
Dynamic compilation and Dynamic compilation and
runrun--time adaptation. time adaptation.

Machine learningMachine learningMachine learningMachine learning

Grigori FursinGrigori Fursin

Alchemy group, INRIA Saclay, FranceAlchemy group, INRIA Saclay, France

Grigori FursinGrigori Fursin

Course overview

Assume that all understand basics of computer architecture and compilation Assume that all understand basics of computer architecture and compilation
process. process.

Focus on compilers that map user program to machine codeFocus on compilers that map user program to machine codeFocus on compilers that map user program to machine codeFocus on compilers that map user program to machine code

Explain general major compilation problems instead of focusing on individual Explain general major compilation problems instead of focusing on individual
components components

Describe current major research areas for compilation and optimizationDescribe current major research areas for compilation and optimization

•• Reminder: Feedback directed compilation and optimizationReminder: Feedback directed compilation and optimization

•• Dynamic compilation and optimizationDynamic compilation and optimizationDynamic compilation and optimizationDynamic compilation and optimization

•• Machine learning and future directionsMachine learning and future directions

ReminderReminder

Finding a good solution may be Finding a good solution may be

Optimization spaces (set of all possible program transformations) are large, Optimization spaces (set of all possible program transformations) are large,
nonnon--linear with many local minimalinear with many local minima

long and nonlong and non--trivialtrivial

matmul, 2 transformations, matmul, 2 transformations,
search space = 2000search space = 2000

swim, 3 transformations,swim, 3 transformations,
search space = 10search space = 105252

ReminderReminder

Finding a good solution may be Finding a good solution may be

Optimization spaces (set of all possible program transformations) are large, Optimization spaces (set of all possible program transformations) are large,
nonnon--linear with many local minimalinear with many local minima

long and nonlong and non--trivialtrivial

matmul, 2 transformations, matmul, 2 transformations,
search space = 2000search space = 2000

swim, 3 transformations,swim, 3 transformations,
search space = 10search space = 105252

Recent technique Recent technique -- iterative compilation:iterative compilation:
learn program behavior across executionslearn program behavior across executions

High potential (O’Boyle, Cooper), but:High potential (O’Boyle, Cooper), but:High potential (O Boyle, Cooper), but:High potential (O Boyle, Cooper), but:
-- slowslow
-- the same dataset is usedthe same dataset is used
-- no runno run--time adaptationtime adaptation
-- no optimization knowledge reuseno optimization knowledge reuse

ReminderReminder

Finding a good solution may be Finding a good solution may be

Optimization spaces (set of all possible program transformations) are large, Optimization spaces (set of all possible program transformations) are large,
nonnon--linear with many local minimalinear with many local minima

long and nonlong and non--trivialtrivial

matmul, 2 transformations, matmul, 2 transformations,
search space = 2000search space = 2000

swim, 3 transformations,swim, 3 transformations,
search space = 10search space = 105252

Recent technique Recent technique -- iterative compilation:iterative compilation:
learn program behavior across executionslearn program behavior across executions

High potential (O’Boyle, Cooper), but:High potential (O’Boyle, Cooper), but:High potential (O Boyle, Cooper), but:High potential (O Boyle, Cooper), but:
-- slowslow
-- the same dataset is usedthe same dataset is used
-- no runno run--time adaptationtime adaptation
-- no optimization knowledge reuseno optimization knowledge reuse

Solving these problems is nonSolving these problems is non--trivialtrivial

Dynamic techniquesDynamic techniques

•• All today's techniques focus on delaying some or all of the optimizations to All today's techniques focus on delaying some or all of the optimizations to
runtimeruntimeruntimeruntime

•• This has the benefit of knowing the exact runtime controlThis has the benefit of knowing the exact runtime control--flow, hotspots, flow, hotspots,
d t l l ti d h l t k l dd t l l ti d h l t k l ddata values, memory locations and hence complete program knowledgedata values, memory locations and hence complete program knowledge

•• It thus largely eliminates many of the undecidable issues of compileIt thus largely eliminates many of the undecidable issues of compile--time time
optimization by delaying until runtimeoptimization by delaying until runtime

•• However the cost of analysis/optimization is now crucial as it forms aHowever the cost of analysis/optimization is now crucial as it forms aHowever, the cost of analysis/optimization is now crucial as it forms a However, the cost of analysis/optimization is now crucial as it forms a
runtime overhead. All techniques characterized by trying to exploit runtime runtime overhead. All techniques characterized by trying to exploit runtime
knowledge with minimal costknowledge with minimal cost

BackgroundBackground

D l i il ti til ti h b d fD l i il ti til ti h b d f•• Delaying compiler operations until runtime has been used for many yearsDelaying compiler operations until runtime has been used for many years

•• Interpreters translates and execute at runtimeInterpreters translates and execute at runtime

•• Languages developed in the 60s Languages developed in the 60s ieie AlgolAlgol 68 allowed dynamic memory 68 allowed dynamic memory
allocation relying on language specific runtime system to mange memoryallocation relying on language specific runtime system to mange memory

•• LISP has runtime type checking of objectsLISP has runtime type checking of objects

•• Smalltalk in the 80s deferred compilation to runtime to reduce the amount Smalltalk in the 80s deferred compilation to runtime to reduce the amount
of compilation otherwise required in the OO settingof compilation otherwise required in the OO setting

•• Java applications are compiled into Java applications are compiled into bytecodebytecode to run on Java Virtual to run on Java Virtual
Machines (JVM) thus making them portable across architecturesMachines (JVM) thus making them portable across architectures

•• .NET applications (mainly for Windows) similarly execute in a run.NET applications (mainly for Windows) similarly execute in a run--time time
environment called Common Language Environment (CLR)environment called Common Language Environment (CLR)

Runtime specializationRuntime specialization

•• For many runtime optimization is “adaptive optimization”For many runtime optimization is “adaptive optimization”•• For many, runtime optimization is adaptive optimizationFor many, runtime optimization is adaptive optimization

•• Although wide range of techniques, all are based around runtime Although wide range of techniques, all are based around runtime
specializationspecializationspecializationspecialization

•• Constant propagation is a simple exampleConstant propagation is a simple example

•• Specializing an interpreter with respect to a program gives a compilerSpecializing an interpreter with respect to a program gives a compiler

•• Can we specialize at runtime to gain benefit with minimal overhead? Can we specialize at runtime to gain benefit with minimal overhead?
Statically inserted selection codeStatically inserted selection code vs vs parameterized codeparameterized code vs vs runtime runtime
generationgeneration

Different techniquesDifferent techniques

Static code selection Parameterized Code generationStatic code selection Parameterized Code generation

DyCDyC

•• One of the best known dynamic program specializations techniques based One of the best known dynamic program specializations techniques based
on dynamic code generationon dynamic code generationon dynamic code generationon dynamic code generation

•• The user annotates the program defining where there may be opportunities The user annotates the program defining where there may be opportunities
f i i li i M k i bl d l i hf i i li i M k i bl d l i hfor runtime specialization. Marks variables and memory locations that are for runtime specialization. Marks variables and memory locations that are
static within a particular scopestatic within a particular scope

•• The system generates code that checks the annotated values at runtime The system generates code that checks the annotated values at runtime
and regenerates code on the flyand regenerates code on the fly

•• By using annotation, the system avoids overBy using annotation, the system avoids over--checking and hence runtime checking and hence runtime
overhead. However, this is at the cost of additional user overheadoverhead. However, this is at the cost of additional user overhead

DyCDyC

Binding analysis Binding analysis
examines all uses of examines all uses of
static variables withinstatic variables withinstatic variables within static variables within
scopescope

Dynamic compilerDynamic compilerDynamic compiler Dynamic compiler
exploits invariance and exploits invariance and
specializes the code specializes the code
when invokedwhen invokedwhen invokedwhen invoked

DyC resultsDyC results

•• Asymptotic speedups on a range of programs varies from 1.05 to 4.6Asymptotic speedups on a range of programs varies from 1.05 to 4.6

•• Strongly depends on percentage of time spent in the dynamically compiled Strongly depends on percentage of time spent in the dynamically compiled
region. Varies from 9.9 to 100%region. Varies from 9.9 to 100%gg

•• Low overhead from 13 cycles to 823 cycles per instruction generatedLow overhead from 13 cycles to 823 cycles per instruction generated

•• However relies on user intervention which However relies on user intervention which may not be realisticmay not be realistic in large in large
applicationsapplications

•• Relies on user Relies on user correctly annotatingcorrectly annotating the codethe code

Calpa for DyCCalpa for DyC

•• CalpaCalpa is a system aimed at automatically identifying opportunities for is a system aimed at automatically identifying opportunities for
specialization without user intervention.specialization without user intervention.

•• It analyses the program for potential opportunities and determines the It analyses the program for potential opportunities and determines the y p g p ppy p g p pp
possible cost possible cost vsvs the potential benefit.the potential benefit.

•• For example if a variable is multiplied by another variable which is knownFor example if a variable is multiplied by another variable which is known•• For example, if a variable is multiplied by another variable which is known For example, if a variable is multiplied by another variable which is known
to be constant in a particular scope and if is equal to 0 or 1 then a cheaper to be constant in a particular scope and if is equal to 0 or 1 then a cheaper
code can be generated.code can be generated.

•• If this variable is inside a deep loop then a quick test for 0 or 1 outside the If this variable is inside a deep loop then a quick test for 0 or 1 outside the
loop will be profitable.loop will be profitable.

Calpa for DyCCalpa for DyC

C programC program

•• Calpa is a frontCalpa is a front--end end
to DyCto DyC

Calpa Calpa
instrumentationinstrumentation

Calpa Calpa
annotationannotation

•• It uses It uses
instrumentation to instrumentation to
guide annotationguide annotation

instrumented instrumented
C programC program

annotated annotated
C programC program

value value
profileprofile

sample sample
inputinput

guide annotation guide annotation
insertioninsertion DyC DyC

compilercompiler

compiled compiled
C programC program
dynamic dynamic
compilercompiler

Calpa for DyCCalpa for DyC

•• Instruments code and sees how often variables change value Given thisInstruments code and sees how often variables change value Given this•• Instruments code and sees how often variables change value. Given this Instruments code and sees how often variables change value. Given this
data, data, CalpaCalpa determined the cost and benefit for a region of code.determined the cost and benefit for a region of code.

N b f diff i f i d h l k M iN b f diff i f i d h l k M i•• Number of different variants, cost of generating code, cache lookup. Main Number of different variants, cost of generating code, cache lookup. Main
benefit determined by estimating new critical path.benefit determined by estimating new critical path.

•• Explores all specialization up to a threshold. Widely different overheads 2 Explores all specialization up to a threshold. Widely different overheads 2
seconds to 8 hours. In two cases improves seconds to 8 hours. In two cases improves -- from 6.6% to 22.6%.from 6.6% to 22.6%.

•• CalpaCalpa and and DyCDyC utilize selective dynamic code generation. Now look at fully utilize selective dynamic code generation. Now look at fully
dynamic schemes.dynamic schemes.

Dynamic binary translationDynamic binary translation

•• The key idea is to take one ISA binary and translate it into another ISA The key idea is to take one ISA binary and translate it into another ISA
bi t tibi t tibinary at runtime.binary at runtime.

•• In fact this happens inside Intel processors where x86 is unpacked and In fact this happens inside Intel processors where x86 is unpacked and
translated into an internal RISC translated into an internal RISC opcodeopcode which is then scheduled. The which is then scheduled. The
TransMetaTransMeta Crusoe processor does the same. Same with IBM legacy ISAs.Crusoe processor does the same. Same with IBM legacy ISAs.

•• Why don't we do this statically? Many reasons!Why don't we do this statically? Many reasons!

The source ISA is legacy but the processor internal ISA changes It isThe source ISA is legacy but the processor internal ISA changes It is•• The source ISA is legacy but the processor internal ISA changes. It is The source ISA is legacy but the processor internal ISA changes. It is
impossible to determine statically what is the program. It is not legal to store impossible to determine statically what is the program. It is not legal to store
a translation. It can be applied to a local ISA for long term optimizations a translation. It can be applied to a local ISA for long term optimizations
without access to source codeswithout access to source codeswithout access to source codes.without access to source codes.

DAISYDAISY

•• One of the best known schemes came out of IBM headed by One of the best known schemes came out of IBM headed by KemalKemal
EbciogluEbciogluEbciogluEbcioglu..

•• Aimed at translating PowerPC binaries to the IBM VLIW machine.Aimed at translating PowerPC binaries to the IBM VLIW machine.

•• Idea was to have a simple powerful inIdea was to have a simple powerful in--order machine with a software layer order machine with a software layer
handling complexities of PowerPC ISA.handling complexities of PowerPC ISA.g pg p

•• Dynamic translation opens up opportunities for dynamic optimization.Dynamic translation opens up opportunities for dynamic optimization.

•• Concerned for industrial strength usage. Exceptions, selfConcerned for industrial strength usage. Exceptions, self--modifying code modifying code
etc…etc…

DAISYDAISY

•• At runtime program path and data known But need a low overheadAt runtime program path and data known But need a low overhead•• At runtime, program path and data known. But need a low overhead At runtime, program path and data known. But need a low overhead
scheme to make worthwhile.scheme to make worthwhile.

•• Specialization happens naturally as we know runtime value of variables.Specialization happens naturally as we know runtime value of variables.

•• Can bias code generation to check for profitable cases.Can bias code generation to check for profitable cases.g pg p

•• DAISY uses a code cache of recently translated code segment.DAISY uses a code cache of recently translated code segment.

•• Automatic superblock formation and scheduling.Automatic superblock formation and scheduling.

DAISY structureDAISY structure

•• Power PC code runs without modification.Power PC code runs without modification.

•• DAISY specific additions separated by dotted line.DAISY specific additions separated by dotted line.

•• Initially interpret PowerPC instructions and then compile after hitting Initially interpret PowerPC instructions and then compile after hitting
threshold.threshold.

Th h d l d i t ti i h (2Th h d l d i t ti i h (2 4k) U t k b h4k) U t k b h••Then schedule and save instruction in cache (2Then schedule and save instruction in cache (2--4k). Untaken branches 4k). Untaken branches
are translated as (unused) calls to the binary translator.are translated as (unused) calls to the binary translator.

DAISY exampleDAISY example

•• Here the group is expanded Here the group is expanded
to contain two conditionalsto contain two conditionalsto contain two conditionalsto contain two conditionals

•• Path A is encountered and Path A is encountered and
translatedtranslatedtranslatedtranslated

DAISY exampleDAISY example

•• When Path B is encountered When Path B is encountered
for the first timefor the first timefor the first timefor the first time

•• Translator is calledTranslator is called

DAISY exampleDAISY example

•• Code in cache is nowCode in cache is nowCode in cache is now Code in cache is now
updatedupdated

•• Paths A and B require no Paths A and B require no qq
further translationfurther translation

•• One untranslated path One untranslated path
remainingremaining

•• Only translate and store code Only translate and store code
if d dif d dif neededif needed

DYNAMODYNAMO

•• Similar to DAISY though focuses on binary to binary optimizations on the Similar to DAISY though focuses on binary to binary optimizations on the
same ISA. One of the claims is that it allows compilation with same ISA. One of the claims is that it allows compilation with --01 but 01 but pp
overtime provides overtime provides --03 performance.03 performance.

•• Catches dynamic cross module optimization opportunities missed by theCatches dynamic cross module optimization opportunities missed by the•• Catches dynamic cross module optimization opportunities missed by the Catches dynamic cross module optimization opportunities missed by the
static compiler. Code layout optimization allowing improved scheduling due static compiler. Code layout optimization allowing improved scheduling due
to bigger segments. Branch alignment and partial procedural to bigger segments. Branch alignment and partial procedural inlininginlining form form
part of the optimizationspart of the optimizationspart of the optimizationspart of the optimizations

•• Aimed as a way to improve performance from a shipped binary over timeAimed as a way to improve performance from a shipped binary over time

•• Unlike DAISY, have to use existing hardware Unlike DAISY, have to use existing hardware -- no additional fragment no additional fragment
cache availablecache available

DYNAMODYNAMO

•• Initially interprets code. This is very fast as the code is native. When a Initially interprets code. This is very fast as the code is native. When a
branch is encountered check if already translatedbranch is encountered check if already translatedbranch is encountered check if already translatedbranch is encountered check if already translated

•• If it has been translated jump and context switch to the fragment cache If it has been translated jump and context switch to the fragment cache
d d t Oth i if h t t l t d t i hd d t Oth i if h t t l t d t i hcode and execute. Otherwise if hot, translate and put in cachecode and execute. Otherwise if hot, translate and put in cache

•• Over time the working set forms in the cache and Dynamo overhead Over time the working set forms in the cache and Dynamo overhead
reduces reduces -- less than 1.5less than 1.5

•• Cheap profiling predictabilityCheap profiling predictabilityCheap profiling, predictability Cheap profiling, predictability

•• Linear code structure in cache makes optimization cheap. Standard Linear code structure in cache makes optimization cheap. Standard
redundancy elimination appliedredundancy elimination appliedredundancy elimination appliedredundancy elimination applied

Just in Time CompilationJust in Time Compilation

•• Key idea: lazy compilation. Defer compiling a section of high level code Key idea: lazy compilation. Defer compiling a section of high level code
until it is encountered during program execution. For OO programs it has until it is encountered during program execution. For OO programs it has
been shown that this greatly reduces the amount of code to compilebeen shown that this greatly reduces the amount of code to compilebeen shown that this greatly reduces the amount of code to compile. been shown that this greatly reduces the amount of code to compile.
Krintz'00 shows 14 to 26% reduction in total time.Krintz'00 shows 14 to 26% reduction in total time.

G t k l d f ti t t ll i ti i ti t b f dG t k l d f ti t t ll i ti i ti t b f d•• Greater knowledge of runtime context allowing optimization to be focused Greater knowledge of runtime context allowing optimization to be focused
on important parts of a program.on important parts of a program.

•• However is Just in time really Just too late? Why wait until execution time However is Just in time really Just too late? Why wait until execution time
to compile when the code may be lying around on disk for months to compile when the code may be lying around on disk for months
beforehand?beforehand?

•• Main reason Main reason -- dynamic linking of code especially in Java. This restricts the dynamic linking of code especially in Java. This restricts the
optimizations available.optimizations available.pp

JikesJikes

•• Most Java compilers initially interpret, then compile and finally optimize Most Java compilers initially interpret, then compile and finally optimize
based on frequency of usebased on frequency of useq yq y

•• Normally done on a per method basis Normally done on a per method basis

•• Jikes instead directly compiles code when encountered to native machine Jikes instead directly compiles code when encountered to native machine
code.code.

•• Well known robust research compiler freely available.Well known robust research compiler freely available.

•• Much work centered around what level of optimization to apply and when Much work centered around what level of optimization to apply and when
to apply it.to apply it.

Jikes structureJikes structure

Jikes exampleJikes example

•• Simple example showing translation of byte code into native codeSimple example showing translation of byte code into native codep p g yp p g y

•• Simple optimizations to remove redundant temporaries have a significant Simple optimizations to remove redundant temporaries have a significant
impact on later virtual to register mapping phasesimpact on later virtual to register mapping phases

•• First version corresponds to baseline compiler, second to most basic First version corresponds to baseline compiler, second to most basic
optimizing compilationoptimizing compilation

Method life cycleMethod life cycle

Jikes optimizationsJikes optimizations

•• Jikes makes use of multiple optimization levels and uses these to carefully Jikes makes use of multiple optimization levels and uses these to carefully
trade cost trade cost vsvs gain.gain.

•• Baseline translates directly into native code simulating operand stack. No Baseline translates directly into native code simulating operand stack. No
IR, no register allocation. Slightly faster code than interpretation.IR, no register allocation. Slightly faster code than interpretation.

O ti i i il T l t i t IR ith li i t ll ti 3O ti i i il T l t i t IR ith li i t ll ti 3•• Optimizing compiler. Translate into an IR with linear register allocation. 3 Optimizing compiler. Translate into an IR with linear register allocation. 3
further optimization levels:further optimization levels:

•• Level 0: Effective and cheap optimizations Simple scalarLevel 0: Effective and cheap optimizations Simple scalar•• Level 0: Effective and cheap optimizations. Simple scalar Level 0: Effective and cheap optimizations. Simple scalar
optimizations and optimizations and inlininginlining trivial methods. All tend to reduce size of IRtrivial methods. All tend to reduce size of IR

•• Level 1: as 0 but with more aggressive speculativeLevel 1: as 0 but with more aggressive speculative inlininginlining MultipleMultipleLevel 1: as 0 but with more aggressive speculative Level 1: as 0 but with more aggressive speculative inlininginlining. Multiple . Multiple
passes of level 0 opts and some code reorganizing algorithms.passes of level 0 opts and some code reorganizing algorithms.

•• Level 2: employs simple loop optimizations. Normalization and Level 2: employs simple loop optimizations. Normalization and p y p p pp y p p p
unrolling. SSA based flowunrolling. SSA based flow--sensitive algorithms also employed.sensitive algorithms also employed.

Jikes optimizationsJikes optimizations

CompilerCompiler Bytecodes/millisecondBytecodes/millisecond SpeedSpeed

BaselineBaseline 377.8377.8 1.01.0
Level 0Level 0
Level 1Level 1
Level 2Level 2

9.299.29
5.695.69
1.811.81

4.264.26
6.076.07
6.616.61

•• Only worthwhile compiling at a higher level if benefit outweighs costOnly worthwhile compiling at a higher level if benefit outweighs cost•• Only worthwhile compiling at a higher level if benefit outweighs cost.Only worthwhile compiling at a higher level if benefit outweighs cost.

•• Adaptive algorithm compares cost of code under current level Adaptive algorithm compares cost of code under current level vsvs an an
increased levelincreased levelincreased level.increased level.

•• Crucially depends on anticipated future profile which is unavailable. Crucially depends on anticipated future profile which is unavailable.
Solution Solution -- just guess just guess -- currently assume twice as long as now!currently assume twice as long as now!j gj g y gy g

Jikes optimizationsJikes optimizations

•• Krintz evaluates the adaptive approachKrintz evaluates the adaptive approach

CompilerCompiler Total timeTotal time Compile timeCompile time

BaselineBaseline
OptOpt

29.2429.24
9.989.98

0.440.44
0.460.46

AdaptAdapt 8.978.97 0.480.48

•• Figures are time in seconds for SPECjvm98Figures are time in seconds for SPECjvm98

•• Total time is better for Adapt even though it has increased compileTotal time is better for Adapt even though it has increased compile--
timetimetime.time.

•• Conclusion:Conclusion: knowing hotspots really helps optimizationknowing hotspots really helps optimization

JIT conclusionsJIT conclusions

•• JITs suffer from having the necessary info too late. Need to anticipate JITs suffer from having the necessary info too late. Need to anticipate
optimization opportunities.optimization opportunities.

•• Many different optimization scenarios available. Adaptive option increases Many different optimization scenarios available. Adaptive option increases
level of optimization when it recompiles increasingly used hotspots.level of optimization when it recompiles increasingly used hotspots.

•• As compileAs compile--time is part of runtime, important to find a tradetime is part of runtime, important to find a trade--off between off between
two.two.

ADAPTADAPT

•• ADAPT is a mixed approach to optimization that combines static and ADAPT is a mixed approach to optimization that combines static and
iterative compilation in an oniterative compilation in an on--line manner.line manner.

•• Basically at runtime different options of a code section are run concurrently Basically at runtime different options of a code section are run concurrently
and the bestand the best--one selected. This is done in parallel on remote servers.one selected. This is done in parallel on remote servers.

•• Really trading space for time making an onReally trading space for time making an on--line technique viable as an online technique viable as an on--
line technique as long as sufficient space available.line technique as long as sufficient space available.

ProcsProcs::
•• Enables adaptive online iterative compilation.Enables adaptive online iterative compilation.

Cons:Cons:
•• Very complex recompilation framework.Very complex recompilation framework.

Only works for scientific programs with relatively static behaviorOnly works for scientific programs with relatively static behavior•• Only works for scientific programs with relatively static behavior.Only works for scientific programs with relatively static behavior.
•• Uses multiple machines for evaluation which is not always practical.Uses multiple machines for evaluation which is not always practical.

SummarySummary

•• All schemes allow specialization at runtime to program and data.All schemes allow specialization at runtime to program and data.

•• Staged schemes such as Staged schemes such as DyCDyC are more powerful as they only incur are more powerful as they only incur
runtime overhead for specialization regions.runtime overhead for specialization regions.runtime overhead for specialization regions.runtime overhead for specialization regions.

•• JIT and DBT delay everything to runtime leaving little optimization JIT and DBT delay everything to runtime leaving little optimization
opportunities.opportunities.

•• All except ADAPT have a hardwired heuristic of what the best strategy is.All except ADAPT have a hardwired heuristic of what the best strategy is.

•• Poor at adapting to new platforms.Poor at adapting to new platforms.

A f ADAPT l k d ifi i i i M i lA f ADAPT l k d ifi i i i M i l•• Apart from ADAPT, none looked at processor specific optimization. Mainly Apart from ADAPT, none looked at processor specific optimization. Mainly
looked at architecture independent optimizations or standard backend looked at architecture independent optimizations or standard backend
scheduling or register allocation.scheduling or register allocation.

•• Like PDC only used the data really for limited optimization goals rather Like PDC only used the data really for limited optimization goals rather
than overcoming than overcoming undecidabilityundecidability or processor behavior.or processor behavior.

•• None of the techniques would adapt their compilation approach in the lightNone of the techniques would adapt their compilation approach in the lightNone of the techniques would adapt their compilation approach in the light None of the techniques would adapt their compilation approach in the light
of experience.of experience.

Combine static and dynamic optimizations?

Static multiStatic multi versioning for different constraints (optimization cases) andversioning for different constraints (optimization cases) andStatic multiStatic multi--versioning for different constraints (optimization cases) and versioning for different constraints (optimization cases) and
runrun--time adaptation:time adaptation:

•• Grigori Fursin, Albert Cohen, Michael O'Boyle and Olivier Temam. A Practical Method For Grigori Fursin, Albert Cohen, Michael O'Boyle and Olivier Temam. A Practical Method For
Quickly Evaluating Program OptimizationsQuickly Evaluating Program Optimizations. . Proceedings of the 1st International Proceedings of the 1st International
Conference on High Performance Embedded Architectures & Compilers (Conference on High Performance Embedded Architectures & Compilers (HiPEACHiPEAC 2005)2005), ,
number 3793 in LNCS, pages 29number 3793 in LNCS, pages 29--46, Barcelona, Spain, November 2005 46, Barcelona, Spain, November 2005

Integration of the runIntegration of the run--time adaptation into mainline GCC:time adaptation into mainline GCC:

•• Grigori Fursin, Cupertino Miranda, Sebastian Pop, Albert Cohen and Olivier Temam. Grigori Fursin, Cupertino Miranda, Sebastian Pop, Albert Cohen and Olivier Temam.
Practical runPractical run--time adaptation with procedure cloning to enable continuous collectivetime adaptation with procedure cloning to enable continuous collectivePractical runPractical run time adaptation with procedure cloning to enable continuous collective time adaptation with procedure cloning to enable continuous collective
compilation. compilation. GCC Developers’ SummitGCC Developers’ Summit. Ottawa, Canada, July 2007. Ottawa, Canada, July 2007

Adaptation for heterogeneous systems (CELL and GPU systems)Adaptation for heterogeneous systems (CELL and GPU systems)

•• Victor Jimenez, Isaac Gelado, Lluis Vilanova, Marisa Gil, Grigori Fursin and Nacho
Navarro. Predictive runtime code scheduling for heterogeneous architectures. To
appear at the International Conference on High Performance Embedded Architectures &appear at the International Conference on High Performance Embedded Architectures &
Compilers (HiPEAC 2009), Paphos, Cyprus, January 2009. .

Collaboration with IBM, UPC, Collaboration with IBM, UPC, STMicroSTMicro

Run-time adaptation using procedure cloning

Any other ways to solve previous and the following problems?Any other ways to solve previous and the following problems?Any other ways to solve previous and the following problems?Any other ways to solve previous and the following problems?

•• Different program contextDifferent program context

•• Different runDifferent run--time behaviortime behavior

•• Different system loadDifferent system load

Diff t il blDiff t il bl•• Different available resourcesDifferent available resources

•• Different architectures & ISADifferent architectures & ISA

For each case we want to find and use best optimization settings!For each case we want to find and use best optimization settings!

Current methods

ApplicationApplication

Some existing solutions:Some existing solutions:

ApplicationApplication

CompilerCompiler

DatasetDataset11

BinaryBinary

OutputOutput11

Current methods

ApplicationApplication

Some existing solutions:Some existing solutions:

ApplicationApplication

CompilerCompiler

DatasetDataset11

BinaryBinary Dynamic Dynamic
optimizationsoptimizations

OutputOutput11

Current methods

ApplicationApplication

Some existing solutions:Some existing solutions:

ApplicationApplication

CompilerCompiler

DatasetDataset11

BinaryBinary Dynamic Dynamic
optimizationsoptimizations

OutputOutput11

Pros:Pros: runrun--time information, time information,

potentially more than one datasetpotentially more than one dataset

Current methods

ApplicationApplication

Some existing solutions:Some existing solutions:

ApplicationApplication

CompilerCompiler

DatasetDataset11

BinaryBinary Dynamic Dynamic
optimizationsoptimizations

OutputOutput11

Pros:Pros: runrun--time information, time information,

potentially more than one datasetpotentially more than one dataset

Cons:Cons: restrictions on optimization timerestrictions on optimization timeCons:Cons: restrictions on optimization time,restrictions on optimization time,

simple optimizationssimple optimizations

Current methods

ApplicationApplication

Some existing solutions:Some existing solutions:

ApplicationApplication

CompilerCompiler

DatasetDataset11

BinaryBinary
Iterative Iterative

optimizationsoptimizations

Dynamic Dynamic
optimizationsoptimizations

OutputOutput11
optimizationsoptimizations

Pros:Pros: runrun--time information, time information,

potentially more than one datasetpotentially more than one dataset

Cons:Cons: restrictions on optimization timerestrictions on optimization timeCons:Cons: restrictions on optimization time,restrictions on optimization time,

simple optimizationssimple optimizations

Current methods

ApplicationApplication

Some existing solutions:Some existing solutions:

ApplicationApplication

CompilerCompiler

DatasetDataset11

BinaryBinary
Iterative Iterative

optimizationsoptimizations

Dynamic Dynamic
optimizationsoptimizations

OutputOutput11
optimizationsoptimizations

Pros:Pros: powerful transformation powerful transformation

space explorationspace exploration

Pros:Pros: runrun--time information, time information,

potentially more than one datasetpotentially more than one dataset

Cons:Cons: restrictions on optimization timerestrictions on optimization timeCons:Cons: restrictions on optimization time,restrictions on optimization time,

simple optimizationssimple optimizations

Current methods

ApplicationApplication

Some existing solutions:Some existing solutions:

ApplicationApplication

CompilerCompiler

DatasetDataset11

BinaryBinary
Iterative Iterative

optimizationsoptimizations

Dynamic Dynamic
optimizationsoptimizations

OutputOutput11
optimizationsoptimizations

Pros:Pros: powerful transformation powerful transformation

space explorationspace exploration

Pros:Pros: runrun--time information, time information,

potentially more than one datasetpotentially more than one dataset

Cons:Cons: restrictions on optimization timerestrictions on optimization timeCons:Cons: slow, one datasetslow, one dataset Cons:Cons: restrictions on optimization time,restrictions on optimization time,

simple optimizationssimple optimizations

Current methods

ApplicationApplication

Can we combine both?Can we combine both?

ApplicationApplication

CompilerCompiler

DatasetDataset11

BinaryBinary
Iterative Iterative

optimizationsoptimizations

Dynamic Dynamic
optimizationsoptimizations

OutputOutput11
optimizationsoptimizations

Combination ofCombination of
powerful transformation space exploration,powerful transformation space exploration,

ti i f titi i f tirunrun--time information time information
selfself--adaptable codeadaptable code

Run-time program behavior

Idea to enable easy static and dynamic optimizations:Idea to enable easy static and dynamic optimizations:Idea to enable easy static and dynamic optimizations:Idea to enable easy static and dynamic optimizations:

•• Most time during execution is spent in procedures/functions or loopsMost time during execution is spent in procedures/functions or loopsMost time during execution is spent in procedures/functions or loopsMost time during execution is spent in procedures/functions or loops

•• Clone these sections and apply different transformations staticallyClone these sections and apply different transformations statically

•• At runAt run--time add runtime add run--time behavior analyzer routines and detect regular time behavior analyzer routines and detect regular y gy g
behaviorbehavior

•• Select appropriate code sections depending on runSelect appropriate code sections depending on run--time behavior of time behavior of
programs (code sections)programs (code sections)programs (code sections)programs (code sections)

•• Continuously recompile program with highContinuously recompile program with high--level transformationslevel transformations

Run-time program behavior

Repeatedly executed timeRepeatedly executed time--consuming parts of the consuming parts of the
code that allow powerful transformations:code that allow powerful transformations:pp

typically functions or loopstypically functions or loops

Run-time program behavior

Repeatedly executed timeRepeatedly executed time--consuming parts of the consuming parts of the
code that allow powerful transformations:code that allow powerful transformations:pp

typically functions or loopstypically functions or loops

IPC for subroutine resid of benchmark mgrid across calls

1

0.4

0.6

0.8

1

IP
C

0

0.2

0.4

1 11 21 31 41 7015 7025

function calls

Our approach: static multiversioning

ApplicationApplication

Select most time consuming code Select most time consuming code
sectionssections

Our approach: static multiversioning

ApplicationApplication

Create multiCreate multi--versions of time versions of time
consuming code sectionsconsuming code sections

Our approach: static multiversioning

ApplicationApplication

adapt_startadapt_start adapt_startadapt_start

Add phase detection/predictionAdd phase detection/prediction

adapt_stopadapt_stop adapt_stopadapt_stop

Our approach: static multiversioning

TransformationsTransformations

ApplicationApplication

adapt_startadapt_start adapt_startadapt_start

Apply various transformations over Apply various transformations over

adapt_stopadapt_stop adapt_stopadapt_stop

multimulti--versions of code sectionsversions of code sections

Our approach: static multiversioning

TransformationsTransformations

FineFine--grain internal compiler (grain internal compiler (PathScalePathScale, Open64, ORC, GCC) transformations , Open64, ORC, GCC) transformations
using Interactive Compilation Interface (ICI)using Interactive Compilation Interface (ICI)

ApplicationApplication

adapt_startadapt_start adapt_startadapt_start

Apply various transformations over Apply various transformations over

adapt_stopadapt_stop adapt_stopadapt_stop

multimulti--versions of code sectionsversions of code sections

Our approach: static multiversioning

TransformationsTransformations

ApplicationApplication

adapt_startadapt_start adapt_startadapt_start

Apply various transformations over Apply various transformations over

adapt_stopadapt_stop adapt_stopadapt_stop

multimulti--versions of code sectionsversions of code sections

Our approach: static multiversioning

TransformationsTransformations

Manual transformationsManual transformations

ApplicationApplication

adapt_startadapt_start adapt_startadapt_start

Apply various transformations over Apply various transformations over

adapt_stopadapt_stop adapt_stopadapt_stop

multimulti--versions of code sectionsversions of code sections

Our approach: static multiversioning

Final instrumented programFinal instrumented program

ApplicationApplication

p gp g

adapt_startadapt_start adapt_startadapt_start

adapt_stopadapt_stop adapt_stopadapt_stop

Our approach: static multiversioning

void mult(int NM)void mult(int NM)
{{
int i, j, k;int i, j, k;
int fselect;int fselect;
co_adapt_select(&fselect);co_adapt_select(&fselect);
if (fselect==1) mult_clone(NM);if (fselect==1) mult_clone(NM);

co_adaptco_adapt_start_start(1,0);(1,0);
for (i = 0; i < NM; i++)for (i = 0; i < NM; i++)
for (j 0; j < NM; j++)for (j 0; j < NM; j++)for (j = 0; j < NM; j++)for (j = 0; j < NM; j++)
for (k = 0; k < NM; k++)for (k = 0; k < NM; k++)
c_matrix[i+NM*j]=c_matrix[i+NM*j]+a_matrix[i+NM*k]*b_matrix[k+NM*j];c_matrix[i+NM*j]=c_matrix[i+NM*j]+a_matrix[i+NM*k]*b_matrix[k+NM*j];

co_adaptco_adapt_stop_stop(1,(1,00););
}}

void multvoid mult_clone_clone(int NM)(int NM)
{{
int i, j, k;int i, j, k;
co_adaptco_adapt_start_start(1,(1,11););
for (i = 0; i < NM; i++)for (i = 0; i < NM; i++)
for (j = 0; j < NM; j++)for (j = 0; j < NM; j++)
for (k = 0; k < NM; k++)for (k = 0; k < NM; k++)
c_matrix[i+NM*j]=c_matrix[i+NM*j]+a_matrix[i+NM*k]*b_matrix[k+NM*j];c_matrix[i+NM*j]=c_matrix[i+NM*j]+a_matrix[i+NM*k]*b_matrix[k+NM*j];

co_adaptco_adapt_stop_stop(1,(1,11););
}}

Run-time Adaptation

Depends on program behaviour

Programs with regular behaviorg g

Programs with irregular behavior

Adaptation for regular behaviour
IPC for s bro tine resid of benchmark mgrid across callsIPC for s bro tine resid of benchmark mgrid across calls

1

IPC for subroutine resid of benchmark mgrid across callsIPC for subroutine resid of benchmark mgrid across calls

0.4

0.6

0.8

IP
C

0

0.2

1 11 21 31 41 51 61 71 81 91 101 7013 7023

function callsfunction calls

•• Detect regular (stable) patterns of behaviour (phases)Detect regular (stable) patterns of behaviour (phases) we define stability aswe define stability as•• Detect regular (stable) patterns of behaviour (phases) Detect regular (stable) patterns of behaviour (phases) -- we define stability as we define stability as
3 consecutive or periodic executions with the same IPC3 consecutive or periodic executions with the same IPC

•• Predict further occurrences with the same IPC Predict further occurrences with the same IPC
(using period and length of regions with stable performance)(using period and length of regions with stable performance)(using period and length of regions with stable performance)(using period and length of regions with stable performance)

Adaptation for regular behaviour
IPC for s bro tine resid of benchmark mgrid across callsIPC for s bro tine resid of benchmark mgrid across calls

1

IPC for subroutine resid of benchmark mgrid across callsIPC for subroutine resid of benchmark mgrid across calls

0.4

0.6

0.8

IP
C

0

0.2

1 11 21 31 41 51 61 71 81 91 101 7013 7023

function callsperiod=7 length=2period=7 length=2 function callsperiod=7, length=2period=7, length=2

•• Detect regular (stable) patterns of behaviour (phases)Detect regular (stable) patterns of behaviour (phases) we define stability aswe define stability as•• Detect regular (stable) patterns of behaviour (phases) Detect regular (stable) patterns of behaviour (phases) -- we define stability as we define stability as
3 consecutive or periodic executions with the same IPC3 consecutive or periodic executions with the same IPC

•• Predict further occurrences with the same IPC Predict further occurrences with the same IPC
(using period and length of regions with stable performance)(using period and length of regions with stable performance)(using period and length of regions with stable performance)(using period and length of regions with stable performance)

Adaptation for regular behaviour
Execution times for subroutine resid of benchmark mgrid across callsExecution times for subroutine resid of benchmark mgrid across callsgg

0.1

0.12

0.04

0.06

0.08

tim
e

(s
ec

)

0

0.02

1 42 70 98 213 2025

function calls

startup (phase detection) or end of the optimization process (best option found)
evaluation of 1 option

1)1) Consider new code version evaluated after 2 consecutive executions of Consider new code version evaluated after 2 consecutive executions of
the code section with the same performancethe code section with the same performance

2) Ignore one next execution to avoid transitional effects2) Ignore one next execution to avoid transitional effects

3) Check baseline performance (to verify stability prediction)3) Check baseline performance (to verify stability prediction)

Adaptation for regular behaviour
Execution times for subroutine resid of benchmark mgrid across callsg

0.1

0.12

0.04

0.06

0.08

tim
e

(s
ec

)

0

0.02

1 42 70 98 213 2025

function calls1 2 3 1 2 3

startup (phase detection) or end of the optimization process (best option found)
evaluation of 1 option

1)1) Consider new code version evaluated after 2 consecutive executions of Consider new code version evaluated after 2 consecutive executions of
the code section with the same performancethe code section with the same performance

2) Ignore one next execution to avoid transitional effects2) Ignore one next execution to avoid transitional effects

3) Check baseline performance (to verify stability prediction)3) Check baseline performance (to verify stability prediction)

Adaptation for regular behaviour

Adaptation for irregular behaviour
E ec tion time for librar s bro tine matm l (ith 2 different ersions)E ec tion time for librar s bro tine matm l (ith 2 different ersions)

300
350

m
s

Execution time for library subroutine matmul (with 2 different versions)Execution time for library subroutine matmul (with 2 different versions)

100
150
200
250
300

ut
io

n
tim

e,
 m

0
50

1 11 21 31 41

function calls

Ex
ec

u

function calls

Adaptation for irregular behaviour
E ec tion time for librar s bro tine matm l (ith 2 different ersions)E ec tion time for librar s bro tine matm l (ith 2 different ersions)

300
350

m
s

Execution time for library subroutine matmul (with 2 different versions)Execution time for library subroutine matmul (with 2 different versions)

100
150
200
250
300

ut
io

n
tim

e,
 m

0
50

1 11 100 110

function calls

Ex
ec

u

function calls

•• Select versions randomly during a time slotSelect versions randomly during a time slot

•• At each step calculate execution time per function call and varianceAt each step calculate execution time per function call and variance

•• When variance for all versions is less than some threshold select the best oneWhen variance for all versions is less than some threshold select the best one

Adaptation for irregular behaviour
E ec tion time for librar s bro tine matm l (ith 2 different ersions)E ec tion time for librar s bro tine matm l (ith 2 different ersions)

300
350

m
s

Execution time for library subroutine matmul (with 2 different versions)Execution time for library subroutine matmul (with 2 different versions)

100
150
200
250
300

ut
io

n
tim

e,
 m

0
50

1 11 100 110

function calls

Ex
ec

u

•• Select versions randomly during a time slotSelect versions randomly during a time slot

function calls

•• At each step calculate execution time per function call and varianceAt each step calculate execution time per function call and variance

•• When variance for all versions is less than some threshold select the best oneWhen variance for all versions is less than some threshold select the best one

Periodically select nonPeriodically select non best version to check if behavior changedbest version to check if behavior changed•• Periodically select nonPeriodically select non--best version to check if behavior changedbest version to check if behavior changed

Adaptation for irregular behaviour
E ec tion time for librar s bro tine matm l (ith 2 different ersions)E ec tion time for librar s bro tine matm l (ith 2 different ersions)

300
350

m
s

Execution time for library subroutine matmul (with 2 different versions)Execution time for library subroutine matmul (with 2 different versions)

100
150
200
250
300

ut
io

n
tim

e,
 m

0
50

1 11 100 110 120 130 140 150 160

function calls

Ex
ec

u

•• Select versions randomly during a time slot (adaptation slot)Select versions randomly during a time slot (adaptation slot)

function calls

•• At each step calculate execution time per function call and varianceAt each step calculate execution time per function call and variance

•• When variance for all versions is less than some threshold select the best oneWhen variance for all versions is less than some threshold select the best one

Periodically select nonPeriodically select non best version to check if behavior changedbest version to check if behavior changed•• Periodically select nonPeriodically select non--best version to check if behavior changedbest version to check if behavior changed

•• If the variance increases, adapt againIf the variance increases, adapt again

Determine the effect of optimizations

Use gprof to collect time spent in functions and clonesUse gprof to collect time spent in functions and clones

time spent in function time spent in function avt avt originaloriginalpp originaloriginal
avt (average time) = avt (average time) = -- , , s (speedup) = s (speedup) = ------------------------------

number of callsnumber of calls avtavtclonedcloned

Continuous Optimization FrameworkContinuous Optimization Framework
sequence of evaluations: speedups ssequence of evaluations: speedups s11 ss22 sssequence of evaluations: speedups ssequence of evaluations: speedups s11, s, s22, … s, … snn

e (expected speedup) = e (expected speedup) =

v (variance) = v (variance) =

Continuously monitor the variance to detect convergenceContinuously monitor the variance to detect convergenceContinuously monitor the variance to detect convergence Continuously monitor the variance to detect convergence
across executionsacross executions

Removing adaptation overhead

Calls to adaptation routines are not Calls to adaptation routines are not
direct but through array of functions:direct but through array of functions:

static void (*call1[..])();static void (*call1[..])();
static void (*call2[..])();static void (*call2[..])();ApplicationApplication

adapt_startadapt_start adapt_startadapt_start

Select best code sectionsSelect best code sections

adapt_stopadapt_stop adapt_stopadapt_stop

Select best code sectionsSelect best code sections

Removing adaptation overhead

Calls to adaptation routines are not Calls to adaptation routines are not
direct but through array of functions:direct but through array of functions:

static void (*call1[..])();static void (*call1[..])();
static void (*call2[..])();static void (*call2[..])();ApplicationApplication

If highIf high--overhead is detected overhead is detected ––
substitute call with substitute call with dummydummy functionfunction

adapt_startadapt_start adapt_startadapt_start

Select best code sectionsSelect best code sections

adapt_stopadapt_stop adapt_stopadapt_stop

Select best code sectionsSelect best code sections

Removing adaptation overhead

Calls to adaptation routines are not Calls to adaptation routines are not
direct but through array of functions:direct but through array of functions:

static void (*call1[..])();static void (*call1[..])();
static void (*call2[..])();static void (*call2[..])();ApplicationApplication

If highIf high--overhead is detected overhead is detected ––
substitute call with substitute call with dummydummy functionfunction

T b bl dT b bl d

adapt_startadapt_start adapt_startadapt_start

To be able to adapt to new program To be able to adapt to new program
behavior later at runbehavior later at run--time, time,
periodically periodically restorerestore all calls to all calls to
adaptation routinesadaptation routinesadaptation routinesadaptation routines

Select best code sectionsSelect best code sections

adapt_stopadapt_stop adapt_stopadapt_stop

Select best code sectionsSelect best code sections

Continuous optimization and adaptation

One or multiple executions One or multiple executions
with the same or different datasets:with the same or different datasets:

ApplicationApplication
Preload Preload

Behaviour Behaviour
TableTable

SaveSave
Behaviour Behaviour

adapt_startadapt_start adapt_startadapt_startif more than if more than
one runone run

TableTable

Select best code sectionsSelect best code sections

adapt_stopadapt_stop adapt_stopadapt_stop

Continuous optimization and adaptation
Execution times for subroutine resid of benchmark mgrid across calls

0 08
0.1

0.12

c)

0.02
0.04
0.06
0.08

tim
e

(s
ec

0
1 201 401 601 801 1001 1201 1401 1601 1801 2001

function calls

1st r n1st run

Continuous optimization and adaptation
Execution times for subroutine resid of benchmark mgrid across calls

0 08
0.1

0.12

c)

0.02
0.04
0.06
0.08

tim
e

(s
ec

0
1 201 401 601 801 1001 1201 1401 1601 1801 2001

function calls

2st ti i ti2st run, same optimizations

Continuous optimization and adaptation

DEMO 2DEMO 2

Benchmark Benchmark susansusan edges from MiBenchedges from MiBench

Clone function Clone function susan_edgessusan_edges and put to 2 separate filesand put to 2 separate files
Substitute Substitute susan_edgessusan_edges with the following:with the following:

susan_edgessusan_edges((in,r,mid,bp,max_no,x_size,y_sizein,r,mid,bp,max_no,x_size,y_size))
ucharuchar *in, **in, *bpbp, *mid;, *mid;
i ti t ** ii iiintint *r, *r, max_nomax_no, , x_sizex_size, , y_sizey_size;;

{{
float z;float z;
intint do_symmetrydo_symmetry, , ii, j, m, n, a, b, x, y, w;, j, m, n, a, b, x, y, w;
ucharuchar c,*p,*cp;c,*p,*cp;

if ((rand() % 2) == 0) susan_edges0(if ((rand() % 2) == 0) susan_edges0(in,r,mid,bp,max_no,x_size,y_sizein,r,mid,bp,max_no,x_size,y_size););
else susan_edges1(else susan_edges1(in,r,mid,bp,max_no,x_size,y_sizein,r,mid,bp,max_no,x_size,y_size););

}}

compile: GCC compile: GCC ––O1 *.c GCC O1 *.c GCC ––O3 *.c O3 *.c gccgcc ––c c ––O1 O1 susan.csusan.c, susan0.c & , susan0.c & gccgcc ––c c ––O3 susan1.c & O3 susan1.c & gccgcc ––O1 *.oO1 *.opp gg gg gg
runrun
exec.timeexec.time: 3.3 s. 4.0 s.: 3.3 s. 4.0 s.
profile: susan_edges0: 1.18 s. (52 cprofile: susan_edges0: 1.18 s. (52 callalls)s)

susan_edges1: 0.79 s. (48 csusan_edges1: 0.79 s. (48 calls)alls)

Using this simple cloning technique can understand the influence of transformations on part of the code Using this simple cloning technique can understand the influence of transformations on part of the code
during one execution. Instead of random function can use some adaptation routines!during one execution. Instead of random function can use some adaptation routines!

Conclusions

•• No sophisticated dynamic optimization/recompilation frameworks;No sophisticated dynamic optimization/recompilation frameworks;

•• Allows complex sequences of compiler or manual transformations at runAllows complex sequences of compiler or manual transformations at run--time; time;

Statically enables runStatically enables run time optimizations for different constraintstime optimizations for different constraints•• Statically enables runStatically enables run--time optimizations for different constraintstime optimizations for different constraints

•• Uses simple lowUses simple low--overhead adaptation technique (for codes with regular and overhead adaptation technique (for codes with regular and
irregular behaviour);irregular behaviour);

•• Combines manual and compiler transformations due to the sourceCombines manual and compiler transformations due to the source--toto--source source
versioning approachversioning approach

•• Enables selfEnables self--tuning applications adaptable to program and system behaviourtuning applications adaptable to program and system behaviourEnables selfEnables self tuning applications adaptable to program and system behaviour, tuning applications adaptable to program and system behaviour,
and portable across different architecturesand portable across different architectures

•• Enables continuous optimizations across runs with different datasets, Enables continuous optimizations across runs with different datasets,
transparently to a usertransparently to a usertransparently to a usertransparently to a user

•• Can be used for parallel heterogeneous computing (compilation with different Can be used for parallel heterogeneous computing (compilation with different
ISA for CELL or GPUISA for CELL or GPU--like architectures or various accelerators)like architectures or various accelerators)

•• Reliable, secure and easy to debugReliable, secure and easy to debug

Conclusions

However:However:

•• Still no optimization knowledge reuseStill no optimization knowledge reuseStill no optimization knowledge reuseStill no optimization knowledge reuse

•• Better placement of instrumentation for adaptation is neededBetter placement of instrumentation for adaptation is needed

•• Better dataset specialization is needed (for library adaptation)Better dataset specialization is needed (for library adaptation)

•• Clustering of different behaviour is needed (different optimization scenarios)Clustering of different behaviour is needed (different optimization scenarios)

Machine learning based optimizations

OverviewOverview

•• Machine learning Machine learning -- what is it and why is it useful?what is it and why is it useful?

•• Predictive modelingPredictive modelinggg

•• Loop unrolling and inliningLoop unrolling and inlining

•• Attempt to generalize program optimizationsAttempt to generalize program optimizations

•• Limits and other uses of machine learningLimits and other uses of machine learning

•• Future work and summaryFuture work and summary

Failings of previous approaches

•• Before we have looked at techniques to overcome data dependent Before we have looked at techniques to overcome data dependent
behavior and adaption to new processorsbehavior and adaption to new processors

•• However, we have not looked fundamentally at a However, we have not looked fundamentally at a process of designing a process of designing a
compilercompilercompilercompiler

•• All rely on a “clever” algorithm inserted into the compiler that determines All rely on a “clever” algorithm inserted into the compiler that determines
which optimizations to apply at compilewhich optimizations to apply at compile--time or runtimetime or runtimewhich optimizations to apply at compilewhich optimizations to apply at compile--time or runtime time or runtime

•• Iterative compilation goes beyond this with no a priori knowledge but is not Iterative compilation goes beyond this with no a priori knowledge but is not
suitable for general compilations and does not adapt to changing datasuitable for general compilations and does not adapt to changing datasuitable for general compilations and does not adapt to changing datasuitable for general compilations and does not adapt to changing data

•• What we want is a smart compiler that What we want is a smart compiler that adapts its strategy adapts its strategy to changes in to changes in
program, data and processorprogram, data and processor

Machine learning as a solution

•• Well established area of AI, neural networks, genetic algorithms etc., but Well established area of AI, neural networks, genetic algorithms etc., but
what has AI got to do with compilation?what has AI got to do with compilation?

•• In a very simplistic sense machine learning can be considered as In a very simplistic sense machine learning can be considered as
sophisticated form of curve fittingsophisticated form of curve fitting

Machine learning

•• Inputs: characteristics of a program and a processorInputs: characteristics of a program and a processor

•• Outputs: the optimization function we are interested in such as Outputs: the optimization function we are interested in such as p pp p
combination of execution time, code size, power, etccombination of execution time, code size, power, etc

•• Theoretically predict future behavior and find the best optimizationTheoretically predict future behavior and find the best optimization

Global optimization and predictive modeling

•• For our purposes it is possible to consider machine learning as For our purposes it is possible to consider machine learning as global global
optimizationoptimization and and predictive modelingpredictive modeling

•• Global optimization Global optimization tries to find the best point in a space. This is achieved tries to find the best point in a space. This is achieved
b l i i l i h d h b d l db l i i l i h d h b d l dby selecting new points, evaluating them and then based on accumulated by selecting new points, evaluating them and then based on accumulated
information selecting a new point as a potential optimuminformation selecting a new point as a potential optimum

•• Hill walkingHill walking andand genetic algorithmsgenetic algorithms are obvious examples Very strong linkare obvious examples Very strong link•• Hill walking Hill walking and and genetic algorithms genetic algorithms are obvious examples. Very strong link are obvious examples. Very strong link
with iterative compilationwith iterative compilation

•• Predictive modelingPredictive modeling learns about the optimizations space to build a modellearns about the optimizations space to build a modelPredictive modeling Predictive modeling learns about the optimizations space to build a model. learns about the optimizations space to build a model.
Then uses this model to select the optimum point. Closely related to global Then uses this model to select the optimum point. Closely related to global
optimizationoptimization

Predictive modeling

•• Predictive modeling techniques all have the property that they try to learn Predictive modeling techniques all have the property that they try to learn
a model that describes the correlation between inputs and outputsa model that describes the correlation between inputs and outputsp pp p

•• This can be a classification or a function or Bayesian probability This can be a classification or a function or Bayesian probability
distributiondistribution

•• Distinct training and test data. Compiler writers don't make this distinction!Distinct training and test data. Compiler writers don't make this distinction!

Predictive modeling as a proxy

•• The model acts as a fast evaluator for program. Automates The model acts as a fast evaluator for program. Automates Soffa'sSoffa's
performance prediction framework and speeds up iterative compilation.performance prediction framework and speeds up iterative compilation.

•• Feature selection and accuracy are main problems!Feature selection and accuracy are main problems!

Training data

•• Crucial to machine learning is correct selection of Crucial to machine learning is correct selection of training datatraining data

•• The data has to be rich enough to cover the space of programs likely to be The data has to be rich enough to cover the space of programs likely to be
encounteredencountered

•• If we wish to learn over different processors so that the system can port If we wish to learn over different processors so that the system can port
then we also need sufficient coverage here toothen we also need sufficient coverage here too

•• In practice it is very difficult to formally state the space of possibly In practice it is very difficult to formally state the space of possibly
interesting programsinteresting programs

•• Ideas include typical kernels and compositions of them. Hierarchical Ideas include typical kernels and compositions of them. Hierarchical
benchmark suites could help herebenchmark suites could help here

Feature selection of programs

•• Crucial problem with machine learning is Crucial problem with machine learning is feature selectionfeature selection. Which features . Which features
of a program are likely to predict it's eventual behavior?of a program are likely to predict it's eventual behavior?

•• In a sense, features should be a compact representation of a program that In a sense, features should be a compact representation of a program that
capt re the essential performance related aspects and ignore the irrele antcapt re the essential performance related aspects and ignore the irrele antcapture the essential performance related aspects and ignore the irrelevantcapture the essential performance related aspects and ignore the irrelevant

•• Clearly, the number of spaces in the program is unlikely to be significant nor Clearly, the number of spaces in the program is unlikely to be significant nor
the user commentsthe user commentsthe user commentsthe user comments

•• Compiler IRs are a good starting point as they are condensed program Compiler IRs are a good starting point as they are condensed program
representationrepresentationrepresentationrepresentation

•• Loop nest depth, controlLoop nest depth, control--flow graph structure, recursion, pointer based flow graph structure, recursion, pointer based
accesses, data structureaccesses, data structure

Supervised learning

•• Building a model based on given inputs and outputs is an example of Building a model based on given inputs and outputs is an example of
classical supervised learningclassical supervised learning. We direct the system to find correlations . We direct the system to find correlations
between selected input features and output behaviorbetween selected input features and output behavior

I fI f i d l ii d l i b f l i h lb f l i h l•• In fact In fact unsupervised learning unsupervised learning may be more useful in the long run. may be more useful in the long run.
Generate a large number of examples and features and allow the system to Generate a large number of examples and features and allow the system to
classify them into related groups with shared behaviorclassify them into related groups with shared behavior

•• This prevents missing important features and provide clues as to what This prevents missing important features and provide clues as to what
aspects of a program are performance determiningaspects of a program are performance determining

•• However, we need many more programs combinatoriallyHowever, we need many more programs combinatorially than features to than features to
distinguish between themdistinguish between them

Space to learn over

• Formalization of compiler optimization has not been taken really seriously

• However, in order to utilize predictive modeling, we need a descriptions of
the program space that allows discrimination between different choices

• Rather than just having a sophisticated model, what we want is a system
that given a program automatically provides the best optimization

• To do this means that we must have a good description of the
transformation space

Th h f th ti i ti ill b iti l f l i Cl l• The shape of the optimization space will be critical for learning. Clearly
linear regression will not fit the spaces seen before

Which techniques work?

•• Short answer: No one knows ;) !.. Fertile research areaShort answer: No one knows ;) !.. Fertile research area

It d d th t t f th bl (di t ib ti f i i)It d d th t t f th bl (di t ib ti f i i)•• It depends on the structure of the problem space (distribution of minima) It depends on the structure of the problem space (distribution of minima)
and representation of the problemand representation of the problem

•• One problem particular to compilation is that feature inputs vary in size:One problem particular to compilation is that feature inputs vary in size:•• One problem particular to compilation is that feature inputs vary in size: One problem particular to compilation is that feature inputs vary in size:
length of program, length of transformation sequence, order of length of program, length of transformation sequence, order of
transformations, etctransformations, etc

•• Also we have no agreed way of representing our problem. Several of the Also we have no agreed way of representing our problem. Several of the
following examples have used different techniquesfollowing examples have used different techniques

•• Safe to say that the level of ML sophistication is low. Seems that currently Safe to say that the level of ML sophistication is low. Seems that currently
compiler writers tend to try simple things first without too much compiler writers tend to try simple things first without too much mathsmaths
(though this is gradually changing with the (though this is gradually changing with the polyhedral transformationspolyhedral transformations being being
added to the mainline GCC and XLS compilers) !added to the mainline GCC and XLS compilers) !

Learning to unroll

•• Monsifort uses machine learning to determine whether or not it is Monsifort uses machine learning to determine whether or not it is
worthwhile unrolling a loopworthwhile unrolling a loop

•• Rather than building a model to determine the performance benefit of Rather than building a model to determine the performance benefit of
l lli l if h h l lli i h hill lli l if h h l lli i h hilloop unrolling, try to classify whether or not loop unrolling is worthwhileloop unrolling, try to classify whether or not loop unrolling is worthwhile

•• For each training loop, loop unrolling was performed and speedup For each training loop, loop unrolling was performed and speedup
recordedrecordedrecordedrecorded

•• This output was translated into This output was translated into “good”, “bad” or “no change”“good”, “bad” or “no change”

•• The loop features were then stored alongside the output ready for The loop features were then stored alongside the output ready for
learninglearning

Learning to unroll

• Features used were based on inner loop characteristicsFeatures used were based on inner loop characteristics

• The model induced is a partitioning of the feature space. The space was
partitioned into those sections where unrolling is good, bad or unchangedg g g

• This division was hyperplanes in the feature space that can easily be
represented by a decision tree

• This learnt model is then easily used at compile time. Extract the features of
the loop and see which section they belong too

• Although easy to construct, it requires regions in space to be convex. Not
true for combined transformations

Learning to unroll

featuresfeatures

•• Features try to capture structure that may affect unrolling decisionsFeatures try to capture structure that may affect unrolling decisions

•• Again allows programs to be mapped to fixed feature vectorAgain allows programs to be mapped to fixed feature vector

•• Feature selection can be guided by metrics used in existing handFeature selection can be guided by metrics used in existing hand--writtenwritten•• Feature selection can be guided by metrics used in existing handFeature selection can be guided by metrics used in existing hand--written written
heuristicsheuristics

Results

•• Classified examples give correct result in 85% cases. Better at picking Classified examples give correct result in 85% cases. Better at picking
negative cases due to bias in training setnegative cases due to bias in training set

•• Gave an average 4% and 6% reduction in execution time on Gave an average 4% and 6% reduction in execution time on UltrasparcUltrasparc
and IA64 compared to 1and IA64 compared to 1

H 77 il i il t i t th t tiH 77 il i il t i t th t ti•• However g77 compiler is an easy compiler to improve upon at that timeHowever g77 compiler is an easy compiler to improve upon at that time

•• Basic approach Basic approach -- unroll factor not consideredunroll factor not considered

Meta-compilation

•• Name comes from optimizing a heuristic rather than optimizing a programName comes from optimizing a heuristic rather than optimizing a program•• Name comes from optimizing a heuristic rather than optimizing a programName comes from optimizing a heuristic rather than optimizing a program

•• Stephenson et al 2003 used Stephenson et al 2003 used genetic programming genetic programming to tune to tune hyperblockhyperblock
selectionselection register allocationregister allocation andand datadata prefetchingprefetching within thewithin the Trimaran'sTrimaran'sselectionselection, , register allocationregister allocation, and , and data data prefetchingprefetching within the within the Trimaran sTrimaran s
IMPACT compilerIMPACT compiler

•• Represent heuristic as a parse tree. Apply mutation and cross over to a Represent heuristic as a parse tree. Apply mutation and cross over to a p p pp yp p pp y
population of parse trees and measure fitness.population of parse trees and measure fitness.

•• Crossover = swap nodes from 2 random parse treesCrossover = swap nodes from 2 random parse trees

•• Mutate randomly: selected a node and replace with a random expressionMutate randomly: selected a node and replace with a random expression

Results

•• Two of the preTwo of the pre--existing heuristics were not well implementedexisting heuristics were not well implemented

•• For hyperblock selection speedup of 1.09 on test setFor hyperblock selection speedup of 1.09 on test set

•• For data prefetching the results are worseFor data prefetching the results are worse just 1 01 speedupjust 1 01 speedup•• For data prefetching the results are worse For data prefetching the results are worse -- just 1.01 speedupjust 1.01 speedup

•• The authors even admit that turning off data prefetching completely is The authors even admit that turning off data prefetching completely is
preferable and reduces many of their gainspreferable and reduces many of their gainspreferable and reduces many of their gainspreferable and reduces many of their gains

•• The third optimization, register allocation is better implemented but only The third optimization, register allocation is better implemented but only
able to achieve on average a 2% increase over the manually tuned heuristicable to achieve on average a 2% increase over the manually tuned heuristicg yg y

•• GP is not a focused technique, IMPACT is not of a commercial qualityGP is not a focused technique, IMPACT is not of a commercial quality

Learning over UTF

•• Shun (2004) uses Pugh's UTF framework to search for good Java Shun (2004) uses Pugh's UTF framework to search for good Java
optimizationsoptimizations

•• Space of optimization to learn included entire UTF. Training data gathered Space of optimization to learn included entire UTF. Training data gathered
by using a smart iterative searchby using a smart iterative search

•• Then using a similar feature extraction to Monsifort classify all found Then using a similar feature extraction to Monsifort classify all found
resultsresults

•• Uses nearest neighbour based learning able to achieve 70% of the Uses nearest neighbour based learning able to achieve 70% of the
possible performance found using iterative compilation on crosspossible performance found using iterative compilation on cross--validated validated
test datatest datatest datatest data

•• Larger experimental set needed to validate results. Going beyond loop Larger experimental set needed to validate results. Going beyond loop
based transformations for Javabased transformations for Java

More general approaches?More general approaches?

Static characterization of programs
•• Embedded systems applicationEmbedded systems application•• Embedded systems applicationEmbedded systems application

•• UTDSP benchmarks: compute intensive DSPUTDSP benchmarks: compute intensive DSP

•• AMD Au1500, gcc 3.2.1,AMD Au1500, gcc 3.2.1, --O3O3AMD Au1500, gcc 3.2.1, AMD Au1500, gcc 3.2.1, O3O3

•• TI C6713, TI compiler v2.21, TI C6713, TI compiler v2.21, --O3O3

•• Exhaustively enumerated optimization search spaceExhaustively enumerated optimization search spaceyy

•• 14 transformations selected14 transformations selected

•• all combinations of length 5 evaluatedall combinations of length 5 evaluated

•• Allows comparison of techniquesAllows comparison of techniques

•• How near the minima each technique approachesHow near the minima each technique approaches

•• Rate of improvementRate of improvement

•• Characterization of the spaceCharacterization of the space

F. Agakov, E. Bonilla, J.Cavazos, B.Franke, G. Fursin, M.F.P. O'Boyle, J.Thomson, M. Toussaint and C.K.I. Williams. Using F. Agakov, E. Bonilla, J.Cavazos, B.Franke, G. Fursin, M.F.P. O'Boyle, J.Thomson, M. Toussaint and C.K.I. Williams. Using
Machine Learning to Focus Iterative Optimization. Machine Learning to Focus Iterative Optimization. Proceedings of the 4th Annual International Symposium on Code Proceedings of the 4th Annual International Symposium on Code
Generation and Optimization (CGO)Generation and Optimization (CGO), New York, NY, USA, March 2006, New York, NY, USA, March 2006

Static characterization of programs

Search space = Search space = 396000396000
program transformationsprogram transformations

Predict Predict 2..102..10 best best
transformations from this transformations from this
space based on program space based on program p p gp p g

features and previous features and previous
optimization experienceoptimization experience

Focusing search (offFocusing search (off--line training):line training):

•• Independent identically distributed (IID) modelIndependent identically distributed (IID) model
•• Markov modelMarkov model

Predicting best transformation for a new program:Predicting best transformation for a new program:Predicting best transformation for a new program:Predicting best transformation for a new program:
•• Static featuresStatic features
•• Nearest neighbors classifierNearest neighbors classifier

Dynamic characterization of programs

Previously we used Previously we used static code featuresstatic code features to obtain good to obtain good
optimizations for new programsoptimizations for new programsp p gp p g

However, it is difficult or impossible to characterize However, it is difficult or impossible to characterize
program runprogram run--time behaviortime behavior on modern complex on modern complex
architecture using only static code featuresarchitecture using only static code features

Performance counters provide a Performance counters provide a compact summary of compact summary of
’ d i b h i’ d i b h ia program’s dynamic behaviora program’s dynamic behavior

How to use them to select good optimization settings?How to use them to select good optimization settings?

John Cavazos,John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F.P.O’Boyle and Olivier Temam. Rapidly Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F.P.O’Boyle and Olivier Temam. Rapidly
Selecting Good Compiler Optimizations using Performance Counters. Proceedings of the 5Selecting Good Compiler Optimizations using Performance Counters. Proceedings of the 5th Annual th Annual
International Symposium on Code Generation and Optimization (CGO), San Jose, USA, March 2007International Symposium on Code Generation and Optimization (CGO), San Jose, USA, March 2007

General optimizations

Predictive modeling using logistic regressionPredictive modeling using logistic regression

General optimizations

Using modelsUsing models

Dynamic characterization of programs
Performance counter values for 181.mcf compiled with -O0 relative to the average p g

values for the entire set of benchmark suite (SPECFP,SPECINT, MiBench, Polyhedron)

Dynamic characterization of programs
Performance counter values for 181.mcf compiled with -O0 relative to the average p g

values for the entire set of benchmark suite (SPECFP,SPECINT, MiBench, Polyhedron)

Problem:Problem:Problem: Problem:
greater number of memory accesses per instruction than averagegreater number of memory accesses per instruction than average

Dynamic characterization of programs
Performance counter values for 181.mcf compiled with -O0 relative to the average p g

values for the entire set of benchmark suite (SPECFP,SPECINT, MiBench, Polyhedron)

Solving all performance issues one by one is slow and can be Solving all performance issues one by one is slow and can be
inefficient due to their noninefficient due to their non--linear dependencieslinear dependenciesinefficient due to their noninefficient due to their non linear dependencies …linear dependencies …

Dynamic characterization of programs
Performance counter values for 181.mcf compiled with -O0 relative to the average p g

values for the entire set of benchmark suite (SPECFP,SPECINT, MiBench, Polyhedron)

Solving all performance issues one by one is slow and can be Solving all performance issues one by one is slow and can be
inefficient due to their noninefficient due to their non--linear dependencieslinear dependenciesinefficient due to their noninefficient due to their non linear dependencies …linear dependencies …

CONSIDER ALL PERFORMANCE ISSUES AT THE SAME TIME !CONSIDER ALL PERFORMANCE ISSUES AT THE SAME TIME !

MILEPOST project

Machine Learning for Embedded Programs OptimizationMachine Learning for Embedded Programs Optimization

ObjectiveObjective isis toto developdevelop compilercompiler technologytechnology thatthat cancan automaticallyautomatically learnlearnObjectiveObjective isis toto developdevelop compilercompiler technologytechnology thatthat cancan automaticallyautomatically learnlearn
howhow toto bestbest optimizeoptimize programsprograms forfor rere--configurableconfigurable heterogeneousheterogeneous
embeddedembedded processorsprocessors andand dramaticallydramatically reducereduce thethe timetime toto marketmarket..

Partners:Partners:
INRIA, University of Edinburgh, IBM, ARC, CAPS EnterpriseINRIA, University of Edinburgh, IBM, ARC, CAPS Enterprise

Developed techniques and software are publicly available and Developed techniques and software are publicly available and
hopefully will influence the future compiler developmentshopefully will influence the future compiler developments

http://www.milepost.euhttp://www.milepost.eu

MILEPOST framework

MILEPOST GCC
(with ICI and ML routines)

Program1
Continuous Collective

Compilation Framework

CCC

IC Plugins

Recording pass
sequences

…

Tr
ai

ni
ng Drivers for

iterative
compilation
and model

Compilation Framework

Extracting static
program features

ProgramN

T and model
training

m
en

t

MILEPOST GCC

Extracting static
New program

D
ep

lo
ym

Extracting static
program features

Selecting “good” passes

Predicting “good”
passes to improve

exec.time, code size and
comp. time

Feature extraction
We can now add new passes that are not included into default optimizationWe can now add new passes that are not included into default optimization
heuristic but called through ICI.

Example: program static feature extractor (thanks to IBM Haifa)

export XSB_DIR=“…”
export ICI_PLUGIN=“$ICI_PLUGINS_HOME/extract-program-static-features.so”
export ICI_PROG_FEAT_PASS=fre
export ICI_PROG_FEAT_EXT_TOOL=“$ICI_PLUGINS_HOME/ml-feat-proc”
export ML_ST_FEAT_PROC=“$ICI_PLUGINS_HOME/featlstn.P”
export ICI_USE=1

ft1 - Number of basic blocks in the method
…

ft20 - Number of conditional branches in the method \\
ft21 - Number of assignment instructions in the method \\

…
ft22 - Number of binary integer operations in the method \\
ft23 - Number of binary floating point operations in the method \\

…
ft24 - Number of instructions in the method \\
ft25 - Average of number of instructions in basic blocks \\ft25 - Average of number of instructions in basic blocks \\

…
ft54 - Number of local variables that are pointers in the method \\
ft55 - Number of static/extern variables that are pointers in the method \\

Experiments
G ti t i i t t b ild d l

1.5
1.6

Generating training set to build model

1 1
1.2
1.3
1.4

sp
ee

du
p

1
1.1

itc
ou

nt
us

an
_c

us
an

_e
us

an
_s

jp
eg

_c
jp

eg
_d

di
jk

st
ra

pa
tr

ic
ia

w
fis

h_
d

w
fis

h_
e

nd
ae

l_
d

nd
ae

l_
e

sh
a

dp
cm

_c
dp

cm
_d

C
RC

32

gs
m

qs
or

t1
ea

rc
h1

bi su su su

j j d p

bl
ow

bl
ow rij
n

rij
n ad
p

ad
p C q

st
rin

gs
e

AMD - a cluster with 16 AMD Athlon 64 3700+ processors running at 2.4GHz
IA32 - a cluster with 4 Intel Xeon processors running at 2.8GHz
IA64 - a server with an Itanium2 processor running at 1.3GHz

Traditional iterative search:
500 random sequences of flags and associated passes (turned on or off)
Later “focused” search

Experiments

Building and using model to predict optimizations

Use static or dynamic (hardware counters) program features
to find similarities between programs to focus search for goodto find similarities between programs to focus search for good
optimizations

Similar to feedback directed optimizations, except we reuse
“global optimization knowledge” and use program features g p g p g
to suggest good optimizations

Experiments

1 2
1.3
1.4

p

0.9
1

1.1
1.2

sp
ee

du
p

0.8

bi
tc

ou
nt

su
sa

n_
c

su
sa

n_
e

su
sa

n_
s

jp
eg

_c
jp

eg
_d

di
jk

st
ra

pa
tr

ic
ia

ow
fis

h_
d

ow
fis

h_
e

ijn
da

el
_d

ijn
da

el
_e sh
a

ad
pc

m
_c

ad
pc

m
_d

C
RC

32

gs
m

qs
or

t1
gs

ea
rc

h1
A

ve
ra

ge

s s s

bl
o

bl
o rij rij a a

st
rin

g

Iterative compilation Predicted optimization passes using ML and MILEPOST GCC

Evaluating model performance

(FPGA implementation of the ARC 725D processor)

Continuous Collective Compilation Framework

• Unify iterative experiments and optimization knowledge reuse

• Collect and analyze data from various partners in a global database:
•COMPILERS, DATASETS, ENVIRONMENTS, OPT_FLAGS_GLOBAL,
PLATFORMS
•PROGRAMS, PROGRAM_FEATURES, PROGRAM_PASSES,
•STATS COMP GLOBAL FLAGS STATS EXEC GLOBAL•STATS_COMP_GLOBAL_FLAGS, STATS_EXEC_GLOBAL

• Support iterative compilation (flags & passes) with different strategies, transparent
profiling using hardware counters collection using PAPI library

• During last 6 months around 2,000,000 executions on various platforms:
• x86, x8664, IA64
• TMS320C6713

ICT GODSON2• ICT GODSON2
• ARC 700

• Build machine learning models to improve GCC performance on average across all
fprograms or for

Continuous Collective Compilation Framework

• Static function versioning and run-time adaptation to avoid reference runs

• Unobtrusive collection of statistics in the Collective DatabaseUnobtrusive collection of statistics in the Collective Database

• Suggest good optimizations based on Collective Knowledge

Continuous Collective Compilation Framework

Learning across different datasets

Competition between optimization
combinationscombinations

Computing the probability distribution to select an optimizationp g p y p

combination based on continuous competition between combinations

Maturation stages of a program

•Stage 3: Program well known, heavily used

•Stage 2: Program known, a few runs only

•Stage 1: Program unknown

There is a permanent competition between

the different stages distributions (d1, d2, d3)

Performance evaluation

Average performance of collective optimization and individual distributionsg p p

(bottom: meta-scores of individual distributions; grey is d3, black is d2, white is d1)

Machine learning for DSE
Speeding up Architecture Design Space ExplorationSpeeding up Architecture Design Space ExplorationSpeeding up Architecture Design Space ExplorationSpeeding up Architecture Design Space Exploration

Problems:Problems:
–– Developing an optimizing compiler for new architecture is difficult Developing an optimizing compiler for new architecture is difficult

particularly when only simulator is availableparticularly when only simulator is available

–– Tuning such compiler requires many runsTuning such compiler requires many runs

Si l t d f it d l th lSi l t d f it d l th l–– Simulators are orders of magnitude slower than real processorsSimulators are orders of magnitude slower than real processors

–– Therefore compiler tuning is highly restrictedTherefore compiler tuning is highly restricted

Goal:Goal:
develop a technique to automatically build a performance model for predicting develop a technique to automatically build a performance model for predicting
the impact of program transformations on any architecture based on a limitedthe impact of program transformations on any architecture based on a limitedthe impact of program transformations on any architecture, based on a limited the impact of program transformations on any architecture, based on a limited
number of automatically selected runsnumber of automatically selected runs

C C O GC C O GJohn Cavazos, Christophe Dubach, Felix Agakov, Edwin Bonilla, Michael F.P. O'Boyle, Grigori Fursin John Cavazos, Christophe Dubach, Felix Agakov, Edwin Bonilla, Michael F.P. O'Boyle, Grigori Fursin
and Olivier Temam. Automatic Performance Model Construction for the Fast Software Exploration of and Olivier Temam. Automatic Performance Model Construction for the Fast Software Exploration of
New Hardware Designs. International Conference on Compilers, Architecture, And Synthesis For New Hardware Designs. International Conference on Compilers, Architecture, And Synthesis For
Embedded Systems (CASES 2006), Seoul, Korea, October 2006Embedded Systems (CASES 2006), Seoul, Korea, October 2006

Machine learning for DSE

FeaturesFeatures--based modelbased model
Input:Input: static features extracted from the transformed program static features extracted from the transformed program

t th l lt th l lat the source levelat the source level
Output:Output: program speedupprogram speedup

Machine learning for DSE

Predicted
best speedup,

s-
ba

se
d

m
od

el

ro
gr

am

ch
ite

ct
ur

e

t1

t2

s1

s2

p p,
best

transformation,
etc

R
ea

ct
io

nPr

Canonical
A

rc

Speedups
tK

sK

Canonical
transformations

ReactionsReactions--based modelbased model
Input:Input: speedups on canonical transformation sequencesspeedups on canonical transformation sequences
O t tO t t t f ti dt f ti dOutput: Output: transformation sequence speeduptransformation sequence speedup

Machine learning for DSE
S di A hit t D i S E l tiS di A hit t D i S E l tiSpeeding up Architecture Design Space ExplorationSpeeding up Architecture Design Space Exploration

Reliable performance model on an unseen architecture after a few Reliable performance model on an unseen architecture after a few
probes probes →→ fast searchfast search

Conclusions

• We believe that machine learning will revolutionize compiler optimization
and will become mainstream within a decade for both compiler
optimizations, run-time adaptation, parallelization and architecture design

l tispace exploration

• However, it is not a panacea, solving all our problems

• Fundamentally, it is an automatic curve fitter. We still have to choose the
parameters to fit and the space to optimize over

• Complexity of space makes a big difference. Tried using Gaussian process
predicting on PFDC'98 spaces - worse than random selection…

• Much remains to be done - fertile research area

Continuous Collective CompilationContinuous Collective Compilation
http://gcchttp://gcc--ccc.sourceforge.netccc.sourceforge.net

Literature

•• Hennessy and Patterson: Hennessy and Patterson: Computer Architecture: A Quantitative Approach
(4th Edition), Morgan Kaufmann, 2006

St M h i k Ad d C il D i d I l t ti• Steven Muchnick: Advanced Compiler Design and Implementation,
Morgan Kaufmann, 1997

• Randy Allen, Ken Kennedy: Optimizing compilers for modern architectures, y y p g p
Morgan Kaufmann, 2002

• Keith D. Cooper, Linda Torczon: Engineering a Compiler, Morgan
Kaufmann 2004Kaufmann, 2004

Literature
•• D Bacon S Graham and O Sharp: Compiler Transformations for HighD Bacon S Graham and O Sharp: Compiler Transformations for High--Performance Computing ACM Computing SurveysPerformance Computing ACM Computing SurveysD. Bacon, S. Graham and O. Sharp: Compiler Transformations for HighD. Bacon, S. Graham and O. Sharp: Compiler Transformations for High Performance Computing. ACM Computing Surveys, Performance Computing. ACM Computing Surveys,
Volume 26, Issue 4, 1999Volume 26, Issue 4, 1999

•• R.C. Whaley, A. R.C. Whaley, A. PetitetPetitet and J. and J. DongarraDongarra: ATLAS project, Parallel Computing, 2001 : ATLAS project, Parallel Computing, 2001

•• S.L. Graham, P.B. Kessler, and M.K. S.L. Graham, P.B. Kessler, and M.K. McKusickMcKusick: : GprofGprof: A call graph execution profiler. Proceedings of the 1982 SIGPLAN : A call graph execution profiler. Proceedings of the 1982 SIGPLAN
Symposium on Compiler Construction, pages 120Symposium on Compiler Construction, pages 120--126, June 1982126, June 1982

•• T. Ball and J.R. T. Ball and J.R. LarusLarus: Efficient Path Profiling, International Symposium on : Efficient Path Profiling, International Symposium on MicroarchitectureMicroarchitecture, pages 46, pages 46--57, 199657, 1996

•• T. Ball, P. T. Ball, P. MatagaMataga and M. and M. SagivSagiv: Edge Profiling versus Path Profiling: The Showdown, In Symposium on Principles of : Edge Profiling versus Path Profiling: The Showdown, In Symposium on Principles of
Programming Languages Jan 1998Programming Languages Jan 1998Programming Languages, Jan. 1998Programming Languages, Jan. 1998

•• B. B. AartsAarts, M. , M. BarreteauBarreteau, F. Bodin, P. , F. Bodin, P. BrinkhausBrinkhaus, , Z.ChamskiZ.Chamski, H., H.--P. Charles, C. P. Charles, C. Eisenbeis,JEisenbeis,J. . GurdGurd, , J.HoogerbruggeJ.Hoogerbrugge, P. , P. HuHu, W. , W.
JalbyJalby, P.M.W. , P.M.W. KnijnenburgKnijnenburg, M.F.P O'Boyle, E. Rohou, R. , M.F.P O'Boyle, E. Rohou, R. SakellariouSakellariou, H. , H. SchepersSchepers, A. , A. SeznecSeznec, E.A. , E.A. StohrStohr, M. , M. VerhoevenVerhoeven and and
H.A.G. H.A.G. WijshoffWijshoff: OCEANS: Optimizing Compilers for Embedded Applications, in proceedings of EuroPar'97, LNCS: OCEANS: Optimizing Compilers for Embedded Applications, in proceedings of EuroPar'97, LNCS--1300, pages 1300, pages
13511351--1356, 19971356, 199713511351 1356, 19971356, 1997

•• F. Bodin, T. F. Bodin, T. KisukiKisuki, P. , P. Knijnenburg,MKnijnenburg,M. O’Boyle and E. Rohou: Iterative compilation in a non. O’Boyle and E. Rohou: Iterative compilation in a non--linear linear optimisationoptimisation space, in space, in
proceedings of the Workshop on Profile and Feedback Directed Compilation,1998proceedings of the Workshop on Profile and Feedback Directed Compilation,1998

•• K. D. Cooper, P. J. K. D. Cooper, P. J. SchielkeSchielke, and D. Subramanian: Optimizing for reduced code space using genetic algorithms, in , and D. Subramanian: Optimizing for reduced code space using genetic algorithms, in
proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), pages 1proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), pages 1––9, 19999, 1999

•• GG..GG..FursinFursin, , MM..FF..PP..OO’’BoyleBoyle, , and Pand P..MM..WW. . KnijnenburgKnijnenburg:: Evaluating Iterative Compilation, in proceedings of the 15th Workshop on Evaluating Iterative Compilation, in proceedings of the 15th Workshop on
Languages and Compilers for Parallel Computing (LCPC’02), College Park, MD, USA, pages 305Languages and Compilers for Parallel Computing (LCPC’02), College Park, MD, USA, pages 305--315, 2002315, 2002

•• K D Cooper D Subramanian and LK D Cooper D Subramanian and L TorczonTorczon: Adaptive optimizing compilers for the 21st century journal of Supercomputing: Adaptive optimizing compilers for the 21st century journal of Supercomputing•• K. D. Cooper, D. Subramanian, and L. K. D. Cooper, D. Subramanian, and L. TorczonTorczon: Adaptive optimizing compilers for the 21st century, journal of Supercomputing, : Adaptive optimizing compilers for the 21st century, journal of Supercomputing,
23(1), 200223(1), 2002

•• G. Fursin: Iterative Compilation and Performance Prediction for Numerical Applications, Ph.D. thesis, University of EdinburghG. Fursin: Iterative Compilation and Performance Prediction for Numerical Applications, Ph.D. thesis, University of Edinburgh, ,
Edinburgh, UK, January 2004Edinburgh, UK, January 2004

Literature
•• K. D. Cooper, A. K. D. Cooper, A. GrosulGrosul, T. J. Harvey, S. Reeves, D. Subramanian, L. , T. J. Harvey, S. Reeves, D. Subramanian, L. TorczonTorczon, and T. Waterman: Acme: adaptive compilation , and T. Waterman: Acme: adaptive compilation K. D. Cooper, A. K. D. Cooper, A. GrosulGrosul, T. J. Harvey, S. Reeves, D. Subramanian, L. , T. J. Harvey, S. Reeves, D. Subramanian, L. TorczonTorczon, and T. Waterman: Acme: adaptive compilation , and T. Waterman: Acme: adaptive compilation
made efficient, in proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), pages made efficient, in proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), pages
6969––77, 200577, 2005

•• B. Franke, M. O'Boyle, J. Thomson and G. Fursin: Probabilistic SourceB. Franke, M. O'Boyle, J. Thomson and G. Fursin: Probabilistic Source--Level Optimisation of Embedded Systems Software, in Level Optimisation of Embedded Systems Software, in
proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES’05), pages 78proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES’05), pages 78--86, 86,
Chicago IL USA June 2005Chicago IL USA June 2005Chicago, IL, USA, June 2005Chicago, IL, USA, June 2005

•• G. Fursin and A. Cohen: Building a Practical Iterative Interactive Compiler, in proceedings of the 1G. Fursin and A. Cohen: Building a Practical Iterative Interactive Compiler, in proceedings of the 1stst International Workshop on International Workshop on
Statistical and Machine Learning Approaches Applied to Architectures and Compilation (SMART'07), Ghent, Belgium, January Statistical and Machine Learning Approaches Applied to Architectures and Compilation (SMART'07), Ghent, Belgium, January
20072007

•• SS TriantafyllisTriantafyllis MM VachharajaniVachharajani NN VachharajaniVachharajani and D August: Compiler optimizationand D August: Compiler optimization space exploration in proceedings ofspace exploration in proceedings of•• S. S. TriantafyllisTriantafyllis, M. , M. VachharajaniVachharajani, N. , N. VachharajaniVachharajani and D. August: Compiler optimizationand D. August: Compiler optimization--space exploration, in proceedings of space exploration, in proceedings of
the International Symposium on Code Generation and Optimization (CGO), pages 204the International Symposium on Code Generation and Optimization (CGO), pages 204––215, 2003215, 2003

•• P. P. KulkarniKulkarni, D. , D. WhalleyWhalley, G. Tyson and J. Davidson: Evaluating heuristic optimization phase order search algorithms, in , G. Tyson and J. Davidson: Evaluating heuristic optimization phase order search algorithms, in
proceedings of the International Symposium on Code Generation and Optimization (CGO’07), pages 157proceedings of the International Symposium on Code Generation and Optimization (CGO’07), pages 157––169, March 2007169, March 2007

G F rsin J Ca a os M F P O’Bo le and O TemamG F rsin J Ca a os M F P O’Bo le and O Temam MiDataSetsMiDataSets Creating The Conditions For A More Realistic E al ation ofCreating The Conditions For A More Realistic E al ation of•• G. Fursin, J. Cavazos, M.F.P. O’Boyle and O. Temam: G. Fursin, J. Cavazos, M.F.P. O’Boyle and O. Temam: MiDataSetsMiDataSets: Creating The Conditions For A More Realistic Evaluation of : Creating The Conditions For A More Realistic Evaluation of
Iterative Optimization, in proceedings of the Iterative Optimization, in proceedings of the International Conference on High Performance Embedded Architectures & International Conference on High Performance Embedded Architectures &
Compilers (Compilers (HiPEACHiPEAC 2007), Ghent, Belgium, January 20072007), Ghent, Belgium, January 2007

•• B. Grant, M. Mock, M. B. Grant, M. Mock, M. PhiliposePhilipose, C. Chambers and S.J. Eggers: , C. Chambers and S.J. Eggers: DyCDyC: An Expressive Annotation: An Expressive Annotation--Directed Dynamic Compiler Directed Dynamic Compiler
for C, Theoretical Computer Science, volume 248, number 1for C, Theoretical Computer Science, volume 248, number 1--2, pages 1472, pages 147--199, 2000199, 2000

•• M.MockM.Mock, C. Chambers and , C. Chambers and S.J.EggersS.J.Eggers: : CalpaCalpa: A Tool for Automating Selective Dynamic Compilation, International Symposium : A Tool for Automating Selective Dynamic Compilation, International Symposium
on on MicroarchitectureMicroarchitecture, pages 291, pages 291--302, 2000302, 2000

•• K. K. EbciogluEbcioglu and E.R. Altman: DAISY: Dynamic Compilation for 100% Architectural Compatibility, ISCA, pages 26and E.R. Altman: DAISY: Dynamic Compilation for 100% Architectural Compatibility, ISCA, pages 26--37, 199737, 1997

•• V. V. BalaBala, E. Duesterwald and , E. Duesterwald and SanjeevSanjeev BanerjiaBanerjia: Dynamo: A Transparent Dynamic Optimization System, ACM SIGPLAN : Dynamo: A Transparent Dynamic Optimization System, ACM SIGPLAN
Notices, 2000Notices, 2000

•• C. J. C. J. KrintzKrintz, D. Grove, V. , D. Grove, V. SarkarSarkar and Brad Calder: Reducing the overhead of dynamic compilation, Software Practice and and Brad Calder: Reducing the overhead of dynamic compilation, Software Practice and
Experience, volume 31, number 8, pages 717Experience, volume 31, number 8, pages 717--738, 2001738, 2001

•• M.J. Voss and R. M.J. Voss and R. EigenmannEigenmann: : ADAPT: ADAPT: AutomatedAutomated dede--coupledcoupled adaptive program transformation, in adaptive program transformation, in proceedingsproceedings of ICPP, 2000of ICPP, 2000

Literature
•• GG Fursin A Cohen M F P O'Boyle and O Temam: A Practical Method For Quickly Evaluating Program Optimizations inFursin A Cohen M F P O'Boyle and O Temam: A Practical Method For Quickly Evaluating Program Optimizations in•• G.G. Fursin, A. Cohen, M.F.P. O Boyle and O. Temam: A Practical Method For Quickly Evaluating Program Optimizations, in Fursin, A. Cohen, M.F.P. O Boyle and O. Temam: A Practical Method For Quickly Evaluating Program Optimizations, in
pproceedingsroceedings of the 1st International Conference on High Performance Embedded Architectures & Compilers (of the 1st International Conference on High Performance Embedded Architectures & Compilers (HiPEACHiPEAC 2005), 2005),
number 3793 in LNCS, pages 29number 3793 in LNCS, pages 29--46, Barcelona, Spain, November 200546, Barcelona, Spain, November 2005

•• J.LauJ.Lau, , M.ArnoldM.Arnold, , M.HindM.Hind and and B.CalderB.Calder: Online Performance Auditing: Using Hot Optimizations Without Getting Burned, in : Online Performance Auditing: Using Hot Optimizations Without Getting Burned, in
proceedings of PLDI, 2006proceedings of PLDI, 2006p g ,p g ,

•• G. Fursin, C. Miranda, S. Pop, A. Cohen and O. Temam: Practical RunG. Fursin, C. Miranda, S. Pop, A. Cohen and O. Temam: Practical Run--time Adaptation with Procedure Cloning to Enable time Adaptation with Procedure Cloning to Enable
Continuous Collective Compilation, in proceedings of the GCC Developers’ Summit, Ottawa, Canada, July 2007Continuous Collective Compilation, in proceedings of the GCC Developers’ Summit, Ottawa, Canada, July 2007

•• C. Lattner and V. C. Lattner and V. AdveAdve: : LlvmLlvm: A compilation framework for lifelong program analysis & transformation, in proceedings of the : A compilation framework for lifelong program analysis & transformation, in proceedings of the
2004 International Symposium on Code Generation and Optimization (CGO’04), Palo Alto, California, March 20042004 International Symposium on Code Generation and Optimization (CGO’04), Palo Alto, California, March 20042004 International Symposium on Code Generation and Optimization (CGO 04), Palo Alto, California, March 20042004 International Symposium on Code Generation and Optimization (CGO 04), Palo Alto, California, March 2004

•• A. A. MonsifrotMonsifrot, F. Bodin, and R. , F. Bodin, and R. QuiniouQuiniou: A machine learning approach to automatic production of compiler heuristics, in : A machine learning approach to automatic production of compiler heuristics, in
proceedings of the International Conference on Artificial Intelligence: Methodology, Systems, Applications, LNCS 2443, pages proceedings of the International Conference on Artificial Intelligence: Methodology, Systems, Applications, LNCS 2443, pages
4141––50, 200250, 2002

•• M. Stephenson, S. M. Stephenson, S. AmarasingheAmarasinghe, M. Martin, and U., M. Martin, and U.--M. O’Reilly: Meta optimization: Improving compiler heuristics with machine M. O’Reilly: Meta optimization: Improving compiler heuristics with machine
learning, in proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’03), learning, in proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’03),
pages 77pages 77––90, June 200390, June 2003

•• S. Long, M.F.P. O’Boyle: Adaptive Java S. Long, M.F.P. O’Boyle: Adaptive Java optimisationoptimisation using instanceusing instance--based learning, in proceedings of ICS, 2004based learning, in proceedings of ICS, 2004

•• J. Cavazos, J. Cavazos, J.E.B.MossJ.E.B.Moss, , M.F.P.O’BoyleM.F.P.O’Boyle: Hybrid Optimizations: Which Optimization Algorithm to Use? in proceedings of CC, : Hybrid Optimizations: Which Optimization Algorithm to Use? in proceedings of CC,
20062006

Literature
•• FF AgakovAgakov E Bonilla J Cavazos B Franke G Fursin M F P O'Boyle J Thomson M Toussaint and C K I Williams: UsingE Bonilla J Cavazos B Franke G Fursin M F P O'Boyle J Thomson M Toussaint and C K I Williams: Using•• F. F. AgakovAgakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.F.P. O Boyle, J. Thomson, M. Toussaint and C.K.I. Williams: Using , E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.F.P. O Boyle, J. Thomson, M. Toussaint and C.K.I. Williams: Using
Machine Learning to Focus Iterative Optimization. in proceedings of the 4th Annual International Symposium on Code Machine Learning to Focus Iterative Optimization. in proceedings of the 4th Annual International Symposium on Code
Generation and Optimization (CGO), New York, NY, USA, March 2006Generation and Optimization (CGO), New York, NY, USA, March 2006

•• John Cavazos, Grigori Fursin, Felix John Cavazos, Grigori Fursin, Felix AgakovAgakov, Edwin Bonilla, Michael , Edwin Bonilla, Michael F.P.O’BoyleF.P.O’Boyle and Olivier Temam: Rapidly Selecting Good and Olivier Temam: Rapidly Selecting Good
Compiler Optimizations using Performance Counters, in proceedings of the 5Compiler Optimizations using Performance Counters, in proceedings of the 5thth Annual International Symposium on Code Annual International Symposium on Code p p g , p gp p g , p g y py p
Generation and Optimization (CGO), San Jose, USA, March 2007Generation and Optimization (CGO), San Jose, USA, March 2007

•• Christophe Dubach, John Cavazos, Björn Franke, Grigori Fursin, Michael O'Boyle and Oliver Temam: Enabling fast compiler Christophe Dubach, John Cavazos, Björn Franke, Grigori Fursin, Michael O'Boyle and Oliver Temam: Enabling fast compiler
optimization evaluation via codeoptimization evaluation via code--features based performance predictor, in proceedings of the ACM International Conference on features based performance predictor, in proceedings of the ACM International Conference on
Computing Frontiers, Ischia, Italy, May 2007Computing Frontiers, Ischia, Italy, May 2007

•• Grigori Fursin, Cupertino Miranda, Sebastian Pop, Albert Cohen and Olivier Temam. Practical Run-time Adaptation with
Procedure Cloning to Enable Continuous Collective Compilation. Proceedings of the GCC Developers' Summit, Ottawa,
Canada, July 2007

• Grigori Fursin Cupertino Miranda Olivier Temam Mircea Namolaru Elad Yom-Tov Ayal Zaks Bilha Mendelson Phil Barnard• Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Elad Yom-Tov, Ayal Zaks, Bilha Mendelson, Phil Barnard,
Elton Ashton, Eric Courtois, Francois Bodin, Edwin Bonilla, John Thomson, Hugh Leather, Chris Williams, Michael O'Boyle.
MILEPOST GCC: machine learning based research compiler. Proceedings of the GCC Developers' Summit, Ottawa, Canada,
June 2008

• Grigori Fursin and Olivier Temam. Collective optimization. To appear at the International Conference on High Performance g p pp g
Embedded Architectures & Compilers (HiPEAC 2009), Paphos, Cyprus, January 2009

Related Conferences
C f P i L D i d I l t ti (C f P i L D i d I l t ti (PLDIPLDI))•• Conference on Programming Language Design and Implementation (Conference on Programming Language Design and Implementation (PLDIPLDI))

•• International Conference on Code Generation and Optimization (International Conference on Code Generation and Optimization (CGOCGO))

•• Architectural Support for Programming Languages and Operating SystemsArchitectural Support for Programming Languages and Operating Systems•• Architectural Support for Programming Languages and Operating Systems Architectural Support for Programming Languages and Operating Systems
((ASPLOSASPLOS))

•• Conference on Parallel Architectures and Compilation Techniques (Conference on Parallel Architectures and Compilation Techniques (PACTPACT))

•• International Conference on Compilers, Architecture and Synthesis for International Conference on Compilers, Architecture and Synthesis for
Embedded Systems (Embedded Systems (CASESCASES))

•• Symposium on Principles of Programming Languages (Symposium on Principles of Programming Languages (PoPLPoPL))•• Symposium on Principles of Programming Languages (Symposium on Principles of Programming Languages (PoPLPoPL))

•• Principles and Practice of Parallel Computing (Principles and Practice of Parallel Computing (PPoPPPPoPP))

•• International Symposium on Microarchitecture (International Symposium on Microarchitecture (MICROMICRO))International Symposium on Microarchitecture (International Symposium on Microarchitecture (MICROMICRO))

•• International Symposium on Computer Architecture (International Symposium on Computer Architecture (ISCAISCA))

•• Symposium on HighSymposium on High--Performance Computer Architecture (Performance Computer Architecture (HPCAHPCA))y p gy p g p (p ())

•• Workshop on Statistical and Machine learning approaches to ARchitectures Workshop on Statistical and Machine learning approaches to ARchitectures
and compilaTion (and compilaTion (SMARTSMART))

Related Journals

•• ACM Transaction on Architecture and Code OptimizationACM Transaction on Architecture and Code Optimization

IEEE T ti C tIEEE T ti C t•• IEEE Transaction on ComputersIEEE Transaction on Computers

•• ACM Transactions on Computer SystemsACM Transactions on Computer Systems

•• ACM Transactions on Programming Languages and SystemsACM Transactions on Programming Languages and Systems•• ACM Transactions on Programming Languages and SystemsACM Transactions on Programming Languages and Systems

•• IEEE Transaction on Parallel and Distributed SystemsIEEE Transaction on Parallel and Distributed Systems

•• IEEE MicroIEEE MicroIEEE MicroIEEE Micro

Miscellaneous

MachMachiine ne LLearning for earning for EEmbedded mbedded PPrroogramgrams s
OOptimisation ptimisation (MILEPOST)(MILEPOST)

http://www.milepost.euhttp://www.milepost.eu

Building intelligent selfBuilding intelligent self--
tuning systemstuning systems
h // idh // id

N t k f E ll Hi h P f

http://unidapt.orghttp://unidapt.org

Network of Excellence on High Performance
Embedded Architectures and Compilers

(HiPEAC)
http://www.hipeac.net

Thanks

Thanks to Prof. Michael O’Boyle from the University of Edinburgh for Thanks to Prof. Michael O’Boyle from the University of Edinburgh for
providing some slides from his course on iterative feedbackproviding some slides from his course on iterative feedback--directed directed

compilation (2005)compilation (2005)

Contact email:Contact email:
grigori.fursin@inria.frgrigori.fursin@inria.fr

M i f ti b t h j t d ftM i f ti b t h j t d ftMore information about research projects and software:More information about research projects and software:
http://fursin.net/researchhttp://fursin.net/research

Lecture and publications onLecture and publications on--line:line:ectu e a d pub cat o s oectu e a d pub cat o s o ee
http://fursin.net/research_teaching.htmlhttp://fursin.net/research_teaching.html

