
A heuristic search algorithm
based on Unified Transformation Framework

Shun Long and Grigori Fursin
Institute for Computing Systems Architecture, The University of Edinburgh, United Kingdom

Email: slong@inf.ed.ac.uk, grigori.fursin@ed.ac.uk

Abstract

Modern compilers have limited ability to exploit the per-
formance improvement potential of complex transforma-
tion compositions. This is due to the ad-hoc nature of
different transformations. Various frameworks have been
proposed to provide a unified representation of different
transformations, among them is Pugh’s Unified Transfor-
mation Framework (UTF)[10]. It presents a unified and
systematic representation of iteration reordering transfor-
mations and their arbitrary combination, which results in
a large and complex optimisation space for a compiler to
explore. This paper presents a heuristic search algorithm
capable of efficiently locating good program optimisations
within such a space. Preliminary experimental results on
Java show that it can achieve an average speedup of 1.14
on Linux+Celeron and 1.10 on Windows+PentiumPro, and
more than 75% of the maximum performance available can
be obtained within 20 evaluations or less.

1 Introduction

The demand for greater performance has led to an ex-
ponential growth in hardware performance and architec-
ture evolution. In order to fully exploit the hardware po-
tential in search for high performance, an optimising com-
piler usually applies various transformations at various lev-
els. Previous work[18] demonstrates that complex transfor-
mation compositions can bring significant performance im-
provement. However, traditional optimising compilers are
based on static analysis and a hardwired compilation strat-
egy. They have difficulties in coping with this complex-
ity of transformation combination, which usually appears
in the form of a large and complex optimisation space. It-
erative optimisation[12] is therefore introduced to explore
such a space. However, many current iterative optimisation
approaches[8][12] target just a small set of transformations.
They can neither be easily extended nor perform long se-
quences of composed transformations.

A unified representation[3] of various transformations
allows the compiler to explore an optimisation space in a
systematic manner. Various representations have been pur-
posed, among them is the Unified Transformation Frame-
work (UTF)[10]. It presents a unified and systematic rep-
resentation of iteration reordering transformations and their
arbitrary combinations, which aims to improve memory lo-
cality and explore parallelism. This results in a large and
complex optimisation space for a compiler to explore, as
demonstrated later.

Java’s architecture independent design makes it ideal
for software development in a modern computing environ-
ment. However, this means that Java is frequently unable
to deliver high performance. Many approaches[1][2][4][16]
have been proposed to improve Java’s runtime performance.
In [14], we show the performance improvement available
for loop reordering transformations on Java programs.

This paper presents a heuristic search algorithm to ex-
plore the UTF-based optimisation space. The preliminary
experimental results on Java show that it can achieve an av-
erage speedup of 1.14 on Linux+Celeron and 1.10 on Win-
dows+PentiumPro, and more than 75% of the maximum
performance available can be obtained within 20 evalua-
tions or less. This demonstrates the effectiveness of this
algorithm.

The outline of this paper is as follows. Section 2 spec-
ifies the optimisation space with the help of the UTF. The
heuristic search algorithm is presented in section 3, before
the experimental results is presented in section 4. Section 5
discusses related works. It is followed by some concluding
remarks in section 6.

2 The Problem

We wish to search a large program transformation space
and develop a search algorithm which can find the trans-
formation sequence(s) that give the best performance im-
provement with the fewest number of evaluations. The crit-
ical issues are: what transformation space are we to con-

1



sider and how is it to be represented? It must be signifi-
cant and large enough to contain useful minima points and
have a representation that allows a systematic search. Previ-
ous work[8][12] has focused on search strategies based on
highly restricted optimisation spaces.

The Unified Transformation Framework (UTF)[10] pro-
vides a uniform and systematic representation of itera-
tion reordering transformations (loop interchange, rever-
sal, skewing, distribution, fusion, alignment, interleaving,
tiling, coalescing, scaling, together with statement reorder-
ing and index set splitting) and their arbitrary combinations.
It encompasses nearly all the high level loop and array based
transformations found in the literature and state-of-the-art
commercial compilers.

A transformation is considered by UTF as a schedule
mapping the old iteration space to the new one. For each
statement in an n-nested loop, its mapping has n loop com-
ponents (quasi-affine functions of iteration variables) in
odd-numbered levels, and n+1 syntactic components (in-
teger constants) in even-numbered levels. An example is
shown in Figure 1, where the original double nested loop
and its default schedule are shown in A). If loop inter-
change, distribution and skewing are applied in turn, the
resulting schedules and codes shown in B), C) and D) of
Figure 1 are obtained.

It is worth noting that no UTF transformation, except
tiling, changes a mapping’s length if applied. For example,
the mappings of program B, C and D are of the same length
as those of the original program A, as shown in Figure 1.
In addition, only unrolling duplicates the loop body when
applied, which introduces more coefficients to the schedule.

Figure 1 shows that, using the schedule notation, UTF
can represent a sequence of iteration reordering transforma-
tions as a sequence of parameters (integers in the syntac-
tic components and coefficients in the loop components).
In this manner, the optimisation space composed of arbi-
trary combinations of these transformations is turned into a
polyhedral space composed of all the integer parameters in
the loop and syntactic components. This polyhedral space
is considered more convenient for a systematic exploration
than the original one.

A compiler has to explore this polyhedral space for per-
formance improvement. This space is large, considering
its dimension (the number of parameters) and the potential
range of each dimension. For example, if the tile sizes are
allowed to vary from 1 to 10, unrolling factors from 1 to
20, the integer coefficients from -5 to 5, there are over

�������
points to consider for the original loop in Figure 1. [15]
presents an exhaustive scan algorithm which can reach ev-
ery single point within this space, if given enough time and
resources. However, as the space contains many points ei-
ther illegal or degrade performance, it is clear that any re-
alistic search algorithm will have to focus on areas where

A) original program
for (int i=0; i<1024; i++) {

for (int j=0; j<2048; j++) {
0: b[i][j] = c[i] + d[j];
1: a[i][j] = c[j] + d[j];

}
}� � : [i, j] � [0, i, 0, j, 0]� � : [i, j] � [0, i, 0, j, 1]
B) Step 1: interchange is applied
for (int j=0; j<2048; j++) {

for (int i=0; i<1024; i++) {
0: b[i][j] = c[i] + d[j];
1: a[i][j] = c[j] + d[j];

}
}� � : [i, j] � [0, j, 0, i, 0]� � : [i, j] � [0, j, 0, i, 1]
C) Step 2: distribution is applied
for (int j=0; j<2048; j++) {

for (int i=0; i<1024; i++) {
0: b[i][j] = c[i] + d[j];

}
for (int i=0; i<1024; i++) {

1: a[i][j] = c[j] + d[j];
}

}� � : [i, j] � [0, j, 0, i, 0]� � : [i, j] � [0, j, 1, i, 0]
D) Step 3: skewing is applied
for (int j=0; j<2048; j++) {

for (int i=0; i<1024; i++) {
0: b[i][j] = c[i] + d[j];

}
for (int i=j; i<j+1024; i++) {

1: a[i-j][j] = c[j] + d[j];
}

}� � : [i, j] � [0, j, 0, i, 0]� � : [i, j] � [0, j, 1, i+j, 0]

Figure 1. Loop and its mappings before and
after some iteration reordering transforma-
tions. The original double-nested loop and
its default schedule (

� � and
� � ) are shown in

A). When loop interchange is applied, i and j
in both

� � and
� � in A) are swapped to denote

the interchange, as shown in B). If distribu-
tion is then applied, the 0 and 1 in the last and
5th column of

� � and
� � in B) are moved to

the 3rd column, as shown in C). If skewing on
statement 0 is then applied, the i in

� � in C) is
changed to i+j, as shown in D).

2



legal points aggregate, and if possible, where points of per-
formance improvements aggregate.

Such an optimisation space is not only large but also
complex. [12] demonstrates that even with only two trans-
formations in tiling and unrolling, the resulting subspace is
highly non-linear and contains many local minima as well
as some discontinuities. It is infeasible to analyse or predict
the performance and to pick good points from the space us-
ing static approaches. A reasonable alternative is a search
algorithm which uses its prior results and heuristics to direct
its search, in order to locate good points quickly.

3 Heuristic Search

Due to the size of the above optimisation space, it is
essential to develop an efficient search algorithm. To be
portable, this algorithm should not contain any hardwired
knowledge about the architecture and environment. As
there is no prior knowledge about where the good points lo-
cate in the space, it should theoretically consider all points
in the space if given unlimited resource, although prac-
tically this is infeasible and unnecessary. Therefore, the
search algorithm has to make a tradeoff between efficiency
and coverage. In order to find good points in the space
quickly, the algorithm should direct its search based on run-
time feedback.

Furthermore, a compiler can use appropriate machine
learning techniques to accumulate optimisation experience
from these good transformations. Later when a new pro-
gram is encountered, it can apply its experience to find good
transformation without any iterative search. This approach
will be discussed in section 4.

3.1 Additional notation

The loop and syntactic components of a mapping are
grouped into two vectors named loop vector and syntactic
vector respectively. The syntactic vector SV is a vector of
integer constants. Loop vector LV is a vector of linear func-
tions of all the original iteration variables or derived ones
introduced by tiling, namely 	 � , 	 � , ... 	�
 . Intuitively, va-
rieties in loop vectors are associated with transformations
such as tiling, unrolling, skewing, reversal, alignment, and
scaling etc., and varieties of syntactic vectors are associated
with transformations such as loop fusion, distribution and
statement reordering, etc.. For instance, in Figure 1, when
loops i and j in A) are interchanged, the syntactic vectors
((0,0,0) and (0,0,1)) remain unchanged whilst the loop vec-
tors change from (i,j) to (j,i), as shown in B). When the
loop is then distributed, the syntactic vectors are changed to
(0,0,0) and (0,1,0), as shown in C), whilst the loop vectors
(j,i) remain unchanged.

Loop vector LV is presented as LV=I � M where I is an
(x+2)-dimensional vector of the iteration variables and M an
(x+2) � (x+1) matrix of integer constants. For example, the
mappings of D) in Figure 1 can be represented as follows.

� ��
�������������� 	�� ��� 	 ����� � ��� � � ��!��"� #$ �&%'�����(� � � � � � �
(1)� ��
����)�*������� 	,+ � � �-� 	 �.��� � ��� � � ��/��/� #$ �&%'�)�*��� � � � � � �
(2)

Given a loop vector LV, its default schedule transforms
the code block where all the statements in the loop(s) re-
main in their original positions. Intuitively, this means that
transformations such as statement reordering, loop distribu-
tion and fusion are not considered in the default schedule.

3.2 Search Strategy

In order to find good points in the above optimisation
space quickly, the heuristic search algorithm uses the fol-
lowing search strategies:

Random Where there is no prior knowledge of the search
space, random points are realistic starting points for
the search algorithm. The search process over time is
biased on weights to options shown to be good in the
previous attempts. For example, a random decision is
made in each attempt on whether loop tiling should be
included.

Runtime feedback (speedup in our case) is used to pe-
riodically review the decision bias during the search
process. In each review, the weight of each option may
be given a small increment if performance improve-
ment is found, or a small decrement if degradation is
found or when illegal schedule is constructed. In addi-
tion, these weights will be reset to default after a much
longer period, in order to balance the tradeoff between
efficiency and coverage.

Simple first Although [18] claims that complex trans-
formation combinations can bring significant perfor-
mance improvement, if we focus on the iteration re-
ordering transformations UTF includes, we find that in
most cases, the majority of performance improvement
comes from either one transformation or a combina-
tion of only a few[14]. Therefore, the heuristic search
algorithm should try simple schedules first. If no sig-
nificant performance improvement is achieved, it will
then consider complex schedules which may bring fur-
ther improvement, as [18] indicates. This search will

3



continue and any arbitrary complex schedule UTF can
represent will therefore be considered, as long as bud-
get allowed.

Intuitively, this ”simple first” strategy means shorter
and simpler transformation sequences are preferred to
longer and more complex ones. For instance, it is
known that tiling could be applied once or repeatedly,
as UTF allows. The search algorithm shall consider
cases of no tiling or just tiling once before considering
those of multiply tiling.

Window search The search algorithm should be flexible
that, if a good point is found, it will explore the sur-
rounding subspace where even better points may re-
side. This strategy is very similar to the grid-based
search algorithm used in [12]. It is worth noting that
a balance shall be maintained between flexibility, effi-
ciency and coverage, so that when no further improve-
ment is found in the subspace, the search algorithm
will turn to other areas within the optimisation space.

3.3 Search Algorithm

Using the above notations and search strategies, our
heuristic search algorithm is a two phase process in which
the subspace of loop vectors and syntactic vectors are ex-
plored by L-Search and S-Search respectively, as explained
below. As mentioned earlier, the loop vector is associated
with a larger set of transformations than that of syntactic
vector. This means that arbitrary combinations of these loop
vector transformations indicate more varieties than those
associated with the syntactic vector subspace. Therefore,
the algorithm attempts to decide the loop vector first before
considering the variety of syntactic vectors, i.e. it prefers
L-Search to S-Search.

During the search process, both the L-Search and S-
Search are explored in roughly alternating manner. In each
round, L-Search or S-Search evaluates a number of points
in the space and collects the runtime profile. This is co-
ordinated by a steering module which keeps adjusting its
decision according to runtime profile.

L-Search The initial L-Search generates a certain number
of loop vectors and evaluates them using their default
schedules. As described above, loop vector LV is de-
termined by the iteration variable vector I and trans-
form matrix M, which are in turn decided by tile size(s)
and unrolling factor(s) randomly chosen from a suit-
able range, if tiling and/or unrolling is included. These
decisions are made randomly and with a bias to simple
decisions, as explained above.

In order to follow the ”simple first” strategy, it is
preferable that simple transformation matrices are gen-
erated before complex ones. We consider a matrix M,

whose transpose matrix is M 0 =(m a), simple if m is
an identity matrix or a matrix that can be obtained by
applying one or a few steps of linear transformations
on an identity matrix. Therefore, the transform ma-
trix M is constructed by starting from an M 0 =(m a)
(where m is an identity matrix and a a zero vector), it-
eratively applying either linear transformations to m or
assigning new value to a (both randomly decided) un-
til a new one is generated. The loop vector LV is then
constructed by multiplying I and M, as demonstrated
in Equation (1) and (2).

In order to generate the default schedule of LV, each
statement in the loop nest must be assigned a separate
syntactic vector. This is done by constructing a default
syntactic matrix SM, each row of which stands for a
syntactic vector for a statement. For example, for loop
vector LV = (j,i) in Figure 1(B), its default syntactic
matrix is as shown in Equation (3).

%'12�43 �"�5��"� �76 (3)

With both loop and syntactic vectors decided, LV’s
default schedule is constructed by allocating different
syntactic vectors in SM to different statements in the
original loop. Details of the algorithms to generate the
default syntactic matrix and the default schedule can
be found in [15]. This default schedule of LV is then
tested for legality before the corresponding code be-
ing generated and tested. The profile (speedup) is col-
lected and used to adjust the decision bias as explained
above.

Subsequently, the L-Search selects loop vectors of
good performance found in previous rounds, con-
structs similar ones by keeping the I unchanged and
combining it with different Ms generated in the same
manner presented above. The resulting similar loop
vectors are also tested using their default schedules,
with the results used to adjust the decision bias.

S-Search Initially, S-Search chooses from prior profile a
loop vector I whose default schedule brings good per-
formance improvement. The syntactic matrix SM of
the schedule which brings LV its best performance im-
provement is divided into submatrices, each of which
contains several successive rows. The S-Search ran-
domly picks one submatrix, modifies it with two basic
operations (swapping values between two randomly
chosen columns, and randomly assigning new values
to a randomly selected column). Random decisions
are made on how to divide the matrix, which submatrix
or matrices to modify and other operation parameters,
favouring simple decisions such as dividing the matrix

4



evenly into 2 or 3 submatrices. These steps are re-
peated until a new matrix SM’ is found. Details of this
syntactic matrix generation algorithm can be found in
[15]. SM’ is then combined with I and the resulting
schedule S’ will be tested.

Subsequently, the S-Search algorithm chooses differ-
ent loop vectors for each statement in the original loop,
and then constructs syntactic vectors for each sepa-
rately.

Legality and Duplicity UTF provides a legality test[10]
for all generated schedules. The steering module stores
all schedules generated during the search process in or-
der to prevent duplicate visits. Matrices and vectors
generated during the search processes are stored ac-
cordingly. They are used to check whether matrix and
vector newly generated have been tried before. If so,
they are simply abandoned. Furthermore, the steering
module configures the search before it starts. It sets
as constants range of tile size and unrolling factors to
consider, and other default options.

A comprehensive description of the algorithm can be
found in [15].

4 Experimental Results

To the best of our knowledge, no Java compiler cur-
rently available provides the UTF transformations consid-
ered in this paper. There is no published work (except [14])
about the potential of these transformations on Java opti-
misation. Therefore, no direct comparison can be made be-
tween the heuristic search algorithm and the others. Instead,
we give absolute performance improvement and evaluate
how quickly good points are found.

In order to evaluate the search algorithm, we develop a
source-to-source Java restructurer using iterative optimisa-
tion. It interprets the UTF schedules into transformation
sequences and applies them to the target program. The pro-
gram will then be executed with time recorded.

The experiments were conducted within two environ-
ments, one is Java 2 Runtime Environment with Java
Hotspot Client VM (1.3.0) running on RedHat Linux 6.3
in Intel Celeron (533MHz) with 128M RAM. The other is
Java 2 Runtime Environment with Java Hotspot Client VM
(1.4.1.1 01) running on MS-Windows 2000 in PentiumPro
(200MHz) with 96M RAM.

Sixteen code segments were chosen from two widely-
used benchmark suites, namely Java Grande Forum Bench-
mark Suite (JGF)[5] and Livermore[13]. For each bench-
mark, the algorithm evaluated the first 100 points it reached
in the corresponding optimisation space. This search pro-
cess takes about 20 to 50 minutes, depending on the bench-
marks.

Code Speedup
after 100 after 20 Percentage

kernel3 1.09 1.05 56%
kernel5 1.14 1.11 79%
kernel6 1.17 1.13 76%
kernel7 1.06 1.06 99%
kernel8 1.29 1.29 99%
kernel9 1.21 1.09 43%
kernel10 1.13 1.13 92%
kernel11 1.45 1.40 89%
kernel12 1.08 1.06 75%
kernel19 1.07 1.06 86%
runF 1.07 1.06 86%
runG 1.09 1.09 99%
runR 1.09 1.07 78%
runS 1.02 1.00 18%
mm 1.21 1.20 95%
doIteration 1.06 1.04 67%
Average 1.14 1.12 78%

Figure 2. Summary of the experimental re-
sults on Linux+Celeron

As the heuristic search algorithm may explore the poly-
hedral space via different directions in different search runs,
this experiment is repeated 10 times in order to ensure the
results are not achieved by coincidence. In addition, it min-
imises the impact of noise caused by factors such as the
virtual machine.

4.1 Linux+Celeron

Figure 2 demonstrates that the heuristic search algorithm
improves the performance of all of these benchmarks on
Linux+Celeron. It achieves an average speedup of 1.14, and
this achievement can be obtained quickly.

The best improvements found within the first 20 and 100
evaluations are presented in the table. They show that, on all
benchmarks except kernel3, kernel9, doIteration and runS,
the algorithm needs only about 20 evaluations to achieve
most of the speedup achieved within 100 evaluations. In
the case of kernel9, it takes more than 60 attempts. The Per-
centage column shows that, on average, 78% of the speedup
can be obtained within 20 evaluations.

To examine how the algorithm behaves during the
search, consider the diagram in Figure 3(a) which shows
the execution time of kernel6 against the number of evalu-
ations during one iterative search. It shows large variation
in performance caused by different transformations, which
demonstrates the complexity of the optimisation space con-
sidered in this paper.

5



7000

7500

8000

8500

9000

9500

10000

10500

0 10 20 30 40 50 60 70 80 90 100

ex
ec

uti
on

 tim
e (

ms
)

no. of evaluations

"kernel6.linux.data"

(a)

7000

7200

7400

7600

7800

8000

8200

8400

8600

8800

0 10 20 30 40 50 60 70 80 90 100

ex
ec

uti
on

 tim
e (

ms
)

no. of evaluations

"kernel6.linux.noiseanalysis" using 1:2
"kernel6.linux.noiseanalysis"

(b)

Figure 3. Heuristic search on Linux+Celeron
(a) the curve shows the execution time
against the number of evaluations during one
search on kernel6. It demonstrates the com-
plexity of the optimisation space. (b) the
average of the best execution time currently
found over 10 searches on kernel6 are plotted
against the number of evaluations, as shown
in the solid curve. The error bars show that
the standard deviations are low, which indi-
cates that all 10 searches achieve very similar
results.

The best execution time found so far in each search
run are obtained for all 10 runs. The average of these
achievements are plotted against the number of evaluations
in Figure3(b). This demonstrates that although the optimi-
sation space is complex, the heuristic search algorithm can
find good points in it quickly. In addition, the standard de-
viations of these achievements are low, as the error bars in
Figure 3(b) indicate. This shows that although these 10 runs
explore the space in different direction, they achieve similar
results on kernel6.

The search results show that most of the legal points
reached by the search algorithm use short and simple trans-
formations, for instance, tiling only. To a certain extent, this
justifies the ”simple first” strategy of the algorithm. On the
other hand, this is partly due to the fact that the relatively
simple nature of these benchmarks restrains the applica-
bility of more complex transformation combinations. The

Code Speedup
after 100 after 20 Percentage

kernel3 1.18 1.14 78%
kernel5 1.10 1.07 70%
kernel6 1.09 1.07 78%
kernel7 1.05 1.05 99%
kernel8 1.14 1.14 99%
kernel9 1.37 1.36 97%
kernel10 1.06 1.05 83%
kernel11 1.18 1.17 94%
kernel12 1.19 1.19 99%
kernel19 1.01 1.01 99%
runF 1.02 1.02 99%
runG 1.01 1.00 81%
runR 1.09 1.09 99%
runS 1.01 1.00 75%
mm 1.14 1.13 93%
doIteration 1.05 1.04 80%
Average 1.10 1.09 89%

Figure 4. Summary of the experimental re-
sults on Windows+PentiumPro

heuristic search algorithm biases its search toward simple
transformations accordingly, which demonstrates its adapt-
ability to the program it is to optimise.

4.2 Windows+PentiumPro

The experimental results on Windows+PentiumPro are
summarised in Figure 4. They demonstrate that the heuris-
tic search algorithm can also bring performance improve-
ment to many of these benchmarks in this environment.
It achieves an average speedup of 1.10 and 89% of the
speedup can be obtained within 20 evaluations.

The search algorithm finds, within the first 20 evalu-
ations, most of the speedup achieved within 100 evalua-
tions for kernel7, kernel8, kernel9, kernel11, kernel12, ker-
nel19, runF, runR and mm. The negligible standard devia-
tions (shown the error bars in Figure 5(b)) show that all 10
searches on kernel9 achieve similar performance improve-
ments. The search algorithm achieves very similar results
on other benchmarks.

The search results show that some programs are less sen-
sitive to the transformations on Windows+PentiumPro. Fig-
ure 5(a) demonstrates one search on kernel9. It shows that,
regardless of the transformations applied, its performance
is almost invariant. To find out whether this is just a co-
incidence, we derive the best execution time found so far
during each of the 10 search runs, and plot the average of
these achievements against the number of evaluations. The

6



38000

40000

42000

44000

46000

48000

50000

52000

54000

0 10 20 30 40 50 60 70 80 90 100

ex
ec

uti
on

 tim
e (

ms
)

no. of evaluations

"kernel9.win.data"

(a)

38000

40000

42000

44000

46000

48000

50000

52000

54000

0 10 20 30 40 50 60 70 80 90 100

ex
ec

uti
on

 tim
e (

ms
)

no. of evaluations

"kernel9.win.noiseanalysis" using 1:2
"kernel9.win.noiseanalysis"

(b)

Figure 5. Heuristic search on Win-
dows+PentiumPro (a) the curve shows
the execution time against the number of
evaluations during one search on kernel9; (b)
the average of the best execution time cur-
rently found over 10 searches on kernel9 are
plotted against the number of evaluations,
as shown in the solid curve. The error bars
show that the standard deviations are low,
which indicates that all 10 searches achieve
very similar results.

result is shown in Figure 5(b). The error bars show that the
standard deviations of these 10 search runs are low, i.e. they
all achieve similar results on kernel9. Similar characteristic
is also found on kernel11 and kernel12, whilst the others’
curves are still highly irregular and sensitive to transforma-
tions applied, like in Figure 3(a).

It is worth noting that the achievement in this environ-
ment is less significant than that in the Linux+Celeron en-
vironment. This may be due to the fact that the small L2
cache of Celeron makes the relative cost of memory latency
on Linux+Celeron greater, and therefore it benefits more
from cache restructuring-based transformations.

4.3 Summary

The above results demonstrate that the algorithm is capa-
ble of achieving Java performance improvement in both en-
vironments within a remarkably small number of attempts.

On average, it takes less than 5 seconds to find a legal point
during the search process, and the vast majority of search
time is actually spent on evaluation of these points. This
justifies the search strategies this algorithm uses.

5 Related Work

[3][6] specify an optimisation space in a manner similar
to UTF. It considers a static control part (ScoP) as a maxi-
mum set of consecutive statements without while loops, and
a program transformation on this SCoP may cause modifi-
cation in its iteration domain, or its iteration schedule, or its
memory access function. A polyhedron is used to represent
this modification, and a set of primitives are used to modify
the polyhedron. This results in a larger optimisation space
than UTF can represent. However, no approach is given to
explore it in search for performance improvement.

There have been some work in iterative optimisation[12],
which attempts to optimise a program by repeatedly execut-
ing different versions of it and using the feedback to decide
the next optimisation attempt. They all try to explore an
optimisation space in search for good points, as our search
algorithm does. [8] and [12] presents two efficient search
algorithms. However, the search spaces they consider are
small and regular-shaped, containing only a few parame-
terised transformations in fixed phase order.

[11][17] consider search in a large UTF-based space.
The algorithm of [11] constructs the mapping for each state-
ment in a level by level manner. At each level, an estimate
is made on the partly specified mapping, which is then aug-
mented if and only if the estimate is good. The main draw-
back of this algorithm is that no runtime feedback can be
used to bias the mapping construction, as no code can be
generated from a mapping only partly constructed. [17]
uses genetic algorithm to optimise programs for parallel ar-
chitectures. However, the efficiency of genetic algorithm is
poor (it takes several hours to find a good transformation
within the space).

[7] uses a biased random search algorithm to explore a
large space consisting of a pool of data-flow transforma-
tions. Its efficiency remains unknown. The phase order
problem it aims to solve is relatively simple compared to
what this and the above papers consider. OSE[20] consid-
ers an optimisation space composed of various compilations
and configurations. It uses compiler writer’s prior experi-
ence to prune many points before a breadth first tree search
starts. Experimental results show that OSE can yield signif-
icant performance improvement. [19] presents an approach
to turn on or off compiler options in order to find the optimal
set of them. It uses orthogonal arrays in statistical profile
analysis to calculate the main efforts of these options.

Java optimisation are achieved via an efficient vir-
tual machine[2], or optimisation techniques such as JIT

7



compilation[1] and parallelisation[4]. The virtual machine
approach is inevitably architecture-specific, JIT compila-
tion considers only light-weighted optimisations, whilst
parallelisation relies on architecture support. [16] provides
a package supporting true multi-dimensional arrays needed
in high performance computing. But it is not sufficiently
flexible to allow creation of arrays of arbitrary classes and
of arbitrary dimension.

6 Conclusions

This paper uses UTF to specify a large and complex op-
timisation space of iteration reordering transformations. It
presents a heuristic random search algorithm independent
of architecture, language and environment, as no such in-
formation is hardwired in the algorithm. The experimental
results show that this algorithm is capable of locating good
points within this space quickly. This demonstrates that,
by exploring the potential of high-order transformations, it
helps to make Java a more realistic option for portable high
performance computing.

References

[1] A. Adl-Tabatabai et.al, Fast, effective code genera-
tion in a just-in-time Java compiler, proc. of 1998
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI’98), 1998.

[2] B. Alpern et.al, Jalapeno - a compiler-supported Java
virtual machine for servers, proc. of Workshop on
Compiler Support for Software System (WCSSS99),
1999.

[3] C. Bastoul et.al, Putting polyhedral loop transforma-
tions to work, proc. of Workshop on Languages and
Compilers for Parallel Computing (LCPC’03), 2003.

[4] A. Bik et.al, Javar - a prototype Java reconstruct-
ing compiler, Concurrency, Practice and Experience
9(11), 1997.

[5] M. Bull et.al, A benchmark suite for high perfor-
mance Java, Concurrency, Practice and Experience,
Vol.12, 2000.

[6] A. Cohen et.al, A polyhedral approach to ease the
composition of program transformations, proc. of
Europar International Conference on Parallel and
distributed Computing (Europar’04), 2004.

[7] K. Cooper et.al, Adaptive optimizing compilers for
the 21st century, Journal of Supercomputing, 2001.

[8] G. Fursin et.al, Evaluating iterative compilation,
proc. of 15th Workshop on Languages and Compilers
for Parallel Computers (LCPC’02), 2002.

[9] Java Grande Forum, Java Grande Forum report:
making Java work for high-end computing, Java
Grande Forum panel, SC98: High Performance Net-
working and Computing, 1998.

[10] W. Kelly et.al, A framework for unifying reordering
transformations. Technical report of Univ. of Mary-
land, CS-TR-3193, 1993.

[11] W. Kelly et.al, Determining schedules based on per-
formance estimation, Technical report of Univ. of
Maryland, CS-TR-3108, 1993.

[12] T. Kisuki et.al, A feasibility study in iterative com-
pilation, proc. of International Symposium of High
Performance Computing (ISHPC’99), Lecture Notes
in Computer Science, vol.1615, 1999.

[13] Livermore benchmark,
http://www.netlib.org/benchmark/livermore.

[14] S. Long et.al, Towards an adaptive Java optimising
compiler, an empirical evaluation of program trans-
formations, proc. of the 3rd Workshop on Java for
High Performance Computing, 2001.

[15] S. Long, Adaptive Java optimisation using machine
learning techniques, PhD thesis, School of Informat-
ics, The University of Edinburgh, 2004.

[16] J. Moreira et.al, From flops to megaflops: Java for
techincal computing, proc of the 11st International
Workshop on Languages and Compilers for Parallel
Computing (LCPC’98), 1998.

[17] A. Nisbet, Towards retargettable compilers - feed-
back directed compilation using genetic algorithm,
proc. of the 9th International Workshop on Compil-
ers for Parallel Computers (CPC2001), 2001.

[18] D. Parello et.al, On increasing architecture aware-
ness in program optimisations to bridge the gap be-
tween peach and sustained processor performance?
matrix-multiply revisited. proc. of SuperComput-
ing’02. 2002.

[19] R. Pinkers et,al, Analysis of Compiler Options us-
ing Orthogonal Arrays, proc. of the 11st Interna-
tional Workshop on Compilers for Parallel Comput-
ers (CPC2004), 2004.

[20] S. Triantafyllis et.al, Compiler optimisation-space
exploration, proc. of the 2003 International Sym-
posium on Code Generation and Optimisation
(CGO’03), 2003.

8


