1.7 model-and-weights: TensorFlow python model and weights (squeezenet) ImageNet python: python 2.7.13 weights: TensorFlow python model and weights (mobilenet-0.75-192) ImageNet |
TensorFlow python model and weights (mobilenet-0.75-192) ImageNet | None | TensorFlow library (from sources, cpu) 1.7 | CK_BATCHES_DIR=../batches CK_BATCH_COUNT=2 CK_BATCH_LIST=../batches CK_BATCH_SIZE=1 CK_CONVOLUTION_METHOD_HINT=1 CK_CPU_FREQUENCY=max CK_ENV_DATASET_IMAGENET_VAL=/home/anton/CK_TOOLS/dataset-imagenet-ilsvrc2012-val-min/ CK_ENV_TENSORFLOW_MODEL_MOBILENET_MULTIPLIER=0.75 CK_ENV_TENSORFLOW_MODEL_MOBILENET_RESOLUTION=192 CK_GPU_FREQUENCY=max CK_IMAGE_FILE= CK_IMAGE_LIST=../images CK_RESULTS_DIR=predictions CK_SKIP_IMAGES=0 CK_TF_GPU_MEMORY_PERCENT=33 |
0.0468 .. 0.0797 | 0.0468 .. 0.0797 | 21.4 .. 12.5 | 0.668 / 0.871 | 1 | 10498594 | None | 4.500 | 239 (20170425) | 20170425 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
||||
5 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | fp32 | ImageNet | 50000 | Microsoft Azure | server | Microsoft Corporation 7.0 (Virtual Machine) | Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (resnet50, fp32) fp32 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-OzTSvM.prototxt CK_CAFFE_MODEL_FILE=tmp-OzTSvM.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/fggwork/ck-tools/caffemodel-resnet50-fp32/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/fggwork/ck-tools/caffemodel-resnet50-fp32/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/fggwork/ck-tools/caffemodel-resnet50-fp32/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=4 |
0.0332 .. 0.0502 | 0.0332 .. 0.0502 | 30.1 .. 19.9 | 0.707 / 0.898 | 1 | 102462397 | None | 105.000 | 800 (20180101) | 20180101 | 1.41e-05 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||
6 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | fp32 | ImageNet | 50000 | Microsoft Azure | server | Microsoft Corporation 7.0 (Virtual Machine) | Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (resnet50, fp32) fp32 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=8 CK_CAFFE_ITERATIONS=62 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-8G4yFt.prototxt CK_CAFFE_MODEL_FILE=tmp-8G4yFt.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/fggwork/ck-tools/caffemodel-resnet50-fp32/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/fggwork/ck-tools/caffemodel-resnet50-fp32/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/fggwork/ck-tools/caffemodel-resnet50-fp32/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=4 |
0.0266 .. 0.0285 | 37.6 .. 35.1 | 0.707 / 0.898 | 8 | 102462397 | None | 105.000 | 800 (20180101) | 20180101 | 1.13e-05 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||
7 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | fp32 | ImageNet | 50000 | Microsoft Azure | server | Microsoft Corporation 7.0 (Virtual Machine) | Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (inception-v3, fp32) fp32 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=8 CK_CAFFE_ITERATIONS=62 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-EwUVuc.prototxt CK_CAFFE_MODEL_FILE=tmp-EwUVuc.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/fggwork/ck-tools/caffemodel-inception-v3-fp32/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/fggwork/ck-tools/caffemodel-inception-v3-fp32/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/fggwork/ck-tools/caffemodel-inception-v3-fp32/inceptionv3.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=4 |
0.0449 .. 0.0951 | 22.3 .. 10.5 | 0.754 / 0.923 | 8 | 95533753 | None | 105.000 | 800 (20180101) | 20180101 | 1.91e-05 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||
8 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | fp32 | ImageNet | 50000 | Microsoft Azure | server | Microsoft Corporation 7.0 (Virtual Machine) | Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (inception-v3, fp32) fp32 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-ycetVU.prototxt CK_CAFFE_MODEL_FILE=tmp-ycetVU.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/fggwork/ck-tools/caffemodel-inception-v3-fp32/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/fggwork/ck-tools/caffemodel-inception-v3-fp32/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/fggwork/ck-tools/caffemodel-inception-v3-fp32/inceptionv3.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=4 |
0.0502 .. 0.0889 | 0.0502 .. 0.0889 | 19.9 .. 11.3 | 0.754 / 0.923 | 1 | 95533753 | None | 105.000 | 800 (20180101) | 20180101 | 2.13e-05 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||
9 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | int8 | ImageNet | 50000 | Google Cloud | server | Google (Google Compute Engine) | Intel(R) Xeon(R) CPU | 2000 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, int8) intel-i8 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (inception-v3, int8) intel-i8 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/gfursin/CK/ck-caffe/program/caffe/tmp/tmp-KdcKOP.prototxt CK_CAFFE_MODEL_FILE=tmp-KdcKOP.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/gfursin/CK-TOOLS/caffemodel-inception-v3-intel-i8/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/gfursin/CK-TOOLS/caffemodel-inception-v3-intel-i8/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/gfursin/CK-TOOLS/caffemodel-inception-v3-intel-i8/inceptionv3.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=4 |
0.0382 .. 0.0612 | 0.0382 .. 0.0612 | 26.2 .. 16.3 | 0.753 / 0.923 | 1 | 23883438.25 | None | 105.000 | 1166 (20141212) | 20141212 | 2.02e-06 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||
10 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | int8 | ImageNet | 50000 | Google Cloud | server | Google (Google Compute Engine) | Intel(R) Xeon(R) CPU | 2000 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, int8) intel-i8 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (inception-v3, int8) intel-i8 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=64 CK_CAFFE_ITERATIONS=7 CK_CAFFE_MODEL=/home/gfursin/CK/ck-caffe/program/caffe/tmp/tmp-WTFFut.prototxt CK_CAFFE_MODEL_FILE=tmp-WTFFut.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/gfursin/CK-TOOLS/caffemodel-inception-v3-intel-i8/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/gfursin/CK-TOOLS/caffemodel-inception-v3-intel-i8/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/gfursin/CK-TOOLS/caffemodel-inception-v3-intel-i8/inceptionv3.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=4 |
0.0518 .. 0.0529 | 19.3 .. 18.9 | 0.753 / 0.923 | 64 | 23883438.25 | None | 105.000 | 1166 (20141212) | 20141212 | 2.74e-06 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||
11 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | int8 | ImageNet | 50000 | server | Hewlett-Packard (HP Z640 Workstation) | Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, int8) intel-i8 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (inception-v3, int8) intel-i8 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=40 CK_CAFFE_ITERATIONS=12 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-xrP7RZ.prototxt CK_CAFFE_MODEL_FILE=tmp-xrP7RZ.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/CK/local/env/a02d0432db5cdc64/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/CK/local/env/a02d0432db5cdc64/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/CK/local/env/a02d0432db5cdc64/inceptionv3.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=20 |
0.0945 .. 0.0949 | 10.6 .. 10.5 | 0.753 / 0.923 | 40 | 23883438.25 | None | 105.000 | 1166 (20141212) | 20141212 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||||
12 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | int8 | ImageNet | 50000 | server | Hewlett-Packard (HP Z640 Workstation) | Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, int8) intel-i8 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (inception-v3, int8) intel-i8 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-iXtTQw.prototxt CK_CAFFE_MODEL_FILE=tmp-iXtTQw.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/CK/local/env/a02d0432db5cdc64/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/CK/local/env/a02d0432db5cdc64/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/CK/local/env/a02d0432db5cdc64/inceptionv3.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=10 |
0.1295 .. 0.1932 | 0.1163 .. 0.1170 | 7.7 .. 5.2 | 0.753 / 0.923 | 1 | 23883438.25 | None | 105.000 | 1166 (20141212) | 20141212 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||||
13 | 4b8bbc192ec57f63 | mobilenets-armcl-opencl | 07d4e7aa3750ddc6 | fp32 | ImageNet | 500 | None | embedded | HiKey960 (HiKey960) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd09-1 | ARM Mali-G71 | 807 | Debian GNU/Linux 9 (stretch) | compiler: GNU C compiler 7.2.0 imagenet-aux: ImageNet dataset (aux) 2012 imagenet-val: ImageNet dataset (validation) 2012 library: ARM Compute Library (request) request-d8f69c13 (d8f69c13) opencl: OpenCL library r6p0-instr1-cl2 weights: MobileNet weights 1_0.25_128 xopenme: xOpenME run-time library 0.3 |
MobileNet weights 1_0.25_128 | GNU C compiler 7.2.0 | ARM Compute Library (request) request-d8f69c13 (d8f69c13) | CK_BATCHES_DIR=batches CK_BATCH_COUNT=1 CK_BATCH_LIST=batches.txt CK_BATCH_SIZE=1 CK_COMPUTE_DEVICE_ID=0 CK_COMPUTE_PLATFORM_ID=0 CK_CONVOLUTION_METHOD_HINT=1 CK_CPU_FREQUENCY=max CK_ENV_DATASET_IMAGENET_VAL=/home/anton/CK_TOOLS/dataset-imagenet-ilsvrc2012-val-min/ CK_ENV_MOBILENET_RESOLUTION=128 CK_ENV_MOBILENET_WIDTH_MULTIPLIER=0.25 CK_GPU_FREQUENCY=max CK_IMG_LIST=images.txt CK_PREPARE_ALWAYS=NO CK_RESULTS_DIR=predictions CK_SKIP_IMAGES=0 |
0.0099 .. 0.0350 | 0.0099 .. 0.0350 | 100.7 .. 28.6 | 0.410 / 0.672 | 1 | 1990786 | None | 4.500 | 239 (20170425) | 20170425 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
||
14 | 4b8bbc192ec57f63 | request-tvm-vta-pynq | d41bbf1e489ab5e0 | int8 | ImageNet | 2000 | fpga | Xilinx PYNQ-Z1 FPGA (ZYNQ XC7Z020-1CLG400C) | Programmable logic equivalent to Artix-7 FPGA | 100 | Ubuntu 15.10 | lib-nnvm: NNVM library master-541cf56 (541cf56) lib-tvm: TVM library master-e4c2af9 (e4c2af9) lib-vta: VTA python library master-9ad9277 (9ad9277) model: VTA model (net and weights) (resnet 18, int8, 20180404) 20180404 |
VTA model (net and weights) (resnet 18, int8, 20180404) 20180404 | None | None | CK_CPU_FREQUENCY=max CK_DATASET_FILENAME=cat.jpg CK_GPU_FREQUENCY=max CK_MACHINE_HOST=cknowledge.ddns.net CK_MACHINE_PORT=9091 STAT_REPEAT=5 |
0.4293 .. 0.4321 | 0.4293 .. 0.4321 | 2.3 .. 2.3 | 0.370 / 0.630 | 1 | 129770000 | None | 2.500 | 229 (20180404) | 20180404 | Repositories ACM badges
functional, replicated
|
||||
15 | 4b8bbc192ec57f63 | classification-tensorflow | 07d4e7aa3750ddc6 | fp32 | ImageNet | 500 | embedded | HiKey960 (HiKey960) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd09-1 | 2362 | Debian GNU/Linux 9 (stretch) | imagenet-aux: ImageNet dataset (aux) 2012 imagenet-val: ImageNet dataset (validation) 2012 lib-tensorflow: TensorFlow library (from sources, cpu, xla) 1.7 library: TensorFlow library (from sources, cpu) 1.7 model-and-weights: TensorFlow python model and weights (squeezenet) ImageNet python: python 2.7.13 weights: TensorFlow python model and weights (mobilenet-1.0-224) ImageNet |
TensorFlow python model and weights (mobilenet-1.0-224) ImageNet | None | TensorFlow library (from sources, cpu) 1.7 | CK_BATCHES_DIR=../batches CK_BATCH_COUNT=2 CK_BATCH_LIST=../batches CK_BATCH_SIZE=1 CK_CONVOLUTION_METHOD_HINT=1 CK_CPU_FREQUENCY=max CK_ENV_DATASET_IMAGENET_VAL=/home/anton/CK_TOOLS/dataset-imagenet-ilsvrc2012-val-min/ CK_ENV_TENSORFLOW_MODEL_MOBILENET_MULTIPLIER=1.0 CK_ENV_TENSORFLOW_MODEL_MOBILENET_RESOLUTION=224 CK_GPU_FREQUENCY=max CK_IMAGE_FILE= CK_IMAGE_LIST=../images CK_RESULTS_DIR=predictions CK_SKIP_IMAGES=0 CK_TF_GPU_MEMORY_PERCENT=33 |
0.0829 .. 0.1465 | 0.0829 .. 0.1465 | 12.1 .. 6.8 | 0.705 / 0.894 | 1 | 17106694 | None | 4.500 | 239 (20170425) | 20170425 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
||||
16 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | fp32 | ImageNet | 50000 | Amazon | server | Amazon EC2 (c5.9xlarge) | Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (inception-v3, fp32) fp32 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/ubuntu/CK/ck-caffe/program/caffe/tmp/tmp-F7GXbg.prototxt CK_CAFFE_MODEL_FILE=tmp-F7GXbg.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/ubuntu/CK-TOOLS/caffemodel-inception-v3-fp32/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-inception-v3-fp32/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-inception-v3-fp32/inceptionv3.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=36 |
0.0099 .. 0.0102 | 0.0099 .. 0.0102 | 100.6 .. 98.5 | 0.754 / 0.923 | 1 | 95533753 | None | 105.000 | 1166 (20141212) | 20141212 | 4.23e-06 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||
17 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | fp32 | ImageNet | 50000 | Amazon | server | Amazon EC2 (c5.9xlarge) | Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (inception-v3, fp32) fp32 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=24 CK_CAFFE_ITERATIONS=20 CK_CAFFE_MODEL=/home/ubuntu/CK/ck-caffe/program/caffe/tmp/tmp-jRkPk7.prototxt CK_CAFFE_MODEL_FILE=tmp-jRkPk7.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/ubuntu/CK-TOOLS/caffemodel-inception-v3-fp32/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-inception-v3-fp32/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-inception-v3-fp32/inceptionv3.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=36 |
0.0057 .. 0.0057 | 177.0 .. 176.3 | 0.754 / 0.923 | 24 | 95533753 | None | 105.000 | 1166 (20141212) | 20141212 | 2.40e-06 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||
18 | 4b8bbc192ec57f63 | mobilenets-armcl-opencl | 07d4e7aa3750ddc6 | fp32 | ImageNet | 500 | embedded | Rockchip (Rockchip RK3399 Firefly Board (Linux Opensource)) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd08-2 | ARM Mali-T860 | 800 | Ubuntu 16.04.4 LTS | compiler: GNU C compiler 7.2.0 imagenet-aux: ImageNet dataset (aux) 2012 imagenet-val: ImageNet dataset (validation) 2012 library: ARM Compute Library (opencl) 17.12-48bc34e (48bc34e) opencl: OpenCL library weights: MobileNet weights 1_1.0_224 xopenme: xOpenME run-time library 0.3 |
MobileNet weights 1_1.0_224 | GNU C compiler 7.2.0 | ARM Compute Library (opencl) 17.12-48bc34e (48bc34e) | CK_BATCHES_DIR=../batches CK_BATCH_COUNT=1 CK_BATCH_LIST=../batches CK_BATCH_SIZE=1 CK_COMPUTE_DEVICE_ID=0 CK_COMPUTE_PLATFORM_ID=0 CK_CONVOLUTION_METHOD_HINT=1 CK_CPU_FREQUENCY=max CK_ENV_DATASET_IMAGENET_VAL=/home/fursin/CK/local/env/6b7b8b5d320f99fa/ CK_ENV_MOBILENET_RESOLUTION=224 CK_ENV_MOBILENET_WIDTH_MULTIPLIER=1.0 CK_GPU_FREQUENCY=max CK_IMAGE_FILE= CK_IMAGE_LIST=../images CK_PREPARE_ALWAYS=NO CK_RESULTS_DIR=predictions CK_SKIP_IMAGES=0 |
0.2108 .. 0.2138 | 0.2108 .. 0.2138 | 4.7 .. 4.7 | 0.620 / 0.848 | 1 | 17106694 | None | 5.000 | 149 (20180416) | 20180416 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
|||
19 | 4b8bbc192ec57f63 | mobilenets-armcl-opencl | 07d4e7aa3750ddc6 | fp32 | ImageNet | 500 | embedded | Rockchip (Rockchip RK3399 Firefly Board (Linux Opensource)) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd08-2 | ARM Mali-T860 | 800 | Ubuntu 16.04.4 LTS | compiler: GNU C compiler 7.2.0 imagenet-aux: ImageNet dataset (aux) 2012 imagenet-val: ImageNet dataset (validation) 2012 library: ARM Compute Library (opencl) 17.12-48bc34e (48bc34e) opencl: OpenCL library weights: MobileNet weights 1_1.0_224 xopenme: xOpenME run-time library 0.3 |
MobileNet weights 1_1.0_224 | GNU C compiler 7.2.0 | ARM Compute Library (opencl) 17.12-48bc34e (48bc34e) | CK_BATCHES_DIR=../batches CK_BATCH_COUNT=1 CK_BATCH_LIST=../batches CK_BATCH_SIZE=1 CK_COMPUTE_DEVICE_ID=0 CK_COMPUTE_PLATFORM_ID=0 CK_CONVOLUTION_METHOD_HINT=0 CK_CPU_FREQUENCY=max CK_ENV_DATASET_IMAGENET_VAL=/home/fursin/CK/local/env/6b7b8b5d320f99fa/ CK_ENV_MOBILENET_RESOLUTION=224 CK_ENV_MOBILENET_WIDTH_MULTIPLIER=1.0 CK_GPU_FREQUENCY=max CK_IMAGE_FILE= CK_IMAGE_LIST=../images CK_PREPARE_ALWAYS=NO CK_RESULTS_DIR=predictions CK_SKIP_IMAGES=0 |
0.2185 .. 0.2218 | 0.2185 .. 0.2218 | 4.6 .. 4.5 | 0.626 / 0.850 | 1 | 17106694 | None | 5.000 | 149 (20180416) | 20180416 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
|||
20 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | int8 | ImageNet | 50000 | Amazon | server | Amazon EC2 (c5.9xlarge) | Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, int8) intel-i8 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (inception-v3, int8) intel-i8 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=64 CK_CAFFE_ITERATIONS=7 CK_CAFFE_MODEL=/home/ubuntu/CK/ck-caffe/program/caffe/tmp/tmp-_lpT1j.prototxt CK_CAFFE_MODEL_FILE=tmp-_lpT1j.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/ubuntu/CK-TOOLS/caffemodel-inception-v3-intel-i8/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-inception-v3-intel-i8/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-inception-v3-intel-i8/inceptionv3.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=36 |
0.0041 .. 0.0041 | 242.3 .. 241.8 | 0.753 / 0.923 | 64 | 23883438.25 | None | 105.000 | 1166 (20141212) | 20141212 | 1.75e-06 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||
21 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | int8 | ImageNet | 50000 | Amazon | server | Amazon EC2 (c5.9xlarge) | Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, int8) intel-i8 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (inception-v3, int8) intel-i8 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/ubuntu/CK/ck-caffe/program/caffe/tmp/tmp-y13Oj2.prototxt CK_CAFFE_MODEL_FILE=tmp-y13Oj2.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/ubuntu/CK-TOOLS/caffemodel-inception-v3-intel-i8/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-inception-v3-intel-i8/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-inception-v3-intel-i8/inceptionv3.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=36 |
0.0071 .. 0.0074 | 0.0071 .. 0.0074 | 140.4 .. 135.5 | 0.753 / 0.923 | 1 | 23883438.25 | None | 105.000 | 1166 (20141212) | 20141212 | 3.03e-06 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||
22 | f4f75a0a6b65e4cd | request-iot-benchmark | a3fcac86d42bdbc4 | fp32 | None | None | embedded | NVIDIA Jetson TX1 | ARMv8 Processor rev 1 (v8l) | 998 | Ubuntu 16.04.4 LTS | lib-keras: Keras API, TensorFlow based (prebuilt, ReQuEST@ASPLOS'18 artifact) 2.1.3 lib-tensorflow: TensorFlow library (from sources, cuda) 1.5 python: python 3.5.2 |
VGG 16 (authors' implementation) | None | TensorFlow library (from sources, cuda) 1.5 | CK_CPU_FREQUENCY=max CK_GPU_FREQUENCY=max |
0.2787 .. 0.2831 | 0.2787 .. 0.2831 | 3.6 .. 3.5 | 0.000 / 0.000 | 1 | None | 15.000 | 435 (20180520) | 20180520 | Repositories ACM badges
available, reusable, replicated
|
|||||
23 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | fp32 | ImageNet | 50000 | server | Hewlett-Packard (HP Z640 Workstation) | Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (resnet50, fp32) fp32 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=64 CK_CAFFE_ITERATIONS=7 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-k2n61l.prototxt CK_CAFFE_MODEL_FILE=tmp-k2n61l.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/CK/local/env/a9914423b819a458/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/CK/local/env/a9914423b819a458/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/CK/local/env/a9914423b819a458/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=10 |
0.0103 .. 0.0104 | 97.2 .. 96.0 | 0.707 / 0.898 | 64 | 102462397 | None | 105.000 | 1166 (20141212) | 20141212 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||||
24 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | fp32 | ImageNet | 50000 | server | Hewlett-Packard (HP Z640 Workstation) | Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (resnet50, fp32) fp32 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-_pf3jy.prototxt CK_CAFFE_MODEL_FILE=tmp-_pf3jy.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/CK/local/env/a9914423b819a458/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/CK/local/env/a9914423b819a458/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/CK/local/env/a9914423b819a458/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=20 |
0.0144 .. 0.0149 | 0.0109 .. 0.0112 | 69.2 .. 67.1 | 0.707 / 0.898 | 1 | 102462397 | None | 105.000 | 1166 (20141212) | 20141212 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||||
25 | 4b8bbc192ec57f63 | mobilenets-armcl-opencl | 07d4e7aa3750ddc6 | fp32 | ImageNet | 500 | None | embedded | HiKey960 (HiKey960) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd09-1 | ARM Mali-G71 | 807 | Debian GNU/Linux 9 (stretch) | compiler: GNU C compiler 7.2.0 imagenet-aux: ImageNet dataset (aux) 2012 imagenet-val: ImageNet dataset (validation) 2012 library: ARM Compute Library (request) request-d8f69c13 (d8f69c13) opencl: OpenCL library r6p0-instr1-cl2 weights: MobileNet weights 1_0.50_160 xopenme: xOpenME run-time library 0.3 |
MobileNet weights 1_0.50_160 | GNU C compiler 7.2.0 | ARM Compute Library (request) request-d8f69c13 (d8f69c13) | CK_BATCHES_DIR=batches CK_BATCH_COUNT=1 CK_BATCH_LIST=batches.txt CK_BATCH_SIZE=1 CK_COMPUTE_DEVICE_ID=0 CK_COMPUTE_PLATFORM_ID=0 CK_CONVOLUTION_METHOD_HINT=1 CK_CPU_FREQUENCY=max CK_ENV_DATASET_IMAGENET_VAL=/home/anton/CK_TOOLS/dataset-imagenet-ilsvrc2012-val-min/ CK_ENV_MOBILENET_RESOLUTION=160 CK_ENV_MOBILENET_WIDTH_MULTIPLIER=0.5 CK_GPU_FREQUENCY=max CK_IMG_LIST=images.txt CK_PREPARE_ALWAYS=NO CK_RESULTS_DIR=predictions CK_SKIP_IMAGES=0 |
0.0173 .. 0.0654 | 0.0173 .. 0.0654 | 57.9 .. 15.3 | 0.584 / 0.822 | 1 | 5459810 | None | 4.500 | 239 (20170425) | 20170425 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
||
26 | f4f75a0a6b65e4cd | request-iot-benchmark | c0ad9b9800422f98 | fp32 | None | None | embedded | NVIDIA Jetson TX2 | ARMv8 Processor rev 3 (v8l) | 2035 | Ubuntu 16.04.3 LTS | lib-keras: Keras API, TensorFlow based (prebuilt, ReQuEST@ASPLOS'18 artifact) 2.1.3 lib-tensorflow: TensorFlow library 1.5 python: python 2.7.12 |
AlexNet (authors' implementation) | None | TensorFlow library 1.5 | CK_CPU_FREQUENCY=max CK_GPU_FREQUENCY=max CUDA_VISIBLE_DEVICES= |
0.2007 .. 0.2015 | 0.2007 .. 0.2015 | 5.0 .. 5.0 | 0.000 / 0.000 | 1 | None | 15.000 | 499 (20180520) | 20180520 | Repositories ACM badges
available, reusable, replicated
|
|||||
27 | f4f75a0a6b65e4cd | request-iot-benchmark | a3fcac86d42bdbc4 | fp32 | None | None | RPi farm: 11 devices (Avro) | embedded | Raspberry Pi (Raspberry Pi 3 Model B) | BCM2709 | 1200 | Ubuntu 16.04.2 LTS | lib-keras: Keras API, TensorFlow based (prebuilt, ReQuEST@ASPLOS'18 artifact) 2.1.3 lib-tensorflow: TensorFlow library 1.5 python: python 2.7.10 |
VGG 16 (authors' implementation) | None | TensorFlow library 1.5 | CK_CPU_FREQUENCY=max CK_GPU_FREQUENCY=max CK_TARGET_PATH=/Users/jiashenc/CK/local/machine/farm-11 |
0.3397 .. 0.5254 | 0.3397 .. 0.5254 | 2.9 .. 1.9 | 0.000 / 0.000 | 1 | None | 55.000 | 440 (20170811) | 20170811 | Repositories ACM badges
available, reusable, replicated
|
||||
28 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | fp32 | ImageNet | 50000 | server | Hewlett-Packard (HP Z640 Workstation) | GeForce GTX 1080 | 1600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (cudnn) master-18b09e8 (18b09e8) |
Caffe model (net and weights) (inception-v3, fp32) fp32 | GNU C compiler 6.3.0 | BVLC Caffe framework (cudnn) master-18b09e8 (18b09e8) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-VaiUzH.prototxt CK_CAFFE_MODEL_FILE=tmp-VaiUzH.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/CK/local/env/f9db041999a38218/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/CK/local/env/f9db041999a38218/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/CK/local/env/f9db041999a38218/inceptionv3.caffemodel CK_GPU_FREQUENCY=max |
0.0232 .. 0.0238 | 0.0695 .. 0.0703 | 43.1 .. 42.1 | 0.754 / 0.923 | 1 | 95533753 | None | 180.000 | 700 (20180101) | 20180101 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||||
29 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | fp32 | ImageNet | 50000 | server | Hewlett-Packard (HP Z640 Workstation) | GeForce GTX 1080 | 1600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (cudnn) master-18b09e8 (18b09e8) |
Caffe model (net and weights) (inception-v3, fp32) fp32 | GNU C compiler 6.3.0 | BVLC Caffe framework (cudnn) master-18b09e8 (18b09e8) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=24 CK_CAFFE_ITERATIONS=20 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-GdnhgZ.prototxt CK_CAFFE_MODEL_FILE=tmp-GdnhgZ.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/CK/local/env/f9db041999a38218/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/CK/local/env/f9db041999a38218/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/CK/local/env/f9db041999a38218/inceptionv3.caffemodel CK_GPU_FREQUENCY=max |
0.0046 .. 0.0047 | 217.2 .. 212.1 | 0.754 / 0.923 | 24 | 95533753 | None | 180.000 | 700 (20180101) | 20180101 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||||
30 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | fp32 | ImageNet | 50000 | Google Cloud | server | Google (Google Compute Engine) | Intel(R) Xeon(R) CPU | 2000 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (inception-v3, fp32) fp32 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=32 CK_CAFFE_ITERATIONS=15 CK_CAFFE_MODEL=/home/gfursin/CK/ck-caffe/program/caffe/tmp/tmp-ICKaAX.prototxt CK_CAFFE_MODEL_FILE=tmp-ICKaAX.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/gfursin/CK-TOOLS/caffemodel-inception-v3-fp32/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/gfursin/CK-TOOLS/caffemodel-inception-v3-fp32/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/gfursin/CK-TOOLS/caffemodel-inception-v3-fp32/inceptionv3.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=4 |
0.0622 .. 0.0632 | 16.1 .. 15.8 | 0.754 / 0.923 | 32 | 95533753 | None | 105.000 | 1166 (20141212) | 20141212 | 3.28e-06 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||
31 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | fp32 | ImageNet | 50000 | Google Cloud | server | Google (Google Compute Engine) | Intel(R) Xeon(R) CPU | 2000 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (inception-v3, fp32) fp32 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/gfursin/CK/ck-caffe/program/caffe/tmp/tmp-oBhiJj.prototxt CK_CAFFE_MODEL_FILE=tmp-oBhiJj.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/gfursin/CK-TOOLS/caffemodel-inception-v3-fp32/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/gfursin/CK-TOOLS/caffemodel-inception-v3-fp32/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/gfursin/CK-TOOLS/caffemodel-inception-v3-fp32/inceptionv3.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=4 |
0.0515 .. 0.0796 | 0.0515 .. 0.0796 | 19.4 .. 12.6 | 0.754 / 0.923 | 1 | 95533753 | None | 105.000 | 1166 (20141212) | 20141212 | 2.72e-06 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||
32 | 4b8bbc192ec57f63 | mobilenets-armcl-opencl | 07d4e7aa3750ddc6 | fp32 | ImageNet | 500 | embedded | Rockchip (Rockchip RK3399 Firefly Board (Linux Opensource)) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd08-2 | ARM Mali-T860 | 800 | Ubuntu 16.04.4 LTS | compiler: GNU C compiler 7.2.0 imagenet-aux: ImageNet dataset (aux) 2012 imagenet-val: ImageNet dataset (validation) 2012 library: ARM Compute Library (request) request-d8f69c1 (d8f69c1) opencl: OpenCL library weights: MobileNet weights 1_1.0_224 xopenme: xOpenME run-time library 0.3 |
MobileNet weights 1_1.0_224 | GNU C compiler 7.2.0 | ARM Compute Library (request) request-d8f69c1 (d8f69c1) | CK_BATCHES_DIR=../batches CK_BATCH_COUNT=1 CK_BATCH_LIST=../batches CK_BATCH_SIZE=1 CK_COMPUTE_DEVICE_ID=0 CK_COMPUTE_PLATFORM_ID=0 CK_CONVOLUTION_METHOD_HINT=1 CK_CPU_FREQUENCY=max CK_ENV_DATASET_IMAGENET_VAL=/home/fursin/CK/local/env/6b7b8b5d320f99fa/ CK_ENV_MOBILENET_RESOLUTION=224 CK_ENV_MOBILENET_WIDTH_MULTIPLIER=1.0 CK_GPU_FREQUENCY=max CK_IMAGE_FILE= CK_IMAGE_LIST=../images CK_PREPARE_ALWAYS=NO CK_RESULTS_DIR=predictions CK_SKIP_IMAGES=0 |
0.2369 .. 0.2417 | 0.2369 .. 0.2417 | 4.2 .. 4.1 | 0.722 / 0.896 | 1 | 17106694 | None | 5.000 | 149 (20180416) | 20180416 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
|||
33 | 4b8bbc192ec57f63 | mobilenets-armcl-opencl | 07d4e7aa3750ddc6 | fp32 | ImageNet | 500 | embedded | Rockchip (Rockchip RK3399 Firefly Board (Linux Opensource)) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd08-2 | ARM Mali-T860 | 800 | Ubuntu 16.04.4 LTS | compiler: GNU C compiler 7.2.0 imagenet-aux: ImageNet dataset (aux) 2012 imagenet-val: ImageNet dataset (validation) 2012 library: ARM Compute Library (request) request-d8f69c1 (d8f69c1) opencl: OpenCL library weights: MobileNet weights 1_1.0_224 xopenme: xOpenME run-time library 0.3 |
MobileNet weights 1_1.0_224 | GNU C compiler 7.2.0 | ARM Compute Library (request) request-d8f69c1 (d8f69c1) | CK_BATCHES_DIR=../batches CK_BATCH_COUNT=1 CK_BATCH_LIST=../batches CK_BATCH_SIZE=1 CK_COMPUTE_DEVICE_ID=0 CK_COMPUTE_PLATFORM_ID=0 CK_CONVOLUTION_METHOD_HINT=0 CK_CPU_FREQUENCY=max CK_ENV_DATASET_IMAGENET_VAL=/home/fursin/CK/local/env/6b7b8b5d320f99fa/ CK_ENV_MOBILENET_RESOLUTION=224 CK_ENV_MOBILENET_WIDTH_MULTIPLIER=1.0 CK_GPU_FREQUENCY=max CK_IMAGE_FILE= CK_IMAGE_LIST=../images CK_PREPARE_ALWAYS=NO CK_RESULTS_DIR=predictions CK_SKIP_IMAGES=0 |
0.1465 .. 0.1484 | 0.1465 .. 0.1484 | 6.8 .. 6.7 | 0.722 / 0.896 | 1 | 17106694 | None | 5.000 | 149 (20180416) | 20180416 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
|||
34 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | fp32 | ImageNet | 50000 | server | Hewlett-Packard (HP Z640 Workstation) | GeForce GTX 1080 | 1600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (cudnn) master-18b09e8 (18b09e8) |
Caffe model (net and weights) (resnet50, fp32) fp32 | GNU C compiler 6.3.0 | BVLC Caffe framework (cudnn) master-18b09e8 (18b09e8) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-5_2l8I.prototxt CK_CAFFE_MODEL_FILE=tmp-5_2l8I.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/CK/local/env/a9914423b819a458/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/CK/local/env/a9914423b819a458/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/CK/local/env/a9914423b819a458/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max |
0.0134 .. 0.0137 | 0.0045 .. 0.0045 | 74.9 .. 73.2 | 0.707 / 0.898 | 1 | 102462397 | None | 180.000 | 700 (20180101) | 20180101 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||||
35 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | fp32 | ImageNet | 50000 | server | Hewlett-Packard (HP Z640 Workstation) | GeForce GTX 1080 | 1600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (cudnn) master-18b09e8 (18b09e8) |
Caffe model (net and weights) (resnet50, fp32) fp32 | GNU C compiler 6.3.0 | BVLC Caffe framework (cudnn) master-18b09e8 (18b09e8) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=24 CK_CAFFE_ITERATIONS=20 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-mmZrQF.prototxt CK_CAFFE_MODEL_FILE=tmp-mmZrQF.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/CK/local/env/a9914423b819a458/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/CK/local/env/a9914423b819a458/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/CK/local/env/a9914423b819a458/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max |
0.0045 .. 0.0045 | 222.6 .. 222.3 | 0.707 / 0.898 | 24 | 102462397 | None | 180.000 | 700 (20180101) | 20180101 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||||
36 | 4b8bbc192ec57f63 | classification-tensorflow | 07d4e7aa3750ddc6 | fp32 | ImageNet | 500 | embedded | HiKey960 (HiKey960) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd09-1 | 2362 | Debian GNU/Linux 9 (stretch) | imagenet-aux: ImageNet dataset (aux) 2012 imagenet-val: ImageNet dataset (validation) 2012 lib-tensorflow: TensorFlow library (from sources, cpu, xla) 1.7 library: TensorFlow library (from sources, cpu) 1.7 model-and-weights: TensorFlow python model and weights (squeezenet) ImageNet python: python 2.7.13 weights: TensorFlow python model and weights (mobilenet-0.75-160) ImageNet |
TensorFlow python model and weights (mobilenet-0.75-160) ImageNet | None | TensorFlow library (from sources, cpu) 1.7 | CK_BATCHES_DIR=../batches CK_BATCH_COUNT=2 CK_BATCH_LIST=../batches CK_BATCH_SIZE=1 CK_CONVOLUTION_METHOD_HINT=1 CK_CPU_FREQUENCY=max CK_ENV_DATASET_IMAGENET_VAL=/home/anton/CK_TOOLS/dataset-imagenet-ilsvrc2012-val-min/ CK_ENV_TENSORFLOW_MODEL_MOBILENET_MULTIPLIER=0.75 CK_ENV_TENSORFLOW_MODEL_MOBILENET_RESOLUTION=160 CK_GPU_FREQUENCY=max CK_IMAGE_FILE= CK_IMAGE_LIST=../images CK_RESULTS_DIR=predictions CK_SKIP_IMAGES=0 CK_TF_GPU_MEMORY_PERCENT=33 |
0.0367 .. 0.0676 | 0.0367 .. 0.0676 | 27.3 .. 14.8 | 0.644 / 0.856 | 1 | 10498594 | None | 4.500 | 239 (20170425) | 20170425 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
||||
37 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | fp32 | ImageNet | 50000 | Google Cloud | server | Google (Google Compute Engine) | Intel(R) Xeon(R) CPU | 2000 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (resnet50, fp32) fp32 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/gfursin/CK/ck-caffe/program/caffe/tmp/tmp-JAbQVt.prototxt CK_CAFFE_MODEL_FILE=tmp-JAbQVt.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/gfursin/CK-TOOLS/caffemodel-resnet50-fp32/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/gfursin/CK-TOOLS/caffemodel-resnet50-fp32/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/gfursin/CK-TOOLS/caffemodel-resnet50-fp32/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=4 |
0.0328 .. 0.0488 | 0.0328 .. 0.0488 | 30.5 .. 20.5 | 0.707 / 0.898 | 1 | 102462397 | None | 105.000 | 1166 (20141212) | 20141212 | 1.73e-06 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||
38 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | fp32 | ImageNet | 50000 | Google Cloud | server | Google (Google Compute Engine) | Intel(R) Xeon(R) CPU | 2000 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (resnet50, fp32) fp32 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=24 CK_CAFFE_ITERATIONS=20 CK_CAFFE_MODEL=/home/gfursin/CK/ck-caffe/program/caffe/tmp/tmp-I3amQ8.prototxt CK_CAFFE_MODEL_FILE=tmp-I3amQ8.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/gfursin/CK-TOOLS/caffemodel-resnet50-fp32/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/gfursin/CK-TOOLS/caffemodel-resnet50-fp32/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/gfursin/CK-TOOLS/caffemodel-resnet50-fp32/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=2 |
0.0370 .. 0.0404 | 27.0 .. 24.8 | 0.707 / 0.898 | 24 | 102462397 | None | 105.000 | 1166 (20141212) | 20141212 | 1.95e-06 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||
39 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | int8 | ImageNet | 50000 | Amazon | server | Amazon EC2 (c5.9xlarge) | Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, int8) intel-i8 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (resnet50, int8) intel-i8 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=64 CK_CAFFE_ITERATIONS=7 CK_CAFFE_MODEL=/home/ubuntu/CK/ck-caffe/program/caffe/tmp/tmp-ZTsvrJ.prototxt CK_CAFFE_MODEL_FILE=tmp-ZTsvrJ.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/ubuntu/CK-TOOLS/caffemodel-resnet50-intel-i8/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-resnet50-intel-i8/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-resnet50-intel-i8/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=36 |
0.0021 .. 0.0022 | 465.3 .. 458.8 | 0.704 / 0.897 | 64 | 25615599.25 | None | 105.000 | 1166 (20141212) | 20141212 | 9.13e-07 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||
40 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | int8 | ImageNet | 50000 | Amazon | server | Amazon EC2 (c5.9xlarge) | Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, int8) intel-i8 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (resnet50, int8) intel-i8 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/ubuntu/CK/ck-caffe/program/caffe/tmp/tmp-u2KPZ_.prototxt CK_CAFFE_MODEL_FILE=tmp-u2KPZ_.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/ubuntu/CK-TOOLS/caffemodel-resnet50-intel-i8/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-resnet50-intel-i8/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-resnet50-intel-i8/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=36 |
0.0041 .. 0.0041 | 0.0041 .. 0.0041 | 245.1 .. 241.9 | 0.704 / 0.897 | 1 | 25615599.25 | None | 105.000 | 1166 (20141212) | 20141212 | 1.73e-06 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||
41 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | fp32 | ImageNet | 50000 | server | Hewlett-Packard (HP Z640 Workstation) | Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (cpu) master-18b09e8 (18b09e8) |
Caffe model (net and weights) (inception-v3, fp32) fp32 | GNU C compiler 6.3.0 | BVLC Caffe framework (cpu) master-18b09e8 (18b09e8) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-gGv0uB.prototxt CK_CAFFE_MODEL_FILE=tmp-gGv0uB.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/CK/local/env/f9db041999a38218/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/CK/local/env/f9db041999a38218/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/CK/local/env/f9db041999a38218/inceptionv3.caffemodel CK_GPU_FREQUENCY=max |
0.2356 .. 0.2397 | 0.2254 .. 0.2260 | 4.2 .. 4.2 | 0.754 / 0.923 | 1 | 95533753 | None | 105.000 | 1166 (20141212) | 20141212 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||||
42 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | fp32 | ImageNet | 50000 | server | Hewlett-Packard (HP Z640 Workstation) | Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (cpu) master-18b09e8 (18b09e8) |
Caffe model (net and weights) (inception-v3, fp32) fp32 | GNU C compiler 6.3.0 | BVLC Caffe framework (cpu) master-18b09e8 (18b09e8) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=64 CK_CAFFE_ITERATIONS=7 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-CZ5Cmo.prototxt CK_CAFFE_MODEL_FILE=tmp-CZ5Cmo.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/CK/local/env/f9db041999a38218/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/CK/local/env/f9db041999a38218/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/CK/local/env/f9db041999a38218/inceptionv3.caffemodel CK_GPU_FREQUENCY=max |
0.2229 .. 0.2241 | 4.5 .. 4.5 | 0.754 / 0.923 | 64 | 95533753 | None | 105.000 | 1166 (20141212) | 20141212 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||||
43 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | fp32 | ImageNet | 50000 | Amazon | server | Amazon EC2 (c5.9xlarge) | Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (cpu) master-18b09e8 (18b09e8) |
Caffe model (net and weights) (inception-v3, fp32) fp32 | GNU C compiler 5.4.0 | BVLC Caffe framework (cpu) master-18b09e8 (18b09e8) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/ubuntu/CK/ck-caffe/program/caffe/tmp/tmp-voPrDv.prototxt CK_CAFFE_MODEL_FILE=tmp-voPrDv.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/ubuntu/CK-TOOLS/caffemodel-inception-v3-fp32/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-inception-v3-fp32/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-inception-v3-fp32/inceptionv3.caffemodel CK_GPU_FREQUENCY=max |
0.2240 .. 0.2262 | 0.2240 .. 0.2262 | 4.5 .. 4.4 | 0.754 / 0.923 | 1 | 95533753 | None | 105.000 | 1166 (20141212) | 20141212 | 9.52e-05 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||
44 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | fp32 | ImageNet | 50000 | Amazon | server | Amazon EC2 (c5.9xlarge) | Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (cpu) master-18b09e8 (18b09e8) |
Caffe model (net and weights) (inception-v3, fp32) fp32 | GNU C compiler 5.4.0 | BVLC Caffe framework (cpu) master-18b09e8 (18b09e8) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=40 CK_CAFFE_ITERATIONS=12 CK_CAFFE_MODEL=/home/ubuntu/CK/ck-caffe/program/caffe/tmp/tmp-y2uIiU.prototxt CK_CAFFE_MODEL_FILE=tmp-y2uIiU.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/ubuntu/CK-TOOLS/caffemodel-inception-v3-fp32/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-inception-v3-fp32/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-inception-v3-fp32/inceptionv3.caffemodel CK_GPU_FREQUENCY=max |
0.2108 .. 0.2130 | 4.7 .. 4.7 | 0.754 / 0.923 | 40 | 95533753 | None | 105.000 | 1166 (20141212) | 20141212 | 8.96e-05 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||
45 | f4f75a0a6b65e4cd | request-iot-benchmark | c0ad9b9800422f98 | fp32 | None | None | embedded | NVIDIA Jetson TX1 | ARMv8 Processor rev 1 (v8l) | 1734 | Ubuntu 16.04.4 LTS | lib-keras: Keras API, TensorFlow based (prebuilt, ReQuEST@ASPLOS'18 artifact) 2.1.3 lib-tensorflow: TensorFlow library (from sources, cuda) 1.5 python: python 3.5.2 |
AlexNet (authors' implementation) | None | TensorFlow library (from sources, cuda) 1.5 | CK_CPU_FREQUENCY=max CK_GPU_FREQUENCY=max CUDA_VISIBLE_DEVICES= |
0.1842 .. 0.1847 | 0.1842 .. 0.1847 | 5.4 .. 5.4 | 0.000 / 0.000 | 1 | None | 15.000 | 435 (20180520) | 20180520 | Repositories ACM badges
available, reusable, replicated
|
|||||
46 | 4b8bbc192ec57f63 | mobilenets-armcl-opencl | 07d4e7aa3750ddc6 | fp32 | ImageNet | 500 | None | embedded | HiKey960 (HiKey960) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd09-1 | ARM Mali-G71 | 807 | Debian GNU/Linux 9 (stretch) | compiler: GNU C compiler 7.2.0 imagenet-aux: ImageNet dataset (aux) 2012 imagenet-val: ImageNet dataset (validation) 2012 library: ARM Compute Library (request) request-d8f69c13 (d8f69c13) opencl: OpenCL library r6p0-instr1-cl2 weights: MobileNet weights 1_1.0_192 xopenme: xOpenME run-time library 0.3 |
MobileNet weights 1_1.0_192 | GNU C compiler 7.2.0 | ARM Compute Library (request) request-d8f69c13 (d8f69c13) | CK_BATCHES_DIR=batches CK_BATCH_COUNT=1 CK_BATCH_LIST=batches.txt CK_BATCH_SIZE=1 CK_COMPUTE_DEVICE_ID=0 CK_COMPUTE_PLATFORM_ID=0 CK_CONVOLUTION_METHOD_HINT=1 CK_CPU_FREQUENCY=max CK_ENV_DATASET_IMAGENET_VAL=/home/anton/CK_TOOLS/dataset-imagenet-ilsvrc2012-val-min/ CK_ENV_MOBILENET_RESOLUTION=192 CK_ENV_MOBILENET_WIDTH_MULTIPLIER=1.0 CK_GPU_FREQUENCY=max CK_IMG_LIST=images.txt CK_PREPARE_ALWAYS=NO CK_RESULTS_DIR=predictions CK_SKIP_IMAGES=0 |
0.0397 .. 0.1689 | 0.0397 .. 0.1689 | 25.2 .. 5.9 | 0.704 / 0.882 | 1 | 17106694 | None | 4.500 | 239 (20170425) | 20170425 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
||
47 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | fp32 | ImageNet | 50000 | server | Hewlett-Packard (HP Z640 Workstation) | Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (inception-v3, fp32) fp32 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=40 CK_CAFFE_ITERATIONS=12 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-AJJSv2.prototxt CK_CAFFE_MODEL_FILE=tmp-AJJSv2.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/CK/local/env/f9db041999a38218/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/CK/local/env/f9db041999a38218/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/CK/local/env/f9db041999a38218/inceptionv3.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=20 |
0.0174 .. 0.0177 | 57.3 .. 56.6 | 0.754 / 0.923 | 40 | 95533753 | None | 105.000 | 1166 (20141212) | 20141212 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||||
48 | 4b8bbc192ec57f63 | caffe | 1b339ddb13408f8f | fp32 | ImageNet | 50000 | server | Hewlett-Packard (HP Z640 Workstation) | Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (inception-v3, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (inception-v3, fp32) fp32 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-pHjHEG.prototxt CK_CAFFE_MODEL_FILE=tmp-pHjHEG.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/CK/local/env/f9db041999a38218/inceptionv3_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/CK/local/env/f9db041999a38218/inceptionv3.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/CK/local/env/f9db041999a38218/inceptionv3.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=10 |
0.0216 .. 0.0362 | 0.0176 .. 0.0179 | 46.3 .. 27.6 | 0.754 / 0.923 | 1 | 95533753 | None | 105.000 | 1166 (20141212) | 20141212 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||||
49 | 4b8bbc192ec57f63 | mobilenets-armcl-opencl | 07d4e7aa3750ddc6 | fp32 | ImageNet | 500 | None | embedded | HiKey960 (HiKey960) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd09-1 | ARM Mali-G71 | 807 | Debian GNU/Linux 9 (stretch) | compiler: GNU C compiler 7.2.0 imagenet-aux: ImageNet dataset (aux) 2012 imagenet-val: ImageNet dataset (validation) 2012 library: ARM Compute Library (opencl) 18.03-e40997bb (e40997bb) opencl: OpenCL library r6p0-instr1-cl2 weights: MobileNet weights 1_1.0_224 xopenme: xOpenME run-time library 0.3 |
MobileNet weights 1_1.0_224 | GNU C compiler 7.2.0 | ARM Compute Library (opencl) 18.03-e40997bb (e40997bb) | CK_BATCHES_DIR=batches CK_BATCH_COUNT=1 CK_BATCH_LIST=batches.txt CK_BATCH_SIZE=1 CK_COMPUTE_DEVICE_ID=0 CK_COMPUTE_PLATFORM_ID=0 CK_CONVOLUTION_METHOD_HINT=0 CK_CPU_FREQUENCY=max CK_ENV_DATASET_IMAGENET_VAL=/home/anton/CK_TOOLS/dataset-imagenet-ilsvrc2012-val-min/ CK_ENV_MOBILENET_RESOLUTION=224 CK_ENV_MOBILENET_WIDTH_MULTIPLIER=1.0 CK_GPU_FREQUENCY=max CK_IMG_LIST=images.txt CK_PREPARE_ALWAYS=NO CK_RESULTS_DIR=predictions CK_SKIP_IMAGES=0 |
0.0517 .. 0.2039 | 0.0517 .. 0.2039 | 19.3 .. 4.9 | 0.722 / 0.904 | 1 | 17106694 | None | 4.500 | 239 (20170425) | 20170425 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
||
50 | 4b8bbc192ec57f63 | request-tvm-nnvm-inference | 07d4e7aa3750ddc6 | fp16 | ImageNet | 50000 | embedded | Rockchip (Rockchip RK3399 Firefly Board (Linux Opensource)) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd08-2 | 800 | Ubuntu 16.04.4 LTS | lib-mxnet: MXNet library (built, cpu) master-fb50257 (fb50257) lib-nnvm-tvm: NNVM library master-69c5ebb (69c5ebb) mxnet-model: MXNet model (net and weights) (mxnet, mobilenet, 1.0) mobilenet1.0 python: python 3.5.2 |
MXNet model (net and weights) (mxnet, mobilenet, 1.0) mobilenet1.0 | GNU C compiler 7.2.0 | MXNet library (built, cpu) master-fb50257 (fb50257) | CK_BATCH_SIZE=1 CK_CPU_FREQUENCY=max CK_DATASET_FILENAME=snake.jpg CK_GPU_FREQUENCY=max CK_TVM_DTYPE=float16 CK_TVM_MODEL=mobilenet STAT_REPEAT=5 |
0.0558 .. 0.0591 | 0.0558 .. 0.0591 | 17.9 .. 16.9 | 0.667 / 0.877 | 1 | 8512054.5 | None | 6.050 | 149 (20180416) | 20180416 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
||||
51 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | fp32 | ImageNet | 50000 | Amazon | server | Amazon EC2 (c5.9xlarge) | Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (resnet50, fp32) fp32 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/ubuntu/CK/ck-caffe/program/caffe/tmp/tmp-2QMOjx.prototxt CK_CAFFE_MODEL_FILE=tmp-2QMOjx.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/ubuntu/CK-TOOLS/caffemodel-resnet50-fp32/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-resnet50-fp32/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-resnet50-fp32/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=36 |
0.0065 .. 0.0066 | 0.0065 .. 0.0066 | 154.5 .. 151.9 | 0.707 / 0.898 | 1 | 102462397 | None | 105.000 | 1166 (20141212) | 20141212 | 2.75e-06 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||
52 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | fp32 | ImageNet | 50000 | Amazon | server | Amazon EC2 (c5.9xlarge) | Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (resnet50, fp32) fp32 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=48 CK_CAFFE_ITERATIONS=10 CK_CAFFE_MODEL=/home/ubuntu/CK/ck-caffe/program/caffe/tmp/tmp-7xf1pa.prototxt CK_CAFFE_MODEL_FILE=tmp-7xf1pa.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/ubuntu/CK-TOOLS/caffemodel-resnet50-fp32/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-resnet50-fp32/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-resnet50-fp32/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=18 |
0.0033 .. 0.0060 | 304.1 .. 166.5 | 0.707 / 0.898 | 48 | 102462397 | None | 105.000 | 1166 (20141212) | 20141212 | 1.40e-06 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||
53 | 4b8bbc192ec57f63 | classification-tensorflow | 07d4e7aa3750ddc6 | fp32 | ImageNet | 500 | embedded | HiKey960 (HiKey960) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd09-1 | 2362 | Debian GNU/Linux 9 (stretch) | imagenet-aux: ImageNet dataset (aux) 2012 imagenet-val: ImageNet dataset (validation) 2012 lib-tensorflow: TensorFlow library (from sources, cpu, xla) 1.7 library: TensorFlow library (from sources, cpu) 1.7 model-and-weights: TensorFlow python model and weights (squeezenet) ImageNet python: python 2.7.13 weights: TensorFlow python model and weights (mobilenet-0.25-128) ImageNet |
TensorFlow python model and weights (mobilenet-0.25-128) ImageNet | None | TensorFlow library (from sources, cpu) 1.7 | CK_BATCHES_DIR=../batches CK_BATCH_COUNT=2 CK_BATCH_LIST=../batches CK_BATCH_SIZE=1 CK_CONVOLUTION_METHOD_HINT=1 CK_CPU_FREQUENCY=max CK_ENV_DATASET_IMAGENET_VAL=/home/anton/CK_TOOLS/dataset-imagenet-ilsvrc2012-val-min/ CK_ENV_TENSORFLOW_MODEL_MOBILENET_MULTIPLIER=0.25 CK_ENV_TENSORFLOW_MODEL_MOBILENET_RESOLUTION=128 CK_GPU_FREQUENCY=max CK_IMAGE_FILE= CK_IMAGE_LIST=../images CK_RESULTS_DIR=predictions CK_SKIP_IMAGES=0 CK_TF_GPU_MEMORY_PERCENT=33 |
0.0124 .. 0.0331 | 0.0124 .. 0.0331 | 80.5 .. 30.2 | 0.407 / 0.657 | 1 | 1990786 | None | 4.500 | 239 (20170425) | 20170425 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
||||
54 | 4b8bbc192ec57f63 | mobilenets-armcl-opencl | 07d4e7aa3750ddc6 | fp32 | ImageNet | 500 | None | embedded | HiKey960 (HiKey960) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd09-1 | ARM Mali-G71 | 807 | Debian GNU/Linux 9 (stretch) | compiler: GNU C compiler 7.2.0 imagenet-aux: ImageNet dataset (aux) 2012 imagenet-val: ImageNet dataset (validation) 2012 library: ARM Compute Library (request) request-d8f69c13 (d8f69c13) opencl: OpenCL library r6p0-instr1-cl2 weights: MobileNet weights 1_0.50_224 xopenme: xOpenME run-time library 0.3 |
MobileNet weights 1_0.50_224 | GNU C compiler 7.2.0 | ARM Compute Library (request) request-d8f69c13 (d8f69c13) | CK_BATCHES_DIR=batches CK_BATCH_COUNT=1 CK_BATCH_LIST=batches.txt CK_BATCH_SIZE=1 CK_COMPUTE_DEVICE_ID=0 CK_COMPUTE_PLATFORM_ID=0 CK_CONVOLUTION_METHOD_HINT=1 CK_CPU_FREQUENCY=max CK_ENV_DATASET_IMAGENET_VAL=/home/anton/CK_TOOLS/dataset-imagenet-ilsvrc2012-val-min/ CK_ENV_MOBILENET_RESOLUTION=224 CK_ENV_MOBILENET_WIDTH_MULTIPLIER=0.5 CK_GPU_FREQUENCY=max CK_IMG_LIST=images.txt CK_PREPARE_ALWAYS=NO CK_RESULTS_DIR=predictions CK_SKIP_IMAGES=0 |
0.0243 .. 0.0949 | 0.0243 .. 0.0949 | 41.1 .. 10.5 | 0.648 / 0.852 | 1 | 5459810 | None | 4.500 | 239 (20170425) | 20170425 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
||
55 | 4b8bbc192ec57f63 | mobilenets-armcl-opencl | 07d4e7aa3750ddc6 | fp32 | ImageNet | 500 | embedded | Rockchip (Rockchip RK3399 Firefly Board (Linux Opensource)) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd08-2 | ARM Mali-T860 | 800 | Ubuntu 16.04.4 LTS | compiler: GNU C compiler 7.2.0 imagenet-aux: ImageNet dataset (aux) 2012 imagenet-val: ImageNet dataset (validation) 2012 library: ARM Compute Library (opencl) 18.03-e40997b (e40997b) opencl: OpenCL library weights: MobileNet weights 1_1.0_224 xopenme: xOpenME run-time library 0.3 |
MobileNet weights 1_1.0_224 | GNU C compiler 7.2.0 | ARM Compute Library (opencl) 18.03-e40997b (e40997b) | CK_BATCHES_DIR=../batches CK_BATCH_COUNT=1 CK_BATCH_LIST=../batches CK_BATCH_SIZE=1 CK_COMPUTE_DEVICE_ID=0 CK_COMPUTE_PLATFORM_ID=0 CK_CONVOLUTION_METHOD_HINT=1 CK_CPU_FREQUENCY=max CK_ENV_DATASET_IMAGENET_VAL=/home/fursin/CK/local/env/6b7b8b5d320f99fa/ CK_ENV_MOBILENET_RESOLUTION=224 CK_ENV_MOBILENET_WIDTH_MULTIPLIER=1.0 CK_GPU_FREQUENCY=max CK_IMAGE_FILE= CK_IMAGE_LIST=../images CK_PREPARE_ALWAYS=NO CK_RESULTS_DIR=predictions CK_SKIP_IMAGES=0 |
0.2372 .. 0.2420 | 0.2372 .. 0.2420 | 4.2 .. 4.1 | 0.722 / 0.896 | 1 | 17106694 | None | 5.000 | 149 (20180416) | 20180416 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
|||
56 | 4b8bbc192ec57f63 | mobilenets-armcl-opencl | 07d4e7aa3750ddc6 | fp32 | ImageNet | 500 | embedded | Rockchip (Rockchip RK3399 Firefly Board (Linux Opensource)) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd08-2 | ARM Mali-T860 | 800 | Ubuntu 16.04.4 LTS | compiler: GNU C compiler 7.2.0 imagenet-aux: ImageNet dataset (aux) 2012 imagenet-val: ImageNet dataset (validation) 2012 library: ARM Compute Library (opencl) 18.03-e40997b (e40997b) opencl: OpenCL library weights: MobileNet weights 1_1.0_224 xopenme: xOpenME run-time library 0.3 |
MobileNet weights 1_1.0_224 | GNU C compiler 7.2.0 | ARM Compute Library (opencl) 18.03-e40997b (e40997b) | CK_BATCHES_DIR=../batches CK_BATCH_COUNT=1 CK_BATCH_LIST=../batches CK_BATCH_SIZE=1 CK_COMPUTE_DEVICE_ID=0 CK_COMPUTE_PLATFORM_ID=0 CK_CONVOLUTION_METHOD_HINT=0 CK_CPU_FREQUENCY=max CK_ENV_DATASET_IMAGENET_VAL=/home/fursin/CK/local/env/6b7b8b5d320f99fa/ CK_ENV_MOBILENET_RESOLUTION=224 CK_ENV_MOBILENET_WIDTH_MULTIPLIER=1.0 CK_GPU_FREQUENCY=max CK_IMAGE_FILE= CK_IMAGE_LIST=../images CK_PREPARE_ALWAYS=NO CK_RESULTS_DIR=predictions CK_SKIP_IMAGES=0 |
0.1462 .. 0.1490 | 0.1462 .. 0.1490 | 6.8 .. 6.7 | 0.722 / 0.896 | 1 | 17106694 | None | 5.000 | 149 (20180416) | 20180416 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
|||
57 | 4b8bbc192ec57f63 | classification-tensorflow | 07d4e7aa3750ddc6 | fp32 | ImageNet | 500 | embedded | HiKey960 (HiKey960) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd09-1 | 2362 | Debian GNU/Linux 9 (stretch) | imagenet-aux: ImageNet dataset (aux) 2012 imagenet-val: ImageNet dataset (validation) 2012 lib-tensorflow: TensorFlow library (from sources, cpu, xla) 1.7 library: TensorFlow library (from sources, cpu) 1.7 model-and-weights: TensorFlow python model and weights (squeezenet) ImageNet python: python 2.7.13 weights: TensorFlow python model and weights (mobilenet-0.50-160) ImageNet |
TensorFlow python model and weights (mobilenet-0.50-160) ImageNet | None | TensorFlow library (from sources, cpu) 1.7 | CK_BATCHES_DIR=../batches CK_BATCH_COUNT=2 CK_BATCH_LIST=../batches CK_BATCH_SIZE=1 CK_CONVOLUTION_METHOD_HINT=1 CK_CPU_FREQUENCY=max CK_ENV_DATASET_IMAGENET_VAL=/home/anton/CK_TOOLS/dataset-imagenet-ilsvrc2012-val-min/ CK_ENV_TENSORFLOW_MODEL_MOBILENET_MULTIPLIER=0.5 CK_ENV_TENSORFLOW_MODEL_MOBILENET_RESOLUTION=160 CK_GPU_FREQUENCY=max CK_IMAGE_FILE= CK_IMAGE_LIST=../images CK_RESULTS_DIR=predictions CK_SKIP_IMAGES=0 CK_TF_GPU_MEMORY_PERCENT=33 |
0.0245 .. 0.0624 | 0.0245 .. 0.0624 | 40.8 .. 16.0 | 0.594 / 0.820 | 1 | 5459810 | None | 4.500 | 239 (20170425) | 20170425 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
||||
58 | f4f75a0a6b65e4cd | request-iot-benchmark | c0ad9b9800422f98 | fp32 | None | None | embedded | NVIDIA Jetson TX1 | ARMv8 Processor rev 1 (v8l) | 998 | Ubuntu 16.04.4 LTS | lib-keras: Keras API, TensorFlow based (prebuilt, ReQuEST@ASPLOS'18 artifact) 2.1.3 lib-tensorflow: TensorFlow library (from sources, cuda) 1.5 python: python 3.5.2 |
AlexNet (authors' implementation) | None | TensorFlow library (from sources, cuda) 1.5 | CK_CPU_FREQUENCY=max CK_GPU_FREQUENCY=max |
0.0200 .. 0.0203 | 0.0200 .. 0.0203 | 50.0 .. 49.2 | 0.000 / 0.000 | 1 | None | 15.000 | 435 (20180520) | 20180520 | Repositories ACM badges
available, reusable, replicated
|
|||||
59 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | int8 | ImageNet | 50000 | Google Cloud | server | Google (Google Compute Engine) | Intel(R) Xeon(R) CPU | 2000 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, int8) intel-i8 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (resnet50, int8) intel-i8 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=64 CK_CAFFE_ITERATIONS=7 CK_CAFFE_MODEL=/home/gfursin/CK/ck-caffe/program/caffe/tmp/tmp-obvDV3.prototxt CK_CAFFE_MODEL_FILE=tmp-obvDV3.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/gfursin/CK-TOOLS/caffemodel-resnet50-intel-i8/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/gfursin/CK-TOOLS/caffemodel-resnet50-intel-i8/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/gfursin/CK-TOOLS/caffemodel-resnet50-intel-i8/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=4 |
0.0271 .. 0.0276 | 36.9 .. 36.3 | 0.704 / 0.897 | 64 | 25615599.25 | None | 105.000 | 1166 (20141212) | 20141212 | 1.43e-06 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||
60 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | int8 | ImageNet | 50000 | Google Cloud | server | Google (Google Compute Engine) | Intel(R) Xeon(R) CPU | 2000 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, int8) intel-i8 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (resnet50, int8) intel-i8 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/gfursin/CK/ck-caffe/program/caffe/tmp/tmp-bTCeEh.prototxt CK_CAFFE_MODEL_FILE=tmp-bTCeEh.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/gfursin/CK-TOOLS/caffemodel-resnet50-intel-i8/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/gfursin/CK-TOOLS/caffemodel-resnet50-intel-i8/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/gfursin/CK-TOOLS/caffemodel-resnet50-intel-i8/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=4 |
0.0203 .. 0.0371 | 0.0203 .. 0.0371 | 49.3 .. 27.0 | 0.704 / 0.897 | 1 | 25615599.25 | None | 105.000 | 1166 (20141212) | 20141212 | 1.07e-06 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||
61 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | fp32 | ImageNet | 50000 | Amazon | server | Amazon EC2 (c5.9xlarge) | Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (cpu) master-18b09e8 (18b09e8) |
Caffe model (net and weights) (resnet50, fp32) fp32 | GNU C compiler 5.4.0 | BVLC Caffe framework (cpu) master-18b09e8 (18b09e8) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=64 CK_CAFFE_ITERATIONS=7 CK_CAFFE_MODEL=/home/ubuntu/CK/ck-caffe/program/caffe/tmp/tmp-wcCc4K.prototxt CK_CAFFE_MODEL_FILE=tmp-wcCc4K.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/ubuntu/CK-TOOLS/caffemodel-resnet50-fp32/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-resnet50-fp32/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-resnet50-fp32/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max |
0.1538 .. 0.1554 | 6.5 .. 6.4 | 0.707 / 0.898 | 64 | 102462397 | None | 105.000 | 1166 (20141212) | 20141212 | 6.54e-05 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||
62 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | fp32 | ImageNet | 50000 | Amazon | server | Amazon EC2 (c5.9xlarge) | Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (cpu) master-18b09e8 (18b09e8) |
Caffe model (net and weights) (resnet50, fp32) fp32 | GNU C compiler 5.4.0 | BVLC Caffe framework (cpu) master-18b09e8 (18b09e8) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/ubuntu/CK/ck-caffe/program/caffe/tmp/tmp-Fha9hx.prototxt CK_CAFFE_MODEL_FILE=tmp-Fha9hx.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/ubuntu/CK-TOOLS/caffemodel-resnet50-fp32/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-resnet50-fp32/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/ubuntu/CK-TOOLS/caffemodel-resnet50-fp32/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max |
0.1716 .. 0.1753 | 0.1716 .. 0.1753 | 5.8 .. 5.7 | 0.707 / 0.898 | 1 | 102462397 | None | 105.000 | 1166 (20141212) | 20141212 | 7.29e-05 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||
63 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | fp32 | ImageNet | 50000 | server | Hewlett-Packard (HP Z640 Workstation) | Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (cpu) master-18b09e8 (18b09e8) |
Caffe model (net and weights) (resnet50, fp32) fp32 | GNU C compiler 6.3.0 | BVLC Caffe framework (cpu) master-18b09e8 (18b09e8) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=8 CK_CAFFE_ITERATIONS=62 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-8zBTXt.prototxt CK_CAFFE_MODEL_FILE=tmp-8zBTXt.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/CK/local/env/a9914423b819a458/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/CK/local/env/a9914423b819a458/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/CK/local/env/a9914423b819a458/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max |
0.1567 .. 0.1572 | 6.4 .. 6.4 | 0.707 / 0.898 | 8 | 102462397 | None | 105.000 | 1166 (20141212) | 20141212 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||||
64 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | fp32 | ImageNet | 50000 | server | Hewlett-Packard (HP Z640 Workstation) | Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, fp32) fp32 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (cpu) master-18b09e8 (18b09e8) |
Caffe model (net and weights) (resnet50, fp32) fp32 | GNU C compiler 6.3.0 | BVLC Caffe framework (cpu) master-18b09e8 (18b09e8) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-_Gj38I.prototxt CK_CAFFE_MODEL_FILE=tmp-_Gj38I.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/CK/local/env/a9914423b819a458/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/CK/local/env/a9914423b819a458/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/CK/local/env/a9914423b819a458/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max |
0.1664 .. 0.1668 | 0.1580 .. 0.1591 | 6.0 .. 6.0 | 0.707 / 0.898 | 1 | 102462397 | None | 105.000 | 1166 (20141212) | 20141212 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||||
65 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | int8 | ImageNet | 50000 | server | Hewlett-Packard (HP Z640 Workstation) | Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, int8) intel-i8 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (resnet50, int8) intel-i8 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=48 CK_CAFFE_ITERATIONS=10 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-HpyAax.prototxt CK_CAFFE_MODEL_FILE=tmp-HpyAax.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/CK/local/env/1a7c0379a2ca4184/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/CK/local/env/1a7c0379a2ca4184/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/CK/local/env/1a7c0379a2ca4184/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=10 |
0.0249 .. 0.0252 | 40.2 .. 39.7 | 0.704 / 0.897 | 48 | 25615599.25 | None | 105.000 | 1166 (20141212) | 20141212 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
|||||
66 | 4b8bbc192ec57f63 | caffe | d777f6335496db61 | int8 | ImageNet | 50000 | server | Hewlett-Packard (HP Z640 Workstation) | Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz | 2600 | Ubuntu 16.04.4 LTS | caffemodel: Caffe model (net and weights) (resnet50, int8) intel-i8 dataset-imagenet-aux: ImageNet dataset (aux) 2012 dataset-imagenet-lmdb: ImageNet dataset (validation, LMDB) (resize 320) (500 images) 2012 lib-caffe: BVLC Caffe framework (intel, request) request-92110fe (92110fe) |
Caffe model (net and weights) (resnet50, int8) intel-i8 | Intel compiler 18.0.1 | BVLC Caffe framework (intel, request) request-92110fe (92110fe) | CAFFE_COMPUTE_DEVICE_ID=0 CK_CAFFE_BATCH_SIZE=1 CK_CAFFE_ITERATIONS=500 CK_CAFFE_MODEL=/home/fursin/CK/ck-caffe/program/caffe/tmp/tmp-ES2WBh.prototxt CK_CAFFE_MODEL_FILE=tmp-ES2WBh.prototxt CK_CAFFE_MODEL_MEAN_BIN=/home/fursin/CK/local/env/1a7c0379a2ca4184/ResNet_mean.binaryproto CK_CAFFE_MODEL_WEIGHTS=/home/fursin/CK/local/env/1a7c0379a2ca4184/ResNet-50-model.caffemodel CK_CPU_FREQUENCY=max CK_ENV_MODEL_CAFFE_WEIGHTS=/home/fursin/CK/local/env/1a7c0379a2ca4184/ResNet-50-model.caffemodel CK_GPU_FREQUENCY=max OMP_NUM_THREADS=10 |
0.0305 .. 0.0477 | 0.0255 .. 0.0423 | 32.8 .. 21.0 | 0.704 / 0.897 | 1 | 25615599.25 | None | 105.000 | 1166 (20141212) | 20141212 | Repositories ACM badges
available, reusable, replicated
Review
See notes
|
||||
67 | 4b8bbc192ec57f63 | request-tvm-nnvm-inference | d41bbf1e489ab5e0 | fp16 | ImageNet | 25000 | embedded | Rockchip (Rockchip RK3399 Firefly Board (Linux Opensource)) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd08-2 | 800 | Ubuntu 16.04.4 LTS | lib-mxnet: MXNet library (built, cpu) master-fb50257 (fb50257) lib-nnvm-tvm: NNVM library master-69c5ebb (69c5ebb) mxnet-model: MXNet model (net and weights) (mxnet, resnet-18) resnet-18 python: python 3.5.2 |
MXNet model (net and weights) (mxnet, resnet-18) resnet-18 | GNU C compiler 7.2.0 | MXNet library (built, cpu) master-fb50257 (fb50257) | CK_BATCH_SIZE=1 CK_CPU_FREQUENCY=max CK_DATASET_FILENAME=snake.jpg CK_GPU_FREQUENCY=max CK_TVM_DTYPE=float16 CK_TVM_MODEL=mobilenet STAT_REPEAT=5 |
0.1258 .. 0.1269 | 0.1258 .. 0.1269 | 7.9 .. 7.9 | 0.613 / 0.837 | 1 | 23401544.5 | None | 6.050 | 149 (20180416) | 20180416 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
||||
68 | 4b8bbc192ec57f63 | request-mxnet-inference | 07d4e7aa3750ddc6 | fp32 | ImageNet | 50000 | embedded | Rockchip (Rockchip RK3399 Firefly Board (Linux Opensource)) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd08-2 | 1416 | Ubuntu 16.04.4 LTS | lib-mxnet: MXNet library (built, cpu) master-fb50257 (fb50257) mxnet-model: MXNet model (net and weights) (mxnet, mobilenet, 1.0) mobilenet1.0 python: python 3.5.2 |
MXNet model (net and weights) (mxnet, mobilenet, 1.0) mobilenet1.0 | GNU C compiler 7.2.0 | MXNet library (built, cpu) master-fb50257 (fb50257) | CK_BATCH_SIZE=1 CK_CPU_FREQUENCY=max CK_DATASET_FILENAME=snake.jpg CK_GPU_FREQUENCY=max CK_MXNET_MODEL=mobilenet STAT_REPEAT=5 |
0.2483 .. 0.4360 | 0.2483 .. 0.4360 | 4.0 .. 2.3 | 0.667 / 0.877 | 1 | 17024109 | None | 6.050 | 149 (20180416) | 20180416 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
||||
69 | 4b8bbc192ec57f63 | request-tvm-nnvm-inference | 07d4e7aa3750ddc6 | fp32 | ImageNet | 50000 | embedded | Rockchip (Rockchip RK3399 Firefly Board (Linux Opensource)) | 0x41-8-0x0-0xd03-4 ; 0x41-8-0x0-0xd08-2 | 800 | Ubuntu 16.04.4 LTS | lib-mxnet: MXNet library (built, cpu) master-fb50257 (fb50257) lib-nnvm-tvm: NNVM library master-69c5ebb (69c5ebb) mxnet-model: MXNet model (net and weights) (mxnet, mobilenet, 1.0) mobilenet1.0 python: python 3.5.2 |
MXNet model (net and weights) (mxnet, mobilenet, 1.0) mobilenet1.0 | GNU C compiler 7.2.0 | MXNet library (built, cpu) master-fb50257 (fb50257) | CK_BATCH_SIZE=1 CK_CPU_FREQUENCY=max CK_DATASET_FILENAME=snake.jpg CK_GPU_FREQUENCY=max CK_TVM_DTYPE=float32 CK_TVM_MODEL=mobilenet STAT_REPEAT=5 |
0.0939 .. 0.0946 | 0.0939 .. 0.0946 | 10.6 .. 10.6 | 0.667 / 0.877 | 1 | 17024109.0 | None | 6.050 | 149 (20180416) | 20180416 | Repositories Report DOIs ACM badges
available, reusable, replicated
|
||||
Developed by Grigori Fursin |
![]() Implemented as a CK workflow |
![]() |
![]() |
![]() |
Hosted at![]() |