Collective Knowledge Aggregator proof-of-concept
Crowd results Raw CK browser Graphs Reports Datasets Models Home

This page is outdated! New version is available here.



Files:
doc.bib    (1KB)

Cross-linking (dependencies):

Meta:
{
  "affiliations": {
    "1": {
      "name": "University of Washington, USA"
    }, 
    "2": {
      "name": "University of Toronto, Canada"
    }, 
    "3": {
      "name": "EPFL, Switzerland"
    }, 
    "4": {
      "name": "cTuning foundation, France / dividiti, UK"
    }, 
    "5": {
      "name": "dividiti, UK"
    }, 
    "6": {
      "name": "Cornell University, USA"
    }, 
    "7": {
      "name": "University of Cambridge, UK"
    }
  }, 
  "authors": [
    {
      "affiliation": "1", 
      "name": "8ebae5a1164dc291"
    }, 
    {
      "affiliation": "2", 
      "name": "6b499e9486a5536b"
    }, 
    {
      "affiliation": "3", 
      "name": "d1488e8c3a674fa8"
    }, 
    {
      "affiliation": "4", 
      "name": "0728a400aa1c86fe", 
      "url": "http://fursin.net/research"
    }, 
    {
      "affiliation": "5", 
      "name": "07b8b4bd98945c99", 
      "url": "https://www.hipeac.net/~anton"
    }, 
    {
      "affiliation": "1", 
      "name": "5a7e00eedecd3a91", 
      "url": "https://homes.cs.washington.edu/~moreau"
    }, 
    {
      "affiliation": "6", 
      "name": "1cf026249ecae5b2"
    }, 
    {
      "affiliation": "7", 
      "name": "1cf026249ecae5b2"
    }
  ], 
  "bib_ref": "cm:29db2248aba45e59:c0967eb564e4f85a", 
  "cor_author_email": "grigori.fursin@cTuning.org", 
  "document_urls": [
    "https://portalparts.acm.org/3230000/3229762/fm/frontmatter.pdf"
  ], 
  "live": "no", 
  "local_bib": "doc.bib", 
  "place": "", 
  "publish_iso_date": "2018-06-23", 
  "tags": [
    "request", 
    "co-design", 
    "pareto", 
    "tournaments", 
    "competitions", 
    "asplos", 
    "acm", 
    "portable workflows", 
    "portable artifacts", 
    "reproducibility"
  ], 
  "title": "Proceedings Front Matter: Introducing the 1st ACM ReQuEST Workshop/Tournament on Reproducible Software/Hardware Co-design of Pareto-Efficient Deep Learning", 
  "type": {
    "name": "tech_report", 
    "peer_reviewed": "no", 
    "scope": "international"
  }, 
  "urls": [
    {
      "title": "Proceedings front-matter", 
      "url": "https://portalparts.acm.org/3230000/3229762/fm/frontmatter.pdf"
    }, 
    {
      "title": "ReQuEST-ASPLOS'18 ACM proceedings", 
      "url": "https://dl.acm.org/citation.cfm?doid=3229762"
    }, 
    {
      "title": "ReQuEST live scoreboard with SW/HW/AI/ML co-design configurations", 
      "url": "http://cKnowledge.org/request-results"
    }
  ], 
  "when": "June 2018", 
  "where": "ACM Digital Library", 
  "where_url": "https://dl.acm.org/citation.cfm?doid=3229762"
}

API desc:
{}

If you notice copyrighted, inappropriate or illegal content that should not be here, please report us as soon as possible and we will try to remove it within 48hours!

Developed by Grigori Fursin           
Implemented as a CK workflow
                         
   
                      Hosted at