Dynamic compilation and
run-time adaptation.
Machine learning

Grigori Fursin

Alchemy group, INRIA Saclay, France

<>

Course overview

Assume that all understand basics of computer architecture and compilation
process.

Focus on compilers that map user program to machine code

Explain general major compilation problems instead of focusing on individual
components

Describe current major research areas for compilation and optimization

 Reminder: Feedback directed compilation and optimization
* Dynamic compilation and optimization

* Machine learning and future directions

Optimization spaces (set of all possible program transformations) are large,
non-linear with many local minima

Finding a good solution may be
long and non-trivial

matmul, 2 transformations,
search space = 2000

swim, 3 transformations,
search space = 10%

Optimization spaces (set of all possible program transformations) are large,
non-linear with many local minima

Finding a good solution may be
long and non-trivial

matmul, 2 transformations,
search space = 2000

swim, 3 transformations,
search space = 10%

Tile Sza

Recent technique - iterative compilation:
learn program behavior across executions

High potential (O’'Boyle, Cooper), but:

- slow

- the same dataset is used

- No run-time adaptation

- o optimization knowledge reuse

Optimization spaces (set of all possible program transformations) are large,
non-linear with many local minima

Finding a good solution may be
long and non-trivial

matmul, 2 transformations,
search space = 2000

swim, 3 transformations,
search space = 10%

Tile Sza

Recent technique - iterative compilation:
learn program behavior across executions

High potential (O’'Boyle, Cooper), but:

- slow

- the same dataset is used

- No run-time adaptation

- o optimization knowledge reuse

Solving these problems is non-trivial

Dynamic techniques

* All today's techniques focus on delaying some or all of the optimizations to
runtime

 This has the benefit of knowing the exact runtime control-flow, hotspots,
data values, memory locations and hence complete program knowledge

e It thus largely eliminates many of the undecidable issues of compile-time
optimization by delaying until runtime

» However, the cost of analysis/optimization is now crucial as it forms a
runtime overhead. All techniques characterized by trying to exploit runtime
knowledge with minimal cost

Background

» Delaying compiler operations until runtime has been used for many years
* Interpreters translates and execute at runtime

» Languages developed in the 60s ie Algol 68 allowed dynamic memory
allocation relying on language specific runtime system to mange memory

» LISP has runtime type checking of objects

« Smalltalk in the 80s deferred compilation to runtime to reduce the amount
of compilation otherwise required in the OO setting

« Java applications are compiled into bytecode to run on Java Virtual
Machines (JVM) thus making them portable across architectures

* .NET applications (mainly for Windows) similarly execute in a run-time
environment called Common Language Environment (CLR)

Runtime specialization

* For many, runtime optimization is “adaptive optimization”

 Although wide range of techniques, all are based around runtime
specialization

» Constant propagation is a simple example
» Specializing an interpreter with respect to a program gives a compiler
« Can we specialize at runtime to gain benefit with minimal overhead?

Statically inserted selection code vs parameterized code vs runtime
generation

Different techniques

Static code selection

IF (N<M) THEN
DO I =1,N
DO J =1,M
ENDDO
ENDDO

ELSE

DO J =1,M
DO I =1,N
ENDDO
ENDDO

ENDIF

Parameterized

IF (N<M) THEN

Ul =N

U2 = M

ELSE

Ul = M

U2 = N

ENDIF

DO I1 =1,U1
DO I2= 1,02
ENDDO

ENDDO

Code generation

gen_nest1(fp,N,M)
(xfp) ()

DyC

* One of the best known dynamic program specializations techniques based
on dynamic code generation

* The user annotates the program defining where there may be opportunities
for runtime specialization. Marks variables and memory locations that are
static within a particular scope

» The system generates code that checks the annotated values at runtime
and regenerates code on the fly

* By using annotation, the system avoids over-checking and hence runtime
overhead. However, this is at the cost of additional user overhead

Binding analysis
examines all uses of
static variables within
scope

Dynamic compiler
exploits invariance and
specializes the code
when invoked

Annotated | Static I Evce-:utqble D;mamicl
souree ‘C‘nmpﬂm y Program Code |

Static Compile Time Run Time
q %
Output Execute

DyC results

» Asymptotic speedups on a range of programs varies from 1.05 to 4.6

» Strongly depends on percentage of time spent in the dynamically compiled
region. Varies from 9.9 to 100%

» Low overhead from 13 cycles to 823 cycles per instruction generated

* However relies on user intervention which may not be realistic in large
applications

» Relies on user correctly annotating the code

Calpa for DyC

» Calpa is a system aimed at automatically identifying opportunities for
specialization without user intervention.

o It analyses the program for potential opportunities and determines the
possible cost vs the potential benefit.

* For example, if a variable is multiplied by another variable which is known
to be constant in a particular scope and if is equal to O or 1 then a cheaper
code can be generated.

o If this variable is inside a deep loop then a quick test for O or 1 outside the
loop will be profitable.

Calpa for DyC

[C program]

v v

: Calpa Calpa
* Calpa is a front-end instrumentation annotation
to DyC l l
sample instrumented value annotated
) It uses _ input C program profile C program
Instrumentation to l
guide annotation
Insertion DyC
compiler

l

4 compiled N
C program

[dynamic }
compiler
X rer J)

Calpa for DyC

* Instruments code and sees how often variables change value. Given this
data, Calpa determined the cost and benefit for a region of code.

 Number of different variants, cost of generating code, cache lookup. Main
benefit determined by estimating new critical path.

» Explores all specialization up to a threshold. Widely different overheads 2
seconds to 8 hours. In two cases improves - from 6.6% to 22.6%.

» Calpa and DyC utilize selective dynamic code generation. Now look at fully
dynamic schemes.

Dynamic binary translation

* The key idea is to take one ISA binary and translate it into another ISA
binary at runtime.

e In fact this happens inside Intel processors where x86 is unpacked and
translated into an internal RISC opcode which is then scheduled. The
TransMeta Crusoe processor does the same. Same with IBM legacy ISAs.

 Why don't we do this statically? Many reasons!

* The source ISAis legacy but the processor internal ISA changes. It is
Impossible to determine statically what is the program. It is not legal to store
a translation. It can be applied to a local ISA for long term optimizations
without access to source codes.

DAISY

e One of the best known schemes came out of IBM headed by Kemal
Ebcioglu.

* Aimed at translating PowerPC binaries to the IBM VLIW machine.

 |dea was to have a simple powerful in-order machine with a software layer
handling complexities of PowerPC ISA.

* Dynamic translation opens up opportunities for dynamic optimization.

» Concerned for industrial strength usage. Exceptions, self-modifying code
etc...

DAISY

At runtime, program path and data known. But need a low overhead
scheme to make worthwhile.

» Specialization happens naturally as we know runtime value of variables.

« Can bias code generation to check for profitable cases.

* DAISY uses a code cache of recently translated code segment.

« Automatic superblock formation and scheduling.

DAISY structure

DAISY ROM

Translations

Boot code
VMM Code

| VMM Code

= VMM Data

PowerPC

Boot ROM

PowerPC

Memory

= Icache Hierarchy

Dcache Hierarchy|

» Power PC code runs without modification.

» DAISY specific additions separated by dotted line.

L ——

DAISY

Proccssor

* Initially interpret PowerPC instructions and then compile after hitting

threshold.

*Then schedule and save instruction in cache (2-4k). Untaken branches
are translated as (unused) calls to the binary translator.

DAISY example

* Here the group is expanded
to contain two conditionals

» Path A is encountered and
translated

DAISY

EXIT #1
CSF 0N T call translator
// ,’/ \\ .
gota TR1 EXIT #2
PATH A call translator

DAISY example

 When Path B is encountered
for the first time

e Translator is called

cr0 % AN
NN EXIT #1
7F \> T\\

call translator

goto TR1 CEXIT #2
call translator

PATHB

DAISY example

» Code in cache is now
updated

» Paths A and B require no
further translation

* One untranslated path
remaining

* Only translate and store code
If needed

DAISY

TE 0O:

crl. gt

£/ \T
. 4 \
cr0 . % o
N EXIT #1

/'F \T call translator

-
goto TR1 goto TR2

DYNAMO

e Similar to DAISY though focuses on binary to binary optimizations on the
same ISA. One of the claims is that it allows compilation with -01 but
overtime provides -03 performance.

e Catches dynamic cross module optimization opportunities missed by the
static compiler. Code layout optimization allowing improved scheduling due
to bigger segments. Branch alignment and partial procedural inlining form
part of the optimizations

« Aimed as a way to improve performance from a shipped binary over time

» Unlike DAISY, have to use existing hardware - no additional fragment
cache available

DYNAMO

o Initially interprets code. This is very fast as the code is native. When a
branch is encountered check if already translated

o If it has been translated jump and context switch to the fragment cache
code and execute. Otherwise if hot, translate and put in cache

» Over time the working set forms in the cache and Dynamo overhead
reduces - less than 1.5

» Cheap profiling, predictability

 Linear code structure in cache makes optimization cheap. Standard
redundancy elimination applied

Just in Time Compilation

» Key idea: lazy compilation. Defer compiling a section of high level code
until it is encountered during program execution. For OO programs it has
been shown that this greatly reduces the amount of code to compile.
Krintz'00 shows 14 to 26% reduction in total time.

» Greater knowledge of runtime context allowing optimization to be focused
on important parts of a program.

e However is Just in time really Just too late? Why wait until execution time
to compile when the code may be lying around on disk for months
beforehand?

e Main reason - dynamic linking of code especially in Java. This restricts the
optimizations available.

* Most Java compilers initially interpret, then compile and finally optimize
based on frequency of use

* Normally done on a per method basis

» Jikes instead directly compiles code when encountered to native machine
code.

» Well known robust research compiler freely available.

 Much work centered around what level of optimization to apply and when
to apply it.

Jikes structure

" Executin gﬂ B
Code I |
Machine
| Lazy . Code
LIHESOIT:‘Eid Compilatibn
References]
Adaptive Resolution r _ ‘Compilers
Optimisation Dynamic | Compile Base. Opt
System Linker —ags Init

ClassLoad |Request

i

Clas sLoade}‘ ecompilation

.

Jikes example

iload x INT_ADD tint,xint,b5 INT_ADD yint,xint,5
iconst 5 INT_MOVE yint,tint

iadd

istore y

» Simple example showing translation of byte code into native code

» Simple optimizations to remove redundant temporaries have a significant
Impact on later virtual to register mapping phases

 First version corresponds to baseline compiler, second to most basic
optimizing compilation

Method life cycle

Elur:mnpilecﬂ

\ compilation/recompilation

if srilh.-alig____,,.anpiling |

.-""-F---
.-""-'--
_-""-F-

' R

Fustalled

LN .-'
v alldated bx
classloader or
recompilation

invalidated by the class loade

Eﬁ)bs:::lete

F)ead |

no activations remain

|

garbage collected

E:re ed

J

Jikes optimizations

 Jikes makes use of multiple optimization levels and uses these to carefully
trade cost vs gain.

» Baseline translates directly into native code simulating operand stack. No
IR, no register allocation. Slightly faster code than interpretation.

e Optimizing compiler. Translate into an IR with linear register allocation. 3
further optimization levels:

 Level O: Effective and cheap optimizations. Simple scalar
optimizations and inlining trivial methods. All tend to reduce size of IR

 Level 1: as 0 but with more aggressive speculative inlining. Multiple
passes of level 0 opts and some code reorganizing algorithms.

 Level 2: employs simple loop optimizations. Normalization and
unrolling. SSA based flow-sensitive algorithms also employed.

Jikes optimizations

Compiler | Bytecodes/millisecond | Speed
Baseline 377.8 1.0
Level O 9.29 4.26
Level 1 5.69 6.07
Level 2 1.81 6.61

» Only worthwhile compiling at a higher level if benefit outweighs cost.

» Adaptive algorithm compares cost of code under current level vs an
increased level.

 Crucially depends on anticipated future profile which is unavailable.
Solution - just guess - currently assume twice as long as now!

Jikes optimizations

 Krintz evaluates the adaptive approach

Compiler | Total time Compile time
Baseline 29.24 0.44
Opt 9.98 0.46
Adapt 8.97 0.48

 Figures are time in seconds for SPECjvm98

 Total time is better for Adapt even though it has increased compile-

time.

» Conclusion: knowing hotspots really helps optimization

JIT conclusions

« JITs suffer from having the necessary info too late. Need to anticipate
optimization opportunities.

« Many different optimization scenarios available. Adaptive option increases
level of optimization when it recompiles increasingly used hotspots.

* As compile-time is part of runtime, important to find a trade-off between
two.

ADAPT

« ADAPT is a mixed approach to optimization that combines static and
iterative compilation in an on-line manner.

» Basically at runtime different options of a code section are run concurrently
and the best-one selected. This is done in parallel on remote servers.

 Really trading space for time making an on-line technique viable as an on-
line technique as long as sufficient space available.

Procs:
* Enables adaptive online iterative compilation.

Cons:

* Very complex recompilation framework.

» Only works for scientific programs with relatively static behavior.

» Uses multiple machines for evaluation which is not always practical.

 All schemes allow specialization at runtime to program and data.

» Staged schemes such as DyC are more powerful as they only incur
runtime overhead for specialization regions.

« JIT and DBT delay everything to runtime leaving little optimization
opportunities.

 All except ADAPT have a hardwired heuristic of what the best strategy is.
» Poor at adapting to new platforms.

» Apart from ADAPT, none looked at processor specific optimization. Mainly
looked at architecture independent optimizations or standard backend
scheduling or register allocation.

 Like PDC only used the data really for limited optimization goals rather
than overcoming undecidability or processor behavior.

* None of the techniques would adapt their compilation approach in the light
of experience.

Combine static and dynamic optimizations?

Static multi-versioning for different constraints (optimization cases) and
run-time adaptation:

* Grigori Fursin, Albert Cohen, Michael O'Boyle and Olivier Temam. A Practical Method For
Quickly Evaluating Program Optimizations. Proceedings of the 1st International
Conference on High Performance Embedded Architectures & Compilers (HIPEAC 2005),
number 3793 in LNCS, pages 29-46, Barcelona, Spain, November 2005

Integration of the run-time adaptation into mainline GCC:

* Grigori Fursin, Cupertino Miranda, Sebastian Pop, Albert Cohen and Olivier Temam.
Practical run-time adaptation with procedure cloning to enable continuous collective
compilation. GCC Developers’ Summit. Ottawa, Canada, July 2007

Adaptation for heterogeneous systems (CELL and GPU systems)

* Victor Jimenez, Isaac Gelado, Lluis Vilanova, Marisa Gil, Grigori Fursin and Nacho
Navarro. Predictive runtime code scheduling for heterogeneous architectures. To
appear at the International Conference on High Performance Embedded Architectures &
Compilers (HIPEAC 2009), Paphos, Cyprus, January 20009.

Collaboration with IBM, UPC, STMicro

Run-time adaptation using procedure cloning

Any other ways to solve previous and the following problems?

 Different program context

Different run-time behavior

Different system load

Different available resources

Different architectures & ISA

For each case we want to find and use best optimization settings!

Current methods

Some existing solutions:

Appllcatlon Dataset,]
Compiler }\‘

Binary]

Output, }

Current methods

Some existing solutions:

Appllcatlon Dataset,]
Compiler }\‘

Binary]

Dynamic
optimizations

Output, }

Current methods

Some existing solutions:

[Appllcatlon [Dataset,]
Compiler }\‘

Binary]

Dynamic
optimizations

Y

[Output, }

Pros: run-time information,

potentially more than one dataset

Current methods

Some existing solutions:

[Appllcatlon [Dataset,]
Compiler }\‘

Binary]

Dynamic
optimizations

Y

[Output, }

Pros: run-time information,
potentially more than one dataset
Cons: restrictions on optimization time,

simple optimizations

Current methods

Some existing solutions:

[Application Dataset,]
Compiler
Binary
lterative

optimizations Y
[Output, }

Dynamic
optimizations

Pros: run-time information,
potentially more than one dataset
Cons: restrictions on optimization time,

simple optimizations

Current methods

Some existing solutions:

[Application
Compiler

Dataset,]

lterative
optimizations

Pros: powerful transformation

space exploration

e

Y

[Output, }

Dynamic
optimizations

Pros: run-time information,

potentially more than one dataset

Cons: restrictions on optimization time,

simple optimizations

Current methods

Some existing solutions:

[Application [Dataset;]
Compiler
Binary } Dynamic
lterative optimizations
optimizations :
[Output, }

: Pros: run-time information,
Pros: powerful transformation
: potentially more than one dataset
space exploration
_ Cons: restrictions on optimization time,
Cons: slow, one dataset
simple optimizations

Current methods

Can we combine both?

[Application Dataset,]
Compiler
Binary

|

Output, }

Dynamic
optimizations

lterative
optimizations

Combination of
powerful transformation space exploration,

run-time information
self-adaptable code

Run-time program behavior

|ldea to enable easy static and dynamic optimizations:

» Most time during execution is spent in procedures/functions or loops
» Clone these sections and apply different transformations statically

At run-time add run-time behavior analyzer routines and detect regular
behavior

» Select appropriate code sections depending on run-time behavior of
programs (code sections)

» Continuously recompile program with high-level transformations

Run-time program behavior

Repeatedly executed time-consuming parts of the
code that allow powerful transformations:

typically functions or loops

Run-time program behavior

Repeatedly executed time-consuming parts of the
code that allow powerful transformations:

typically functions or loops

IPC for subroutine resid of benchmark mgrid across calls

7015 7025

31

function calls

Our approach: static multiversioning

/ Application

Select most time consuming code
sections

Our approach: static multiversioning

/ Application

Create multi-versions of time
consuming code sections

Our approach: static multiversioning

Application
[adapt_start adapt_start
R
\,
adapt_stop adapt_stop

Add phase detectlon/predlctlon

Our approach: static multiversioning

Transformations

Application

[adapt_start adapt_start

— %
\‘

adapt_stop adapt_stop

Apply various transformations over
multi-versions of code sections

Our approach: static multiversioning

Fine-grain internal compiler (PathScale, Open64, ORC, GCC) transformations
using Interactive Compilation Interface (IClI)

N Transformations

adapt_stop] adapt_stop]

Apply various transformations over
multi-versions of code sections

Our approach: static multiversioning

Transformations

Application

[adapt_start] [adapt_start]

:

adapt_stop] adapt_stop]

Apply various transformations over
multi-versions of code sections

Our approach: static multiversioning

Manual transformations

Transformations

Application

[adapt_start] [,,a’dépt_start]

pa

adapt_stop] adapt_stop]

Apply various transformations over
multi-versions of code sections

Our approach: static multiversioning

Final instrumented program

Application

[adapt_start] [adapt_start]

adapt_stop] adapt_stop]

Our approach: static multiversioning

void mult(int NM)
{
int i, j, k;
int fselect;
co_adapt_select(&fselect);
iIT (fselect==1) mult_clone(NM);

co_adapt_start(1,0);
for (i = 0; i < NM; i++)
for (J = 0; j < NM; j++)
for (k = 0; k < NM; k++)
c_matrix[i+NM*j]=c_matrix[i+NM*j]+a _matrix[i1+NM*k]*b_matrix[k+NM*j];

co_adapt_stop(1,0);

ks
void mult_clone(int NM)
{

int i, j, k;

co_adapt_start(1l,1);
for (i = 0; i < NM; i++)
for (= 0; j < NM; j++)
for (k = 0; k < NM; k++)
c_matrix[i+NM*j]=c_matrix[i+NM*j]+a _matrix[i1+NM*k]*b_matrix[k+NM*j];
co_adapt_stop(1,1);
ks

Run-time Adaptation

Programs with regular behavior

Programs with irregular behavior

Adaptation for regular behaviour

IPC for subroutine resid of benchmark mgrid across calls

084---; SR | RN | M R Py | R | | |
o 0.6 -l - -l R
o
= 04000l Ll
0.2 4 qll--- -0l -l AR- - -
0 LILILIL LILBLILI LU LILELIL LILBLILI LILELIL LILBLILI LILELIL) LILBLILI LILBLIL LU LILBLILI rrrrrrrrrrrrrrrrrrnnd LILILIL LILELIL 1
1 11 21 31 41 51 61 71 81 91 101 7013 7023

\ function calls /

Detect regular (stable) patterns of behaviour (phases) - we define stability as
3 consecutive or periodic executions with the same IPC

* Predict further occurrences with the same IPC
(using period and length of regions with stable performance)

Adaptation for regular behaviour

IPC for subroutine resid of benchmark mgrid across calls

0.8

IPC

0.6 4--- -l ---fl-- - -- - -
0.4 -l ---fft-- - - - -
0.2 -

n

11

21 31 41
period=7, length=2

A

A 4

51

61 71

function calls

81

101

7013

7023

/

* Predict further occurrences with the same IPC
(using period and length of regions with stable performance)

Detect regular (stable) patterns of behaviour (phases) - we define stability as
3 consecutive or periodic executions with the same IPC

Adaptation for regular behaviour

Execution times for subroutine resid of benchmark mgrid across calls

function calls

startup (phase detection) or end of the optimization process (best option found)

M evaluation of 1 option

1) Consider new code version evaluated after 2 consecutive executions of
the code section with the same performance

2) lgnore one next execution to avoid transitional effects

3) Check baseline performance (to verify stability prediction)

Adaptation for regular behaviour

Execution times for subroutine resid of benchmark mgrid across calls

1 2 70 98 3
function calls

startup (phase detection) or end of the optimization process (best option found)

M evaluation of 1 option

1) Consider new code version evaluated after 2 consecutive executions of
the code section with the same performance

2) lgnore one next execution to avoid transitional effects

3) Check baseline performance (to verify stability prediction)

Adaptation for regular behaviour

if this call should be within phase:
call original call new
section for or section for If the current call should be within phase (look up
stability check evaluation) PDPT), then either select original code during
T > timer start phase detection/stability test or select new code
‘:V I | - sections for iterative optimizations
>< & = B
save current time and number of
instructions exccuted
— i PDPT (Phase Detection and Prediction Table)
stability tesp' selection of the
ket 5 new code section time IPC call period length hits misses state best
i if stability oplion
Y Y VY
original original transformed
time consuming time consuming code section
code section code section
e C C
> N i L
calculate time spent in the code Look up current time and IPC in the PDPT;
section and IPC; detect phases and timer stop find the same time & IPC and update period &
check stability; select new code o length or add new phase parameters
for the following execution
v v //‘——//

original code instrumented code

Adaptation for irregular behaviour

Execution time for library subroutine matmul (with 2 different versions)

Ene RIS TS

Adaptation for irregular behaviour

Execution time for library subroutine matmul (with 2 different versions)

.

€ 300 4------- R I L R
G 250 4------{}- REE | R B R | | I LR R
E 2004 ------ T | I IR I EEEE
_E 150 +------ -4 - W -0 - T | . I I I EEIE
5 100 4------ -l - - - - -
3] SO_LL. a0 1R
m O-]

1 100 110

function calls

» Select versions randomly during a time slot

» At each step calculate execution time per function call and variance

 \When variance for all versions is less than some threshold select the best one

Adaptation for irregular behaviour

Execution time for library subroutine matmul (with 2 different versions)

.

€ 300 4------- R I L R
G 250 4------{}- REE | R B R | | I LR R
E 2004 ------ T | I IR I EEEE
_E 150 +------ -4 - W -0 - T | . I TN I EEIE
5 100 4------ R I e LRI I F | I
3] SO_LL. Ay
m O-]

1 100 110

function calls

Select versions randomly during a time slot

» At each step calculate execution time per function call and variance
* When variance for all versions is less than some threshold select the pest one

» Periodically select non-best version to check if behavior changed

Adaptation for irregular behaviour

Execution time for library subroutine matmul (with 2 different versions)

Execution time, ms\

350
170
250 4 - - {- -} -
200 4 - - 4{- ¢l
150 + - - {-H-HH- .
100 4 - - 4-H-HHEHE -1 -
50--|----- HH H
.

function calls

Select versions randomly during a time slot (adaptation slot)

At each step calculate execution time per function call and variance
When variance for all versions is less than some threshold select the best one
Periodically select non-best version to check if behavior changed

If the variance increases, adapt again —

Determine the effect of optimizations

Use gprof to collect time spent in functions and clones

time spent in function avt riginal
avt (average time) = -----------c-mmmeemmmmeene- , S (speedup) = -------r--oooe-
number of calls aVlgioneq

Continuous Optimization Framework

sequence of evaluations: speedups s;, S,, ... S,
e (expected speedup) = Y.\, S; /R

" g

v (variance) = } ;_,(s;—e)~

Continuously monitor the variance to detect convergence
across executions

Removing adaptation overhead

Application

[adapt_start] [adapt_start }

adapt_stop J adapt_stop]

Select best code sections

~

Calls to adaptation routines are not
direct but through array of functions:

static void (*call1[.. 1)();
static void (*call2[.. 1)();

- /

Removing adaptation overhead

Application

[adapt_start] [adapt_start }

adapt_stop J adapt_stop]

Select best code sections

~

Calls to adaptation routines are not
direct but through array of functions:

static void (*call1[.. 1)();
static void (*call2[.. 1)();

If high-overhead is detected —
substitute call with dummy function

- /

Removing adaptation overhead

Application

[adapt_start] [adapt_start }

adapt_stop J adapt_stop]

Select best code sections

~

Calls to adaptation routines are not
direct but through array of functions:

static void (*call1[.. 1)();
static void (*call2[.. 1)();

If high-overhead is detected —
substitute call with dummy function

To be able to adapt to new program

behavior later at run-time,

periodically restore all calls to
adaptation routines

Continuous optimization and adaptation

One or multiple executions
with the same or different datasets:

4 Preload 4
Behaviour Application Save
Table Behaviour
if more than [adapt_start] [adapt_start] Table
one run

adapt_stop] adapt_stop]

Select best code sections

Continuous optimization and adaptation

Execution times for subroutine resid of benchmark mgrid across calls

-

0.12
0.1

S 0.08

(¢D)

< 0.06

0.04

0.02

time

1 201 401 601 801 1001 1201 1401 1601 1801 2001

function calls

1st run

Continuous optimization and adaptation

Execution times for subroutine resid of benchmark mgrid across calls

401 601 801 1001 1201 1401 1601 1801 2001

function calls

25t run, same optimizations

Continuous optimization and adaptation

DEMO 2
Benchmark susan edges from MiBench

Clone function susan_edges and put to 2 separate files
Substitute susan_edges with the following:

susan_edges(in,r,mid,bp,max_no,x_size,y size)
uchar *in, *bp, *mid;
int *r, max _no, x_size, y size;
{
float z;
int do_symmetry, i, J, m, n, a, b, X, y, w;
uchar c,*p,*cp;

if ((rand() % 2) == 0) susan_edgesO(in,r,mid,bp,max_no,x_size,y _size);
else susan_edgesl(in,r,mid,bp,max_no,x size,y size);
¥
compile: GCC-01*.c GCC-03*.c gcc —c —01 susan.c, susan0.c & gcc —c —03 susanl.c & gcc —-0O1 *.0
run
exec.time: 3.3s. 4.0 s.
profile: susan_edges0: 1.18 s. (52 calls)

susan_edgesl: 0.79 s. (48 calls)

Using this simple cloning technique can understand the influence of transformations on part of the code
during one execution. Instead of random function can use some adaptation routines!

Conclusions

» No sophisticated dynamic optimization/recompilation frameworks;
* Allows complex sequences of compiler or manual transformations at run-time;
« Statically enables run-time optimizations for different constraints

» Uses simple low-overhead adaptation technique (for codes with regular and
irregular behaviour);

» Combines manual and compiler transformations due to the source-to-source
versioning approach

» Enables self-tuning applications adaptable to program and system behaviour,
and portable across different architectures

» Enables continuous optimizations across runs with different datasets,
transparently to a user

» Can be used for parallel heterogeneous computing (compilation with different
ISA for CELL or GPU-like architectures or various accelerators)

 Reliable, secure and easy to debug

Conclusions

However:

« Still no optimization knowledge reuse

» Better placement of instrumentation for adaptation is needed
» Better dataset specialization is needed (for library adaptation)

* Clustering of different behaviour is needed (different optimization scenarios)

Machine learning based optimizations

Overview
e Machine learning - what is it and why is it useful?
 Predictive modeling
 Loop unrolling and inlining
» Attempt to generalize program optimizations
* Limits and other uses of machine learning

e Future work and summary

Failings of previous approaches

» Before we have looked at techniques to overcome data dependent
behavior and adaption to new processors

* However, we have not looked fundamentally at a process of designing a
compiler

o All rely on a “clever” algorithm inserted into the compiler that determines
which optimizations to apply at compile-time or runtime

o Iterative compilation goes beyond this with no a priori knowledge but is not
suitable for general compilations and does not adapt to changing data

 What we want is a smart compiler that adapts its strategy to changes in
program, data and processor

Machine learning as a solution

» Well established area of Al, neural networks, genetic algorithms etc., but
what has Al got to do with compilation?

* In a very simplistic sense machine learning can be considered as
sophisticated form of curve fitting

OUTPUTs

INPUTS

Machine learning

e Inputs: characteristics of a program and a processor

 Outputs: the optimization function we are interested in such as
combination of execution time, code size, power, etc

» Theoretically predict future behavior and find the best optimization

Execution
Best

fime — Transformation

Program characteristics Program characteristics

Global optimization and predictive modeling

» For our purposes it is possible to consider machine learning as global
optimization and predictive modeling

» Global optimization tries to find the best point in a space. This is achieved
by selecting new points, evaluating them and then based on accumulated
information selecting a new point as a potential optimum

* Hill walking and genetic algorithms are obvious examples. Very strong link
with iterative compilation

 Predictive modeling learns about the optimizations space to build a model.
Then uses this model to select the optimum point. Closely related to global
optimization

Predictive modeling

Traming data features
Test features

Execution (

fime .| Predictive = MODEL]
ur Ulllt‘l Modelling —

metric

Predicted fime

 Predictive modeling techniques all have the property that they try to learn
a model that describes the correlation between inputs and outputs

* This can be a classification or a function or Bayesian probability
distribution

e Distinct training and test data. Compiler writers don't make this distinction!

Predictive modeling as a proxy

User prrgra.m

Apply opt
Transfonmed program

Exmact
Features

MODEL

| Predictad time
Select or output program
try agam”

 The model acts as a fast evaluator for program. Automates Soffa's
performance prediction framework and speeds up iterative compilation.

» Feature selection and accuracy are main problems!

Training data

 Crucial to machine learning is correct selection of training data

» The data has to be rich enough to cover the space of programs likely to be
encountered

* If we wish to learn over different processors so that the system can port
then we also need sufficient coverage here too

* In practice it is very difficult to formally state the space of possibly
Interesting programs

* Ideas include typical kernels and compositions of them. Hierarchical
benchmark suites could help here

Feature selection of programs

 Crucial problem with machine learning is feature selection. Which features
of a program are likely to predict it's eventual behavior?

* In a sense, features should be a compact representation of a program that
capture the essential performance related aspects and ignore the irrelevant

 Clearly, the number of spaces in the program is unlikely to be significant nor
the user comments

» Compiler IRs are a good starting point as they are condensed program
representation

* Loop nest depth, control-flow graph structure, recursion, pointer based
accesses, data structure

Supervised learning

» Building a model based on given inputs and outputs is an example of
classical supervised learning. We direct the system to find correlations
between selected input features and output behavior

* In fact unsupervised learning may be more useful in the long run.
Generate a large number of examples and features and allow the system to
classify them into related groups with shared behavior

 This prevents missing important features and provide clues as to what
aspects of a program are performance determining

 However, we need many more programs combinatorially than features to
distinguish between them

Space to learn over

» Formalization of compiler optimization has not been taken really seriously

 However, in order to utilize predictive modeling, we need a descriptions of
the program space that allows discrimination between different choices

» Rather than just having a sophisticated model, what we want is a system
that given a program automatically provides the best optimization

» To do this means that we must have a good description of the
transformation space

* The shape of the optimization space will be critical for learning. Clearly
linear regression will not fit the spaces seen before

Which techniques work?

« Short answer: No one knows ;) !.. Fertile research area

* It depends on the structure of the problem space (distribution of minima)
and representation of the problem

* One problem particular to compilation is that feature inputs vary in size:
length of program, length of transformation sequence, order of
transformations, etc

» Also we have no agreed way of representing our problem. Several of the
following examples have used different techniques

» Safe to say that the level of ML sophistication is low. Seems that currently
compiler writers tend to try simple things first without too much maths
(though this is gradually changing with the polyhedral transformations being
added to the mainline GCC and XLS compilers) !

Learning to unroll

» Monsifort uses machine learning to determine whether or not it is
worthwhile unrolling a loop

» Rather than building a model to determine the performance benefit of
loop unrolling, try to classify whether or not loop unrolling is worthwhile

» For each training loop, loop unrolling was performed and speedup
recorded

 This output was translated into “good”, “bad” or “no change”

* The loop features were then stored alongside the output ready for
learning

Learning to unroll

» Features used were based on inner loop characteristics

 The model induced is a partitioning of the feature space. The space was
partitioned into those sections where unrolling is good, bad or unchanged

 This division was hyperplanes in the feature space that can easily be
represented by a decision tree

 This learnt model is then easily used at compile time. Extract the features of
the loop and see which section they belong too

» Although easy to construct, it requires regions in space to be convex. Not
true for combined transformations

Learning to unroll

/ features

do1=2, 100 statements |
aritmetic op 2
a(1) =a(1) +a(—1) +a@+1) iterations 99

array access 4

raglieedg Pl
uuuuuuu

enddo

=

-+

r
oL

e Features try to capture structure that may affect unrolling decisions
« Again allows programs to be mapped to fixed feature vector

» Feature selection can be guided by metrics used in existing hand-written
heuristics

» Classified examples give correct result in 85% cases. Better at picking
negative cases due to bias in training set

» Gave an average 4% and 6% reduction in execution time on Ultrasparc
and 1A64 compared to 1

 However g77 compiler is an easy compiler to improve upon at that time

» Basic approach - unroll factor not considered

Meta-compilation

 Name comes from optimizing a heuristic rather than optimizing a program
» Stephenson et al 2003 used genetic programming to tune hyperblock
selection, register allocation, and data prefetching within the Trimaran's
IMPACT compiler

* Represent heuristic as a parse tree. Apply mutation and cross over to a
population of parse trees and measure fithess.

» Crossover = swap nodes from 2 random parse trees

» Mutate randomly: selected a node and replace with a random expression

» Two of the pre-existing heuristics were not well implemented
» For hyperblock selection speedup of 1.09 on test set
» For data prefetching the results are worse - just 1.01 speedup

* The authors even admit that turning off data prefetching completely is
preferable and reduces many of their gains

» The third optimization, register allocation is better implemented but only
able to achieve on average a 2% increase over the manually tuned heuristic

* GP is not a focused technique, IMPACT is not of a commercial quality

Learning over UTF

e Shun (2004) uses Pugh's UTF framework to search for good Java
optimizations

» Space of optimization to learn included entire UTF. Training data gathered
by using a smart iterative search

» Then using a similar feature extraction to Monsifort classify all found
results

» Uses nearest neighbour based learning able to achieve 70% of the
possible performance found using iterative compilation on cross-validated
test data

» Larger experimental set needed to validate results. Going beyond loop
based transformations for Java

More general approaches?

Static characterization of programs

 Embedded systems application
« UTDSP benchmarks: compute intensive DSP
« AMD Aul1500, gcc 3.2.1, -O3
* TI C6713, Tl compiler v2.21, -O3
» Exhaustively enumerated optimization search space
« 14 transformations selected
« all combinations of length 5 evaluated
 Allows comparison of techniques
 How near the minima each technique approaches
* Rate of improvement

e Characterization of the space

F. Agakov, E. Bonilla, J.Cavazos, B.Franke, G. Fursin, M.F.P. O'Boyle, J.Thomson, M. Toussaint and C.K.I. Williams. Using
Machine Learning to Focus Iterative Optimization. Proceedings of the 4th Annual International Symposium on Code
Generation and Optimization (CGO), New York, NY, USA, March 2006

Static characterization of programs

G\Ic)hal maximum speedup:1.32

2000 ¢
1800F £ is
180k

1400l ()

12001

e J

1000}
800l
800}

400t it R A

200F

EID 4ID EID BIU 160 1éD 140 180 180
Focusing search (off-line training):

* Independent identically distributed (1ID) model
* Markov model

Predicting best transformation for a new program:
o Static features
» Nearest neighbors classifier

Search space = 396000
program transformations

Predict 2..10 best
transformations from this
space based on program

features and previous
optimization experience

Dynamic characterization of programs

Previously we used static code features to obtain good
optimizations for new programs

However, it is difficult or impossible to characterize
program run-time behavior on modern complex
architecture using only static code features

Performance counters provide a compact summary of
a program’s dynamic behavior

How to use them to select good optimization settings?

John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F.P.O’Boyle and Olivier Temam. Rapidly
Selecting Good Compiler Optimizations using Performance Counters. Proceedings of the 5th Annual
International Symposium on Code Generation and Optimization (CGO), San Jose, USA, March 2007

General optimizations

Predictive modeling using logistic regression

perfarmance
catiter featiines \\\
— / v forthe baseline
R h tr (baseline option) X /
W > »
*
:g E rewdom se; af transformations Speectips
5 (opiion sequerces)
z S . , | Architecture T
i Models
E _ tzxi %2 x3i) . . 52
- bz x5 Zar) SH
S > —_—
N
>
»
>

. A

(a) SBummary of the predictive modellmg procedure. "We use the features x, the transformations
£, and Qrplicttly) the speed-ups {5} for constructing the traming data < x , £ > We then
evaluate the mapping from the performance counters to the transformation sequences x =2¢ by
fitting a probabilistic model to the training set.

General optimizations

Using models

S
performance 4 \\
cotnter feafiires
g for the baseline
_ tg (baseline option) e
g — > . Models —
jor
£ redicted set af best Architecture
iz, F : best
frapisfarmations e J/’
speedtips
ty ®7 3 =L S4
_—
tB(:{f Xﬁ ...Ki} SE
> -_—

R

(b) Inference using a predictive model. Given a new benchmark, we first extract performance
counter features These features are then fed nto our tramned models which then output a set of
transformation sequences to apply to the new benchmarlk

=
v 9
o) T
@©
v I
= =S
o B
C mm
S Bk
. K=
pmm..
(@ s
-l O O
O BN
< Qa
< B
S EE
. o8l C L
S
N ERZ
a2
YW € 3
- Pp-
(O — ©
O EE
q::
(¢D)
< EE:
%) > 0o
om Mmlu
E B
S KR
C KR
[al S -
O O
o S
©
>

181.mcf

1111 P

40

v, o . O
Lo o TR o ST o IR o

5
10 Hf -
5

1

SIUD) J13d 28RI0AY 0] 2ATIR[SY

0

VoL 1
HOL_T1
INOL T'1
5dQdd
SNI Advd
SNI TINA
VoL 171
HOL 1
o011
VoL Tl
VOLI'1
HOL T'1
HOI I'l
MO 1
d0d 7’1
Yod o'l
VoA _I'T
HOd_T'1
HOA 11
DAL LOL
LS SHY
SNL DHA
SNIL dd
SNI dd
dSIN_¥d
N2LL ¥4
INI_MH
ADT TS
INLS _T71
INC'L T'1
INIS 171
INA'T T'1
1L dLL
INT d"LL
INCA_d'LL
1Al Ndd
WL T1
DI 71
WOA T1
DI 11
WOa T'1

Dynamic characterization of programs

Performance counter values for 181.mcf compiled with -OO0 relative to the average
values for the entire set of benchmark suite (SPECFP,SPECINT, MiBench, Polyhedron)

40
35
30
25
20
15
10

Relative to Average Perf Cntrs

5
0

181.mcf

Problem:

greater number of memory accesses per instruction than average

Dynamic characterization of programs

Performance counter values for 181.mcf compiled with -OO0 relative to the average
values for the entire set of benchmark suite (SPECFP,SPECINT, MiBench, Polyhedron)

40
35
30
25
20
15
10

Relative to Average Perf Cntrs

5
0

181.mcf

L2 TCA

[
Solving all performance issues one by one is slow and can be

inefficient due to their non-linear dependencies ...

Dynamic characterization of programs

Performance counter values for 181.mcf compiled with -OO0 relative to the average
values for the entire set of benchmark suite (SPECFP,SPECINT, MiBench, Polyhedron)

40

10

Relative to Average Perf Cntrs

5
0

181.mcf

35)
R el | RO

L2 TCA

[
Solving all performance issues one by one is slow and can be

inefficient due to their non-linear dependencies ...

CONSIDER ALL PERFORMANCE ISSUES AT THE SAME TIME |

MILEPOST project

Machine Learning for Embedded Programs Optimization

Obijective is to develop compiler technology that can automatically learn

how to best optimize programs for re-configurable heterogeneous
embedded processors and dramatically reduce the time to market.

Partners:
INRIA, University of Edinburgh, IBM, ARC, CAPS Enterprise

Developed techniques and software are publicly available and
hopefully will influence the future compiler developments

i, 45
EicioW

MILEPOST

http://www.milepost.eu

MILEPOST framework

MILEPOST GCC \ / CCC \

e Program, (with ICl and ML routines) Continuous Collective
Compilation Framework

) K IC Plugins \ N o —
= p - \ Drivers for | p___
< < S Recording pass — . iterative -Gropal
@© L sequences) | compilation [ve, on
= and model

- : - .. *Databas®

Program Extracting static training
i program features

U

<) /
N

p MILEPOST GCC \/ \

d—

5 (r—— g——
c /,_, Extractlnfg sttatlc [| Predicting “good”

C>Dx < New program - program Teatures g \ passes to impr.ove

ret f _“ -) / exec.time, cod.e size and
8 Selecting “good” passes [comp. time

. \\ . _ / /

Feature extraction

We can now add new passes that are not included into default optimization
heuristic but called through ICI.

Example: program static feature extractor (thanks to IBM Haifa)

export XSB_DIR=".

”

export ICI_PLUGIN="$ICI_PLUGINS_ HOME/extract-program-static-features.so”
export ICI_ PROG_FEAT PASS=fre

export ICI_PROG_FEAT _EXT_TOOL="$ICI_PLUGINS HOME/mI-feat-proc”
export ML_ST_FEAT PROC="$ICI_PLUGINS HOME/featlstn.P”

export ICI_USE=1

ftl

ft20 -
ft21 -

ft22 -
ft23 -

ft24 -
- Average of number of instructions in basic blocks \\

ft25

ft54 -
ft55 -

- Number of basic blocks in the method

Number of conditional branches in the method \\
Number of assignment instructions in the method \\

Number of binary integer operations in the method \\
Number of binary floating point operations in the method \\

Number of instructions in the method \\

Number of local variables that are pointers in the method \\
Number of static/extern variables that are pointers in the method \\

Experiments

Generating training set to build model

1.6
15 B
o _
_gl.4 —
o 1.3 ——l
(D)
o 12 HHHE
il I]ﬁh - t HHT
1' T T T T T T T T T T T T T T T II_I Il_._lll_h_\
3) () %) O T © O) o () @ O T N ~
9 9% 9 35 £ 8 % Y% 35 995 o« & 5 Z
@) %) = < < le3) e} %) & IS @) S o &)
<] ~ - 9 o T ©) O jog %) —~
QL = 0] < < © [o] S Q @) o $
S % Q9 8 =8 & <o S v
S) O = > @ © (@)
~ < o
3 S
=
(%]

bItCOUn[
Susgp,
SuSan
Susgp,
IPeg

O AMD - a cluster with 16 AMD Athlon 64 3700+ processors running at 2.4GHz

B |IA32 - a cluster with 4 Intel Xeon processors running at 2.8GHz
O1A64 - a server with an Itanium2 processor running at 1.3GHz

Traditional iterative search:
500 random sequences of flags and associated passes (turned on or off)

Later “focused” search

Building and using model to predict optimizations

Use static or dynamic (hardware counters) program features
to find similarities between programs to focus search for good
optimizations

Similar to feedback directed optimizations, except we reuse
“global optimization knowledge” and use program features
to suggest good optimizations

(oF

speedu

14
13
1.2
11

0.9

Experiments

81 815 & HEL

L L I r T T 1T " T°r & 1T 1
o o » o “v ©& © ©v© o T o o o v N ~ <
% % 9 9 £ 8 34530 < 9 9% § >
> o »n I n g & 9O &8 o T
s 8 & & S § & g &
= ¥ % Q 5 5 <
T @ <

N
<
5
]

(%)

(@)
S
S
(%)

O Iterative compilation B Predicted optimization passes using ML and MILEPOST GCC

Evaluating model performance

(FPGA implementation of the ARC 725D processor)

Continuous Collective Compilation Framework

 Unify iterative experiments and optimization knowledge reuse

» Collect and analyze data from various partners in a global database:

*COMPILERS, DATASETS, ENVIRONMENTS, OPT_FLAGS_GLOBAL,
PLATFORMS

‘PROGRAMS, PROGRAM_FEATURES, PROGRAM_PASSES,
STATS_COMP_GLOBAL_FLAGS, STATS_EXEC_GLOBAL

e Support iterative compilation (flags & passes) with different strategies, transparent
profiling using hardware counters collection using PAPI library

 During last 6 months around 2,000,000 executions on various platforms:

* X86, Xx8664, |A64
e TMS320C6713

* |[CT GODSONZ2

« ARC 700

 Build machine learning models to improve GCC performance on average across all
programs or for

Continuous Collective Compilation Framework

Usery

Program,
Architecture;

GCC Interface:
- create code clones

- apply optimizations
per clone

"-\\l

User,
Program,
Architecture,

.y

intercept main.()and

/_ Collective Compiler \

/)\:-.dd auxiliarv,rrnutiﬂesj

Initiate recompilation if better optimization setting

Binary

Function clones
with different
optimizations

) ()

- Profiling Rnutines]

- I

Y

- Collective Stats

k[-UﬂhUEIDs l

o

is suggested based on Collective Knowledge

~

Collective Optimization Server

Databa

Collective Dptrmrzatmn

- COMPILATION table
- EXECUTION table
- AUXILARY tables

se Web Services o
Register events Save profile statistics
- Quin,r database and query server for
- Get statistics
MysQlL Web Server

Collective Optimization

Execution

\7/Prulng of the time consuming code W

Start er ling and
Rapdomly select-version
/ (original or cfone}

¥

Cloned code
(Optimizations,)

Original code
(Optimizations,)

Stop profiling

Epilog of the time consuming code

better optimization (Intercept exit !} and]
Internet/Intranet ™ | ELSIlEOE SEE /

e Static function versioning and run-time adaptation to avoid reference runs

e Unobtrusive collection of statistics in the Collective Database

» Suggest good optimizations based on Collective Knowledge

Continuous Collective Compilation Framework

a~) "'bq-.
L P I B W e A I I e e
.1"J"1 r o ‘ - "‘i..-\..-
B0 P j e
\ r A0 BRIFLL IR ER IR Rk s B .. Tl T
W i F_.\- A LG L IR G G L e T T
%] | & o . :
= 50 i
m o~ A1 o TR R TR h L T A R L AR (e
= y A L
5 ag + : (e
T A ¢ | T
g Voo .
3= 30 1 A ;
o i .
w | & 4 l
- 20 ¥ L }7 -----
= i ; T d
= 1 ‘ s adpcm
= L ; ‘L'_.acldgpcﬂ_t
- 10 + ' _ # chc
O i ; i L - __ru&ldale e
c - | i I & rijndael_d
E 0 "':. I |] - [[¥ 1 () & 1 !‘1 p P4#
& - = ' ' ‘N | # blowfsh_e
= & ¥ i : Ry il i A blowfish_d
& bo\} {:p& " 4 L1 ! rs iséglllngsea rch
= 3 - N by I £ .
- & T o & ghostscript
PFF @ > # patricia
& Pt £ dijkstra o
T N _tiftmedian 2
E < yfidither <&
. o tiffZrgha &
TEESE : & tiff2bw W
& 5 ! £ _G{Euegc_d
Fa ~<~°t} < @‘?, ¢y ™ susan s
%’f‘ © {\@.ﬁ‘\ Far © & susan_ge
& & B Q@ s | /7 susan_c
hCE‘ T e &3 & 3 7 gsort
S Ak b P
© B LA ¢ .., bitcount
el ¥
PR Sl S
o o &
D
53

Learning across different datasets

Competition between optimization

After 1 iteration
(1<2)

g

12 3 405
Combinations

A

After N
iterations

1 2 3 45

Computing the probability distribution to select an optimization

combination based on continuous competition between combinations

Maturation stages of a program

«Stage 3: Program well known, heavily used
«Stage 2: Program known, a few runs only

«Stage 1: Program unknown

There Is a permanent competition between

the different stages distributions (d1, d2, d3)

Performance evaluation

1.15
Collective —+—
o= - === M= = P =M= M HIOOL
| a-a U AR
d3 --x--- ettt
Best ——
Baseling --—----
[
3 1.05
L k] |
@O i e S - PRRE T e o s
@ « g EE
11 - _
4:_1__5__ﬁ£mrn B ~p-#00a0. - g @00 gEmg-o Do 8 - B0 0 OoEdD
T o o e o e e e e e e e
* * - # g Foky™
L
0.6 -
" 1
o
o
i 0.5
[an]
5]
=
D L M T S S S R | L M T S S S R | L P L Pl S———
1 10 100 1000 10000

Funs
Average performance of collective optimization and individual distributions

(bottom: meta-scores of individual distributions; grey is d3, black is d2, white is d1)

Machine learning for DSE

Speeding up Architecture Design Space Exploration

Problems:

— Developing an optimizing compiler for new architecture is difficult
particularly when only simulator is available

— Tuning such compiler requires many runs
— Simulators are orders of magnitude slower than real processors

— Therefore compiler tuning is highly restricted

Goal:

develop a technique to automatically build a performance model for predicting
the impact of program transformations on any architecture, based on a limited
number of automatically selected runs

John Cavazos, Christophe Dubach, Felix Agakov, Edwin Bonilla, Michael F.P. O'Boyle, Grigori Fursin
and Olivier Temam. Automatic Performance Model Construction for the Fast Software Exploration of
New Hardware Designs. International Conference on Compilers, Architecture, And Synthesis For
Embedded Systems (CASES 2006), Seoul, Korea, October 2006

Machine learning for DSE

Static
program
— m — features
s = S i)
i = E Predicted
z wES — — | 3 speedup
Q =]
& — | FES | ——> | 8 -
= Fe g %
— —_— o
E S 2
U :
|

Source Transformed source

Features-based model
Input: static features extracted from the transformed program
at the source level
Output: program speedup

Machine learning for DSE

(A) Predicted !
_ best speedup,
: - b 3 best :
> 5 = transformation, |
: = \—) S S 3 etc :
|] k) > bl !
- f2 £ S5 8 |
i E > § > 8 i
1 . = :
| _tK/_) ~ 5 '
| £ :
: Speedups .
' _____/)

Canonical
transformations

Reactions-based model
Input: speedups on canonical transformation sequences
Output: transformation sequence speedup

Machine learning for DSE

Speeding up Architecture Design Space Exploration

actual
predicted N

—
fo')
[

Speedup
I\

1.1 | S/ i

1R 4 -

0.9 n

0.8

Transformations Sorted By Increasing Speedup

Reliable performance model on an unseen architecture after a few
probes — fast search

Conclusions

» We believe that machine learning will revolutionize compiler optimization
and will become mainstream within a decade for both compiler
optimizations, run-time adaptation, parallelization and architecture design
space exploration

« However, it is not a panacea, solving all our problems

 Fundamentally, it is an automatic curve fitter. We still have to choose the
parameters to fit and the space to optimize over

« Complexity of space makes a big difference. Tried using Gaussian process
predicting on PFDC'98 spaces - worse than random selection...

 Much remains to be done - fertile research area

Continuous Collective Compilation
http://gcc-ccc.sourceforge.net

* Hennessy and Patterson: Computer Architecture: A Quantitative Approach
(4th Edition), Morgan Kaufmann, 2006

« Steven Muchnick: Advanced Compiler Design and Implementation,
Morgan Kaufmann, 1997

« Randy Allen, Ken Kennedy: Optimizing compilers for modern architectures,
Morgan Kaufmann, 2002

» Keith D. Cooper, Linda Torczon: Engineering a Compiler, Morgan
Kaufmann, 2004

Literature

* D. Bacon, S. Graham and O. Sharp: Compiler Transformations for High-Performance Computing. ACM Computing Surveys,
Volume 26, Issue 4, 1999

* R.C. Whaley, A. Petitet and J. Dongarra: ATLAS project, Parallel Computing, 2001

* S.L. Graham, P.B. Kessler, and M.K. McKusick: Gprof: A call graph execution profiler. Proceedings of the 1982 SIGPLAN
Symposium on Compiler Construction, pages 120-126, June 1982

 T. Ball and J.R. Larus: Efficient Path Profiling, International Symposium on Microarchitecture, pages 46-57, 1996

* T. Ball, P. Mataga and M. Sagiv: Edge Profiling versus Path Profiling: The Showdown, In Symposium on Principles of
Programming Languages, Jan. 1998

* B. Aarts, M. Barreteau, F. Bodin, P. Brinkhaus, Z.Chamski, H.-P. Charles, C. Eisenbeis,J. Gurd, J.Hoogerbrugge, P. Hu, W.
Jalby, P.M.W. Knijnenburg, M.F.P O'Boyle, E. Rohou, R. Sakellariou, H. Schepers, A. Seznec, E.A. Stohr, M. Verhoeven and
H.A.G. Wijshoff: OCEANS: Optimizing Compilers for Embedded Applications, in proceedings of EuroPar'97, LNCS-1300, pages
1351-1356, 1997

 F. Bodin, T. Kisuki, P. Knijnenburg,M. O’Boyle and E. Rohou: Iterative compilation in a non-linear optimisation space, in
proceedings of the Workshop on Profile and Feedback Directed Compilation,1998

» K. D. Cooper, P. J. Schielke, and D. Subramanian: Optimizing for reduced code space using genetic algorithms, in
proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), pages 1-9, 1999

* G.G.Fursin, M.F.P.O’Boyle, and P.M.W. Knijnenburg: Evaluating Iterative Compilation, in proceedings of the 15th Workshop on
Languages and Compilers for Parallel Computing (LCPC’02), College Park, MD, USA, pages 305-315, 2002

K. D. Cooper, D. Subramanian, and L. Torczon: Adaptive optimizing compilers for the 21st century, journal of Supercomputing,
23(1), 2002

 G. Fursin: Iterative Compilation and Performance Prediction for Numerical Applications, Ph.D. thesis, University of Edinburgh,
Edinburgh, UK, January 2004

Literature

» K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subramanian, L. Torczon, and T. Waterman: Acme: adaptive compilation
made efficient, in proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), pages
69-77, 2005

* B. Franke, M. O'Boyle, J. Thomson and G. Fursin: Probabilistic Source-Level Optimisation of Embedded Systems Software, in
proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES’05), pages 78-86,
Chicago, IL, USA, June 2005

 G. Fursin and A. Cohen: Building a Practical Iterative Interactive Compiler, in proceedings of the 1t International Workshop on
Statistical and Machine Learning Approaches Applied to Architectures and Compilation (SMART'07), Ghent, Belgium, January
2007

 S. Triantafyllis, M. Vachharajani, N. Vachharajani and D. August: Compiler optimization-space exploration, in proceedings of
the International Symposium on Code Generation and Optimization (CGO), pages 204-215, 2003

* P. Kulkarni, D. Whalley, G. Tyson and J. Davidson: Evaluating heuristic optimization phase order search algorithms, in
proceedings of the International Symposium on Code Generation and Optimization (CGO’07), pages 157-169, March 2007

 G. Fursin, J. Cavazos, M.F.P. O'Boyle and O. Temam: MiDataSets: Creating The Conditions For A More Realistic Evaluation of
Iterative Optimization, in proceedings of the International Conference on High Performance Embedded Architectures &
Compilers (HIPEAC 2007), Ghent, Belgium, January 2007

* B. Grant, M. Mock, M. Philipose, C. Chambers and S.J. Eggers: DyC: An Expressive Annotation-Directed Dynamic Compiler
for C, Theoretical Computer Science, volume 248, number 1-2, pages 147-199, 2000

* M.Mock, C. Chambers and S.J.Eggers: Calpa: A Tool for Automating Selective Dynamic Compilation, International Symposium
on Microarchitecture, pages 291-302, 2000

* K. Ebcioglu and E.R. Altman: DAISY: Dynamic Compilation for 100% Architectural Compatibility, ISCA, pages 26-37, 1997

* V. Bala, E. Duesterwald and Sanjeev Banerjia: Dynamo: A Transparent Dynamic Optimization System, ACM SIGPLAN
Notices, 2000

 C. J. Krintz, D. Grove, V. Sarkar and Brad Calder: Reducing the overhead of dynamic compilation, Software Practice and
Experience, volume 31, number 8, pages 717-738, 2001

* M.J. Voss and R. Eigenmann: ADAPT: Automated de-coupled adaptive program transformation, in proceedings of ICPP, 2000

Literature

* G. Fursin, A. Cohen, M.F.P. O'Boyle and O. Temam: A Practical Method For Quickly Evaluating Program Optimizations, in
proceedings of the 1st International Conference on High Performance Embedded Architectures & Compilers (HIPEAC 2005),
number 3793 in LNCS, pages 29-46, Barcelona, Spain, November 2005

* J.Lau, M.Arnold, M.Hind and B.Calder: Online Performance Auditing: Using Hot Optimizations Without Getting Burned, in
proceedings of PLDI, 2006

* G. Fursin, C. Miranda, S. Pop, A. Cohen and O. Temam: Practical Run-time Adaptation with Procedure Cloning to Enable
Continuous Collective Compilation, in proceedings of the GCC Developers’ Summit, Ottawa, Canada, July 2007

* C. Lattner and V. Adve: Llvm: A compilation framework for lifelong program analysis & transformation, in proceedings of the
2004 International Symposium on Code Generation and Optimization (CGO’04), Palo Alto, California, March 2004

» A. Monsifrot, F. Bodin, and R. Quiniou: A machine learning approach to automatic production of compiler heuristics, in
proceedings of the International Conference on Artificial Intelligence: Methodology, Systems, Applications, LNCS 2443, pages
41-50, 2002

» M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’'Reilly: Meta optimization: Improving compiler heuristics with machine
learning, in proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI'03),
pages 77-90, June 2003

» S. Long, M.F.P. O’'Boyle: Adaptive Java optimisation using instance-based learning, in proceedings of ICS, 2004

« J. Cavazos, J.E.B.Moss, M.F.P.O’Boyle: Hybrid Optimizations: Which Optimization Algorithm to Use? in proceedings of CC,
2006

Literature

* F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.F.P. O'Boyle, J. Thomson, M. Toussaint and C.K.I. Williams: Using
Machine Learning to Focus lterative Optimization. in proceedings of the 4th Annual International Symposium on Code
Generation and Optimization (CGO), New York, NY, USA, March 2006

» John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F.P.O’Boyle and Olivier Temam: Rapidly Selecting Good
Compiler Optimizations using Performance Counters, in proceedings of the 5th Annual International Symposium on Code
Generation and Optimization (CGO), San Jose, USA, March 2007

* Christophe Dubach, John Cavazos, Bjorn Franke, Grigori Fursin, Michael O'Boyle and Oliver Temam: Enabling fast compiler
optimization evaluation via code-features based performance predictor, in proceedings of the ACM International Conference on
Computing Frontiers, Ischia, Italy, May 2007

» Grigori Fursin, Cupertino Miranda, Sebastian Pop, Albert Cohen and Olivier Temam. Practical Run-time Adaptation with
Procedure Cloning to Enable Continuous Collective Compilation. Proceedings of the GCC Developers' Summit, Ottawa,
Canada, July 2007

» Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Elad Yom-Tov, Ayal Zaks, Bilha Mendelson, Phil Barnard,
Elton Ashton, Eric Courtois, Francois Bodin, Edwin Bonilla, John Thomson, Hugh Leather, Chris Williams, Michael O'Boyle.
MILEPOST GCC: machine learning based research compiler. Proceedings of the GCC Developers' Summit, Ottawa, Canada,
June 2008

* Grigori Fursin and Olivier Temam. Collective optimization. To appear at the International Conference on High Performance
Embedded Architectures & Compilers (HIPEAC 2009), Paphos, Cyprus, January 2009

Related Conferences

» Conference on Programming Language Design and Implementation (PLDI)
* International Conference on Code Generation and Optimization (CGO)

 Architectural Support for Programming Languages and Operating Systems
(ASPLOS)

» Conference on Parallel Architectures and Compilation Techniques (PACT)

* International Conference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES)

e Symposium on Principles of Programming Languages (PoPL)

* Principles and Practice of Parallel Computing (PPoPP)

e International Symposium on Microarchitecture (MICRO)

e International Symposium on Computer Architecture (ISCA)

« Symposium on High-Performance Computer Architecture (HPCA)

» Workshop on Statistical and Machine learning approaches to ARchitectures
and compilaTion (SMART)

Related Journals

 ACM Transaction on Architecture and Code Optimization

» |IEEE Transaction on Computers

« ACM Transactions on Computer Systems

« ACM Transactions on Programming Languages and Systems
* |IEEE Transaction on Parallel and Distributed Systems
 IEEE Micro

Miscellaneous

4 N
Machine Learning for Embedded Programs)\
Optimisation (MILEPOST)
L http://www.milepost.eu NTIEPOET ,
4 o .)
Building intelligent self- « UNIDAPT
tuning systems OU
http://unidapt.org GR P
_ J
" Network of Excellence on High Performance A
Embedded Architectures and Compilers H
(HIPEAC) COMPILATION WAH®IRI=@EV]S
_ http://www.hipeac.net)

4)
Thanks to Prof. Michael O’Boyle from the University of Edinburgh for

providing some slides from his course on iterative feedback-directed
compilation (2005)

/ Contact email: \

grigori.fursin@inria.fr

More information about research projects and software:
http://fursin.net/research

Lecture and publications on-line:
\ http://fursin.net/research_teaching.html /

