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Course overview

Assume that all understand basics of computer architecture and compilation Assume that all understand basics of computer architecture and compilation 
process. process. 

Focus on compilers that map user program to machine codeFocus on compilers that map user program to machine codeFocus on compilers that map user program to machine codeFocus on compilers that map user program to machine code

Explain general major compilation problems instead of focusing on individual Explain general major compilation problems instead of focusing on individual 
components components 

Describe current major research areas for compilation and optimizationDescribe current major research areas for compilation and optimization

•• MotivationMotivation

•• BackgroundBackgroundBackgroundBackground

•• Feedback directed compilation and optimizationFeedback directed compilation and optimization

•• Dynamic compilation and optimizationDynamic compilation and optimizationy p py p p

•• Machine learning and future directionsMachine learning and future directions



Motivation

Are compilers important?Are compilers important?
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resources while placing strict requirements on resources while placing strict requirements on system performance, power system performance, power 
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Motivation

Current innovations in science and industry demand everCurrent innovations in science and industry demand ever--increasing computing increasing computing 
resources while placing strict requirements on resources while placing strict requirements on system performance, power system performance, power 
consumption, size, response, reliability, portability and design timeconsumption, size, response, reliability, portability and design time..

HighHigh--performance computing systems rapidly evolve toward performance computing systems rapidly evolve toward 
complex heterogeneous multicomplex heterogeneous multi--core systemscore systems

Optimizing compilers play a key role in Optimizing compilers play a key role in producing executable codes quickly producing executable codes quickly 

dramatically increased optimization time dramatically increased optimization time 

and automaticallyand automatically while satisfying all the above requirements for a broad while satisfying all the above requirements for a broad 
range of programs and architectures. range of programs and architectures. 
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Motivation

I it ?I it ?Is it easy? Is it easy? 
What are the challenges?What are the challenges?gg

Before answering these questions we need to look at the basics of theBefore answering these questions we need to look at the basics of theBefore answering these questions we need to look at the basics of the Before answering these questions we need to look at the basics of the 
current compilerscurrent compilers



Compiler background

•• Compilers translate user programs to machine codeCompilers translate user programs to machine code

•• Translation must be correctTranslation must be correct

•• Needed to hide machine complexityNeeded to hide machine complexity

•• Compilers need to optimize code to satisfy various requirementsCompilers need to optimize code to satisfy various requirements

•• Compilers automatically translate Can we automate compilerCompilers automatically translate Can we automate compilerCompilers automatically translate. Can we automate compiler Compilers automatically translate. Can we automate compiler 
construction?construction?

•• Compilers generating compilers exit Compilers generating compilers exit -- GCC, GCC, CoSyCoSy

•• Automatic construction of compiler optimization is very challengingAutomatic construction of compiler optimization is very challenging



Compiler background

Some current popular static optimizing compilers for Linux:Some current popular static optimizing compilers for Linux:

•• GCC (GNU Compiler Collection)GCC (GNU Compiler Collection)

http://gcc.gnu.orghttp://gcc.gnu.org

•• Open64 Open64 

http://www.open64.nethttp://www.open64.net

•• Intel CompilersIntel Compilers

http://www.intel.com/cd/software/products/asmohttp://www.intel.com/cd/software/products/asmo--na/na/
eng/compilers/284264 htmeng/compilers/284264 htmeng/compilers/284264.htmeng/compilers/284264.htm

•• PathScale CompilersPathScale Compilers

http://www.pathscale.comhttp://www.pathscale.comp pp p



Compiler structure

•• Compiler structure changed little since 1950s: consists of a linear Compiler structure changed little since 1950s: consists of a linear 
sequence of passessequence of passessequence of passessequence of passes

•• Lexical Analysis: Lexical Analysis: Finds and verifies basic syntactic items, lexems, Finds and verifies basic syntactic items, lexems, 
tokens using finite state automatatokens using finite state automata

•• Syntax Analysis: Syntax Analysis: Checks tokens following a grammar and builds an Checks tokens following a grammar and builds an 
Abstract Syntax Tree (AST)Abstract Syntax Tree (AST)

•• Semantic Analysis:Semantic Analysis: Checks that all names are consistently used and Checks that all names are consistently used and 
builds a symbol tablebuilds a symbol table

•• Code optimization and generation:Code optimization and generation: Optimize code using different Optimize code using different 
intermediate formats (IR) and generate machine instructions for a intermediate formats (IR) and generate machine instructions for a 
specific architecture while keeping the meaning of the programspecific architecture while keeping the meaning of the program



Compiler structure

sourcesource

codecode
Front Front 
EndEnd

HLHL

ASTAST
RestructRestruct

HLHL

ASTAST
Middle Middle 

EndEnd
LowLow

IRIR
Back Back 
EndEnd

machinemachine

codecode

•• Front EndFront End translates “strings of characters” into a structured High Level translates “strings of characters” into a structured High Level 
Abstract Syntax Tree (AST)Abstract Syntax Tree (AST)

•• Restructurer and Middle EndRestructurer and Middle End performs machine independent performs machine independent 
optimizations including “sourceoptimizations including “source--toto--source transformations” and outputs a source transformations” and outputs a 
Lower Level Intermediate Representation (IR)Lower Level Intermediate Representation (IR)p ( )p ( )

•• Can be several IRs to simplify program anlsysis, optimizations and Can be several IRs to simplify program anlsysis, optimizations and 
code generationcode generation

•• Many choices for IR (affect form and strength of program analysis Many choices for IR (affect form and strength of program analysis 
and optimizations)and optimizations)

•• Back EndBack End generally performs machine code generation including generally performs machine code generation including 
instruction scheduling and register allocationinstruction scheduling and register allocation



Optimizer structure

IRIR

M i i i (M i i i (i li i d d d li i ti t ti li i d d d li i ti t t

Optimization Optimization 
passpass11

Optimization Optimization 
passpass22

Optimization Optimization 
passpassNN

… IRIR

Many optimization passes (Many optimization passes (inlining; dead code elimination; constant inlining; dead code elimination; constant 
propagation; loop transformations including loop tiling, interchange, fusionpropagation; loop transformations including loop tiling, interchange, fusion--
fision, vectorization, unrolling; automatic parallelization, etcfision, vectorization, unrolling; automatic parallelization, etc) with the fixed ) with the fixed 
linear orderlinear orderlinear orderlinear order

Optimization passes can be often Optimization passes can be often turned on and offturned on and off using compiler using compiler 
command line flagscommand line flagsgg

Passes are generally applied to either the Passes are generally applied to either the whole programwhole program (Inter(Inter--Procedural Procedural 
Optimizations) or at a Optimizations) or at a function (procedure) levelfunction (procedure) level..

Transformations within passes are often applied on a loop or basicTransformations within passes are often applied on a loop or basic--block block 
level with the fixed linear order and can be level with the fixed linear order and can be parametricparametric

Some transformations can be selected by compiler command line flags but Some transformations can be selected by compiler command line flags but 
optimization heuristic is often hiddenoptimization heuristic is often hidden from the userfrom the user



Optimizer structure

IRIR Optimization Optimization 
passpass11

Optimization Optimization 
passpass22

Optimization Optimization 
passpassNN

… IRIR

Is this working well?Is this working well?Is this working well?Is this working well?

(DEMO(DEMO ))(DEMO(DEMO11))



Optimizer structure

IRIR Optimization Optimization 
passpass11

Optimization Optimization 
passpass22

Optimization Optimization 
passpassNN

… IRIR

Matmul benchmark and GCC 4.2.x compiler:Matmul benchmark and GCC 4.2.x compiler:

1) gcc1) gcc --O3O3 --funrollfunroll--loops matmul c [matrix size 160x160]loops matmul c [matrix size 160x160]1) gcc 1) gcc O3 O3 funrollfunroll loops matmul.c [matrix size 160x160]loops matmul.c [matrix size 160x160]

Using funrollUsing funroll--loops over default loops over default --O3 optimization level gives around O3 optimization level gives around 
15% improvement in execution time on x86 architecture 15% improvement in execution time on x86 architecture 
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Optimizer structure

IRIR Optimization Optimization 
passpass11

Optimization Optimization 
passpass22

Optimization Optimization 
passpassNN

… IRIR

Matmul benchmark and GCC 4.2.x compiler:Matmul benchmark and GCC 4.2.x compiler:

1) gcc1) gcc --O3O3 --funrollfunroll--loops matmul c [matrix size 160x160]loops matmul c [matrix size 160x160]1) gcc 1) gcc O3 O3 funrollfunroll loops matmul.c [matrix size 160x160]loops matmul.c [matrix size 160x160]

Using funrollUsing funroll--loops over default loops over default --O3 optimization level gives around O3 optimization level gives around 
15% improvement in execution time on x86 architecture 15% improvement in execution time on x86 architecture 

Wow! Found good compiler flag! Let’s use it all the time!Wow! Found good compiler flag! Let’s use it all the time!

2) gcc 2) gcc --O3 O3 --funrollfunroll--loops matmul.c [matrix size 3x3]loops matmul.c [matrix size 3x3]

Using funrollUsing funroll--loops over default loops over default --O3 optimization level degrades O3 optimization level degrades 
performance by about 10%performance by about 10%

S l ti thi fl i t l d!S l ti thi fl i t l d!So, selecting this flag is not always good!So, selecting this flag is not always good!



Room for improvement?

This problem is not new (40+ years)This problem is not new (40+ years)
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Challenges

•• Optimizer has to exploit all architectural featuresOptimizer has to exploit all architectural features

-- Instruction and thread level parallelismInstruction and thread level parallelism

-- Effective management of memory hierarchy Effective management of memory hierarchy 

(registers, caches, memory, disk)(registers, caches, memory, disk)

•• Optimization at many levels: source, internal formats, assemblerOptimization at many levels: source, internal formats, assembler

•• Optimization at many scopes: Optimization at many scopes: 

(whole program, function/procedure, loop, basic block)(whole program, function/procedure, loop, basic block)

•• Which optimizations to use?Which optimizations to use?

•• What is the best order of optimizations?What is the best order of optimizations?

•• How to select right transformation parameters?How to select right transformation parameters?

What if transformation parameters depend on runWhat if transformation parameters depend on run time information?time information?•• What if transformation parameters depend on runWhat if transformation parameters depend on run--time information?time information?



Challenges

Machine dependent optimizations vs. independent optimizationsMachine dependent optimizations vs. independent optimizations

Optimizations typically split into those that are always worthwhile andOptimizations typically split into those that are always worthwhile andOptimizations typically split into those that are always worthwhile and Optimizations typically split into those that are always worthwhile and 
machine specificmachine specific



Challenges

Machine dependent optimizations vs. independent optimizationsMachine dependent optimizations vs. independent optimizations

Optimizations typically split into those that are always worthwhile andOptimizations typically split into those that are always worthwhile andOptimizations typically split into those that are always worthwhile and Optimizations typically split into those that are always worthwhile and 
machine specificmachine specific

Example: Common subExample: Common sub--expression eliminationexpression elimination

Aim: prevent redundant recalculation of termsAim: prevent redundant recalculation of terms

a = b + c + fa = b + c + f t = b + ct = b + c

d = b + c + ed = b + c + e a = t + fa = t + f

d = t + ed = t + e

S l lik d id 4 dd 3S l lik d id 4 dd 3Seems always like a good idea: 4 adds vs. 3Seems always like a good idea: 4 adds vs. 3



Challenges

Machine dependent optimizations vs. independent optimizationsMachine dependent optimizations vs. independent optimizations

Optimizations typically split into those that are always worthwhile andOptimizations typically split into those that are always worthwhile andOptimizations typically split into those that are always worthwhile and Optimizations typically split into those that are always worthwhile and 
machine specificmachine specific

Example: Common subExample: Common sub--expression eliminationexpression elimination

Aim: prevent redundant recalculation of termsAim: prevent redundant recalculation of terms

a = b + c + fa = b + c + f t = b + ct = b + c

d = b + c + ed = b + c + e a = t + fa = t + f

d = t + ed = t + e

S l lik d id 4 dd 3S l lik d id 4 dd 3Seems always like a good idea: 4 adds vs. 3Seems always like a good idea: 4 adds vs. 3

However: potentially additional variableHowever: potentially additional variable pressure on register allocation!pressure on register allocation!However: potentially additional variable However: potentially additional variable -- pressure on register allocation!pressure on register allocation!



Challenges

Machine dependent optimizations vs. independent optimizationsMachine dependent optimizations vs. independent optimizationsp p p pp p p p

•• Rapidly evolving architectural features strongly determine the best code Rapidly evolving architectural features strongly determine the best code 
sequencesequence

•• Rarely are all instructions of equal cost. Even if they have the same Rarely are all instructions of equal cost. Even if they have the same 
latency, not all function units support all functions.latency, not all function units support all functions.y, ppy, pp

•• The more complex the hardware, the harder it is to determine the best The more complex the hardware, the harder it is to determine the best 
code sequencecode sequence

•• Mixed multimedia instructions of different ISA for heterogeneous Mixed multimedia instructions of different ISA for heterogeneous 
systems systems -- which version to select?which version to select?



ChallengesChallenges

Classic optimization: Static analysis and transformationClassic optimization: Static analysis and transformation

•• Statically (at compile time) analyze the program and transform it based Statically (at compile time) analyze the program and transform it based 
on architectural features (such as ISA, memory hierarchy, etc) and on architectural features (such as ISA, memory hierarchy, etc) and 
requirements (such as reducing execution time or program size) requirements (such as reducing execution time or program size) 

Example of strideExample of stride--1 access. Array C has row1 access. Array C has row--major layout. Makes major layout. Makes 
sense to traverse data rowsense to traverse data row--wise.wise.

for (i = 0; i<n; i++)for (i = 0; i<n; i++)for (i = 0; i<n; i++)for (i = 0; i<n; i++)

for (j = 0; j<n; j++)for (j = 0; j<n; j++)

a[j][i] + b[i];a[j][i] + b[i];a[j][i] + b[i];a[j][i] + b[i];

This code traverses the array columnThis code traverses the array column--wisewise

Does not exploit spatial locality. Can have excessive cache misses.Does not exploit spatial locality. Can have excessive cache misses.p p yp p y



Challenges

Poor stridePoor stride

for (i = 0; i<n; i++)for (i = 0; i<n; i++)

f (j 0 j j )f (j 0 j j )for (j = 0; j<n; j++)for (j = 0; j<n; j++)

a[j][i] + b[i];a[j][i] + b[i];

•• Neighboring fetched elements not referenced until much laterNeighboring fetched elements not referenced until much later•• Neighboring fetched elements not referenced until much laterNeighboring fetched elements not referenced until much later

•• Cache line probably evicted by thenCache line probably evicted by then



Challenges

Classic optimization: Static analysis and transformationClassic optimization: Static analysis and transformation

•• Static analysis suggests that the innermost iterator should be in Static analysis suggests that the innermost iterator should be in 
outermost subscript outermost subscript -- should be transformed!should be transformed!

•• TransformTransform apply code restructuring to achieve thisapply code restructuring to achieve this loop interchangeloop interchange•• Transform Transform -- apply code restructuring to achieve this apply code restructuring to achieve this -- loop interchangeloop interchange

for (j = 0; j<n; j++)for (j = 0; j<n; j++)

for (i = 0; i<n; i++)for (i = 0; i<n; i++)for (i  0; i<n; i++)for (i  0; i<n; i++)

a[j][i] + b[i];a[j][i] + b[i];

•• This code now traverses the array rowThis code now traverses the array row--wise!wise!yy

•• Linear analysis and transformations can bring dramatic performance Linear analysis and transformations can bring dramatic performance 
improvementsimprovements



Challenges

Improved strideImproved stride

for (j = 0; j<n; j++)for (j = 0; j<n; j++)

f (i 0 i i )f (i 0 i i )for (i = 0; i<n; i++)for (i = 0; i<n; i++)

a[j][i] + b[i];a[j][i] + b[i];

•• Neighboring fetched elements referenced immediatelyNeighboring fetched elements referenced immediately

•• Cache line unlikely to be evictedCache line unlikely to be evicted



Challenges

Classic optimization: Static analysis and transformationClassic optimization: Static analysis and transformation

•• However does not consider other costs. i.e. b[i] is no longer invariant However does not consider other costs. i.e. b[i] is no longer invariant --
temporal locality losttemporal locality lost

U id li d d l f hi N t f hi hU id li d d l f hi N t f hi h•• Uses idealized model of machine. No account of memory hierarchy, Uses idealized model of machine. No account of memory hierarchy, 
cache replacement policy etc.cache replacement policy etc.

•• If any of this were to change, no way of changing the compilerIf any of this were to change, no way of changing the compiler

•• Fundamentally each analysis has a small focused scope and hardware Fundamentally each analysis has a small focused scope and hardware 
issue to reduce complexity.issue to reduce complexity.

N h / i i iN h / i i i•• No theory/practice to integrate views.No theory/practice to integrate views.



Challenges
Some other transformations: Loop UnrollingSome other transformations: Loop UnrollingSome other transformations: Loop UnrollingSome other transformations: Loop Unrolling

original loop:original loop: unrolled loop (u unrolled loop (u -- unroll factor):unroll factor):

do i = 1 ndo i = 1 n do i = 1 n udo i = 1 n udo i = 1, ndo i = 1, n do i = 1, n, udo i = 1, n, u
S1(i) S1(i) S1(i)S1(i)
S2(i)S2(i) S2(i)S2(i)
…… ……

end doend do S1(i+1)S1(i+1)end doend do S1(i+1)S1(i+1)
S2(i+1)S2(i+1) loop body replicatedloop body replicated
…… u timesu times
S1(i+uS1(i+u--1)1)
S2(i+uS2(i+u--1)1)S2(i+uS2(i+u--1)1)
……

end doend do
do j = i, ndo j = i, n

S1(j)S1(j) processing allprocessing allS1(j)S1(j) processing allprocessing all
S2(j)S2(j) remainingremaining
…… elementselements

end doend do

Which unrolling factor to choose?Which unrolling factor to choose?



Challenges
Some other transformations: Loop TilingSome other transformations: Loop TilingSome other transformations: Loop TilingSome other transformations: Loop Tiling

original loop nest:original loop nest: transformed loop nest:transformed loop nest:
do IT = 1, N, SSdo IT = 1, N, SS
do JT = 1 N SSdo JT = 1 N SSdo JT = 1, N, SSdo JT = 1, N, SS

do I = 1, Ndo I = 1, N do I = IT, MIN(N, IT+SSdo I = IT, MIN(N, IT+SS--1)1)
do J = 1, Ndo J = 1, N do J = JT, MIN(N, JT+SSdo J = JT, MIN(N, JT+SS--1)1)

A(I,J) = A(I,J) + B(I,J)A(I,J) = A(I,J) + B(I,J) A(I,J) = A(I,J) + B(I,J)    A(I,J) = A(I,J) + B(I,J)    
C(I J) = A(IC(I J) = A(I 1 J) * 21 J) * 2 C(I J) = A(IC(I J) = A(I 1 J) * 21 J) * 2C(I,J) = A(IC(I,J) = A(I--1,J) * 21,J) * 2 C(I,J) = A(IC(I,J) = A(I--1,J) * 21,J) * 2

end doend do end doend do
end doend do end doend do

end doend do
end doend doend doend do

iteration spaceiteration space iteration spaceiteration space
of the original loop:of the original loop: of the transformed loop:of the transformed loop:



Motivation

Current stateCurrent state--ofof--thethe--art compilers and optimizers often fail to art compilers and optimizers often fail to 
deliver best performance on modern systems due to deliver best performance on modern systems due to 
f d t l f l it d d id bilitf d t l f l it d d id bilitfundamental reason of complexity and undecidabilityfundamental reason of complexity and undecidability
•• lack of runlack of run--time information time information -- impossible to know the best code sequence at impossible to know the best code sequence at 
compilecompile--timetimepp

•• simplistic hardware models for rapidly evolving processor architecture while its simplistic hardware models for rapidly evolving processor architecture while its 
behavior with outbehavior with out--ofof--order execution and caches is nonorder execution and caches is non--deterministicdeterministic

•• long chain of optimization passes long chain of optimization passes -- difficult to predict best order, inevitably loss of difficult to predict best order, inevitably loss of 
information along the pathinformation along the path

•• fixed blackfixed black--box optimization heuristics and inability to finebox optimization heuristics and inability to fine--tune applicationstune applicationsfixed blackfixed black box optimization heuristics and inability to finebox optimization heuristics and inability to fine tune applicationstune applications

•• inability to reuse optimization knowledge among different programs and inability to reuse optimization knowledge among different programs and 
architecturesarchitectures

•• inability to adapt to varying program and system behavior at runinability to adapt to varying program and system behavior at run--timetime



Motivation

CCurrent urrent compiler andcompiler and optimization technologies should be revisited optimization technologies should be revisited 
to keep pace with rapidly evolving hardwareto keep pace with rapidly evolving hardware

Need static compilers that can continuously and automatically learn Need static compilers that can continuously and automatically learn p y yp y y
how to optimize programs, and have an ability to adapt at runhow to optimize programs, and have an ability to adapt at run--time time 

for different behavior and constraintsfor different behavior and constraints



Formalization of optimization

Compilation as OptimizationCompilation as Optimization

•• Define “formal” optimization problem: minimize objective function over Define “formal” optimization problem: minimize objective function over 
a space of options.a space of options.

•• Objective function is execution time, though code size, power and Objective function is execution time, though code size, power and 
other constraints can be important.other constraints can be important.

•• Optimization search space: all possible equivalent programsOptimization search space: all possible equivalent programs

•• Objective function is undecidable in generalObjective function is undecidable in generalObjective function is undecidable in generalObjective function is undecidable in general

•• Optimization space: infiniteOptimization space: infinite



Formalization of optimization

IntractabilityIntractability

•• Solving an undecidable problem over an infinite space is clearly not Solving an undecidable problem over an infinite space is clearly not 
feasible so simplification is necessaryfeasible so simplification is necessary

•• Traditionally have broken the problem into subTraditionally have broken the problem into sub--problems based on certain problems based on certain 
assumptionsassumptions

S l h bl b l ki h i i l iS l h bl b l ki h i i l i•• Solve the problem by looking at each in isolation:Solve the problem by looking at each in isolation:

•• Code generationCode generation -- determining the best code for an expression is NPdetermining the best code for an expression is NP

•• SchedulingScheduling determining the best order of instruction is NPdetermining the best order of instruction is NP•• SchedulingScheduling -- determining the best order of instruction is NPdetermining the best order of instruction is NP

•• Register allocationRegister allocation determining the best use of registers to minimize determining the best use of registers to minimize 
memory traffic is NPmemory traffic is NP



Formalization of optimization

How to overcome?How to overcome?

Two main problems:Two main problems:

C l itC l it f hit tf hit t d id bilitd id bilit ff•• ComplexityComplexity of processor architecture, of processor architecture, undecidability undecidability of programof program

Both problems arise from trying to optimize statically at compile timeBoth problems arise from trying to optimize statically at compile time

•• Have to Have to guess a tractable modelguess a tractable model, have to , have to guess about data inputguess about data input

•• Pros and Cons to all approaches Depends highly on applicationPros and Cons to all approaches Depends highly on applicationPros and Cons to all approaches. Depends highly on application Pros and Cons to all approaches. Depends highly on application 
scenarioscenario



Formalization of optimization

Taxonomy:Taxonomy:

2 main causes: program undecidability and processor complexity2 main causes: program undecidability and processor complexity

•• Variables (what): Program (P) Data (D) and Processor (proc)Variables (what): Program (P) Data (D) and Processor (proc)•• Variables (what): Program (P), Data (D) and Processor (proc)Variables (what): Program (P), Data (D) and Processor (proc)

•• Variables (when): design, compile or runtimeVariables (when): design, compile or runtime

•• 2 sides of adaption: portability and specialization2 sides of adaption: portability and specialization

•• Examine all techniques in this lightExamine all techniques in this lightq gq g



Formalization of optimization

Taxonomy:Taxonomy:

•• Program (P), Data (D) and Processor (proc)Program (P), Data (D) and Processor (proc)

•• time = f(T(P),D,proc), Pick Transformation T to minimize ftime = f(T(P),D,proc), Pick Transformation T to minimize f

•• Standard compilation (SC) typically has a hardwired model of proc Standard compilation (SC) typically has a hardwired model of proc 
built inbuilt in

•• SC also has an ad hoc view of typical programs (often biased bySC also has an ad hoc view of typical programs (often biased bySC also has an ad hoc view of typical programs (often biased by SC also has an ad hoc view of typical programs (often biased by 
SPEC!) with a SPEC!) with a compiler strategy compiler strategy that is biased to themthat is biased to them

•• SC applies the strategy at compile time making no reference to dataSC applies the strategy at compile time making no reference to data

•• Data in no way affects SC behavior Data in no way affects SC behavior -- just guess a “typical” input setjust guess a “typical” input set



Formalization of optimization
Taxonomy:Taxonomy:Taxonomy:Taxonomy:

Design time:Design time:

•• Build a compiler: encode compiler optimization strategy Typically a timeBuild a compiler: encode compiler optimization strategy Typically a timeBuild a compiler: encode compiler optimization strategy. Typically a time Build a compiler: encode compiler optimization strategy. Typically a time 
consuming manual process. Takes many personconsuming manual process. Takes many person--years. Particular to one years. Particular to one 
processor, data and programs unknownprocessor, data and programs unknown

Compile time:Compile time:Compile time:Compile time:

•• Examine program and apply transformations based on design time Examine program and apply transformations based on design time 
encoded strategy. Can take a reasonable amount of time. Must be less than encoded strategy. Can take a reasonable amount of time. Must be less than 
accumulated runtime throughout lifetime of programaccumulated runtime throughout lifetime of program

•• Processor assumed, program known, data unknownProcessor assumed, program known, data unknown

RR titiRunRun--time:time:

•• Most knowledge about application available: processor, program and dataMost knowledge about application available: processor, program and data

•• Least amount of time available to do anything about it!Least amount of time available to do anything about it!•• Least amount of time available to do anything about it!Least amount of time available to do anything about it!

•• Typically compilers do nothing Typically compilers do nothing -- leave to independent runtime system/OSleave to independent runtime system/OS



Formalization of optimization

Taxonomy: Adaptation = Portability + SpecializationTaxonomy: Adaptation = Portability + Specialization

Compiler technology not normally discussed in this manner. 

Appears as infrastructure rather than optimization issue.

Portability:

• Ability to MODIFY behavior to changing circumstances, changing data, 
program processorprogram, processor

Specialization:Specialization:

• Ability to EXPLOIT fixed, known features: processor, program and data

Natural tension between the two: flexibility vs rigidity



Formalization of optimization

Taxonomy: current static compilersTaxonomy: current static compilers

• What and when to port/specialize: p p
processor, program, data, design, compile, runtime

• Currently: specialize to processor at design timeCurrently: specialize to processor at design time 
BUT cannot easily port to a new processor

• Portable across a wide range of programs and dataPortable across a wide range of programs and data 
at compile and runtime BUT

• Do not specialize to runtime data or program/processor interaction• Do not specialize to runtime data or program/processor interaction

• Very little exploitation of dynamic runtime knowledge/
Adaption to changing processor or data not consideredAdaption to changing processor or data not considered



Formalization of optimization

What are the ways to solve this problems?What are the ways to solve this problems?



Feedback directed compilation

•• Profile feedback directed compilationProfile feedback directed compilation

•• Application tuningApplication tuning

•• Iterative compilationIterative compilation

•• Efficient searchingEfficient searchingc e t sea c gc e t sea c g

•• ConclusionConclusion
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Feedback directed (profile directed compilation)Feedback directed (profile directed compilation)

•• Directly addresses problem of compile time unknown data Directly addresses problem of compile time unknown data 

•• Key (simple) idea: run program once and collect some useful information Key (simple) idea: run program once and collect some useful information 

•• Use this runtime information to improve program performanceUse this runtime information to improve program performance•• Use this runtime information to improve program performance Use this runtime information to improve program performance 

•• In effect move the first runtime info into the compile time phase In effect move the first runtime info into the compile time phase 

•• Makes sense if gathering the profile data is cheap and user willing to pay Makes sense if gathering the profile data is cheap and user willing to pay 
for 2 compiles. Can still use after first compile. for 2 compiles. Can still use after first compile. 

•• Allows specialization to runAllows specialization to run--time data time data –– what are pros and cons? what are pros and cons? 
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OffOff--line vs online vs on--line compilationline compilationOffOff line vs online vs on line compilationline compilation

•• Profile directed compilation is one example of offProfile directed compilation is one example of off--line optimization line optimization 

•• Information is gathered and utilized before the “production” run Information is gathered and utilized before the “production” run 

•• OnOn--line schemes gather information and dynamically change program line schemes gather information and dynamically change program 
as it runs. as it runs. 

•• OffOff--line schemes work on basis that costs incurred at compileline schemes work on basis that costs incurred at compile--time are time are 
t i h d b i d ti C b i tht i h d b i d ti C b i th lilioutweighed by improved runtime. Can be more aggressive than onoutweighed by improved runtime. Can be more aggressive than on--line line 

schemes. schemes. 



Feedback directed compilation

Multiple data

Program Compiler Executable

Results

Traditional compilation modelTraditional compilation model
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Data0 Data1

Program Compiler Executable Profile Compiler Executable

Profile information as an additional outputProfile information as an additional output

Results0 Results1

Profile information as an additional outputProfile information as an additional output

Data can change from run to run. Executable is still correct.Data can change from run to run. Executable is still correct.
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Brief historyBrief history

•• The use of profiling to aid program performance has been around for a The use of profiling to aid program performance has been around for a 
whilewhile

•• prof, gprof (1982). A tool to help developers to understand their code.prof, gprof (1982). A tool to help developers to understand their code.prof, gprof (1982). A tool to help developers to understand their code. prof, gprof (1982). A tool to help developers to understand their code. 
Instrumentation at compile time and then sampled at runtimeInstrumentation at compile time and then sampled at runtime

•• Hardware analysis (1980s). Monitor program behavior and adapt. Hardware analysis (1980s). Monitor program behavior and adapt. 
Branch predictionBranch prediction pipelines means need to guess which branch to takepipelines means need to guess which branch to takeBranch prediction Branch prediction -- pipelines means need to guess which branch to takepipelines means need to guess which branch to take

•• Edge/node based profile information for compilers 1990s Edge/node based profile information for compilers 1990s 

•• Path based profiling Larus + Ball late 1990s Smith 2000Path based profiling Larus + Ball late 1990s Smith 2000Path based profiling Larus + Ball late 1990s, Smith 2000 Path based profiling Larus + Ball late 1990s, Smith 2000 
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PDC for classic optimizationPDC for classic optimization

•• Record frequently taken edges of program controlRecord frequently taken edges of program control--flow graph flow graph 

•• IMPACT compiler in 1990s good example of this but also used earlier IMPACT compiler in 1990s good example of this but also used earlier --
Josh Fisher et al, Multiflow.Josh Fisher et al, Multiflow.Josh Fisher et al, Multiflow. Josh Fisher et al, Multiflow. 

•• Use weight information of edges and paths in graph to restructure Use weight information of edges and paths in graph to restructure 
controlcontrol--flow graph to enable greater optimization flow graph to enable greater optimization 

•• Main idea: merge frequently executed basic blocks increasing sizes of Main idea: merge frequently executed basic blocks increasing sizes of 
basic block if possible (superblock/hyperblock) formation. Fix up rest of basic block if possible (superblock/hyperblock) formation. Fix up rest of 
code. code. 

•• Allows improved scheduling of instructions and more aggressive scalar Allows improved scheduling of instructions and more aggressive scalar 
optimizations at expense of code size optimizations at expense of code size 
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PDC example 1PDC example 1

•• Sequence of basic blocksSequence of basic blocksSequence of basic blocks Sequence of basic blocks 

•• Frequency of execution on Frequency of execution on 
edges and nodes edges and nodes 

•• Primarily ABEF Primarily ABEF 

•• Other entry/exit controlOther entry/exit control--flow flow 
prevents merging prevents merging p g gp g g

•• SuperSuper--block block --frequently frequently 
executed path executed path 

M d tidM d tid•• Merge and tidyMerge and tidy--up up 

•• Optimize larger unit Optimize larger unit 
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PDC example 1PDC example 1

•• Selecting the traceSelecting the trace•• Selecting the trace Selecting the trace 

•• Start at most frequent blockStart at most frequent block

•• Add blocks on most frequentAdd blocks on most frequentAdd blocks on most frequent Add blocks on most frequent 
successors successors 

•• Repeat on other nodes Repeat on other nodes 

•• Done in both controlDone in both control--flow flow 
directions directions 

•• Do on remaining nodesDo on remaining nodesDo on remaining nodesDo on remaining nodes
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PDC example 1PDC example 1

•• Tail DuplicationTail Duplication•• Tail Duplication Tail Duplication 

•• Duplicate first block with  Duplicate first block with  
external entry edges external entry edges 

•• But not the head But not the head 

•• Redirect incoming edgesRedirect incoming edges

•• Duplicate outgoing Duplicate outgoing 

•• Repeat Repeat 

•• Much code duplication Much code duplication 
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PDC example 2PDC example 2

Common b + c on frequently taken pathCommon b + c on frequently taken pathq y pq y p
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PDC example 2PDC example 2

Replicate first node on main path with external incoming edge Replicate first node on main path with external incoming edge p p g gp p g g

Now separate pathsNow separate paths
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PDC example 2PDC example 2

Applying CSE eliminates redundant computation at cost of additional codeApplying CSE eliminates redundant computation at cost of additional codepp y g ppp y g p
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Edge vs Path profilingEdge vs Path profiling

•• Overlapping paths cannot be distinguished by edge profilingOverlapping paths cannot be distinguished by edge profiling•• Overlapping paths cannot be distinguished by edge profiling Overlapping paths cannot be distinguished by edge profiling 

•• Path profiling allows much greater accuracy Path profiling allows much greater accuracy 

•• However, combinatorial explosion in paths. Cycles in graphs leads toHowever, combinatorial explosion in paths. Cycles in graphs leads toHowever, combinatorial explosion in paths. Cycles in graphs leads to However, combinatorial explosion in paths. Cycles in graphs leads to 
potentially unbounded number potentially unbounded number 

•• In practice Edge/node profiling only captures around 40In practice Edge/node profiling only captures around 40--50 50 

•• Larus and Ball ’99 developed an efficient path profiler that avoids these Larus and Ball ’99 developed an efficient path profiler that avoids these 
problems. In practice the benefit achieved was small though problems. In practice the benefit achieved was small though 

•• Mike Smith at Harvard extended this idea for more targeted optimizationMike Smith at Harvard extended this idea for more targeted optimizationMike Smith at Harvard extended this idea for more targeted optimization Mike Smith at Harvard extended this idea for more targeted optimization 
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Some results when using PDC (Fursin’2002)Some results when using PDC (Fursin’2002)
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Some results when using PDC (Fursin’2002)Some results when using PDC (Fursin’2002)
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Beyond PDCBeyond PDC

•• Although useful, the performance gains are modest Although useful, the performance gains are modest 

•• Challenge of undecidability and processor behavior not addressed. Challenge of undecidability and processor behavior not addressed. 

•• What happens if data changes on the second run? What happens if data changes on the second run? 

•• Really focuses on persistent controlReally focuses on persistent control--flow behavior flow behavior 

•• All other information i.e. runAll other information i.e. run--time values, memory locations accessed are time values, memory locations accessed are 
ignoredignored

•• Can we get more out of knowing data and its impact on program Can we get more out of knowing data and its impact on program 
behavior?behavior?



Feedback directed compilation

Evolution of PDC

Multiple data

Program Compiler Executable Profiles

Results

PDC with multiple (iterative) compilesPDC with multiple (iterative) compiles
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Automatic library tuningAutomatic library tuning

•• A different offA different off--line approach that exploits knowledge gained by running line approach that exploits knowledge gained by running 
the program in the optimization process the program in the optimization process 

•• There is a (growing) family of application specific approaches to libraryThere is a (growing) family of application specific approaches to libraryThere is a (growing) family of application specific approaches to library There is a (growing) family of application specific approaches to library 
tuningtuning

•• Rather than recording path information for later optimization Rather than recording path information for later optimization –– just record just record 
execution timeexecution timeexecution time execution time 

•• Try many different versions of the program and select the best for that Try many different versions of the program and select the best for that 
machine. Key issue is how different programs are generated. machine. Key issue is how different programs are generated. 

•• In effect move runIn effect move run--time into design time. time into design time. 

Main examples Main examples ATLAS, PHiPAC and FFTWATLAS, PHiPAC and FFTW
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ATLASATLAS

•• An automatic method of tuning linear algebraic libraries for differing An automatic method of tuning linear algebraic libraries for differing 
processorsprocessors

•• It is domain specific and only focuses on tuning the core GEMM routineIt is domain specific and only focuses on tuning the core GEMM routineIt is domain specific and only focuses on tuning the core GEMM routine It is domain specific and only focuses on tuning the core GEMM routine 
for a specific processor. for a specific processor. 

•• Takes an adTakes an ad--hoc approach hoc approach -- generate different versions and measure generate different versions and measure 
them against anything availablethem against anything available including vendor supplied libraries andincluding vendor supplied libraries andthem against anything available them against anything available -- including vendor supplied libraries and including vendor supplied libraries and 
pick the best pick the best 

•• It tries different software pipelining and register tiling parameters and It tries different software pipelining and register tiling parameters and 
enumerates them all, selecting the best. The space of options is derived enumerates them all, selecting the best. The space of options is derived 
from explicit knowledge of the application behavior. from explicit knowledge of the application behavior. 
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ATLASATLAS

Broken down into application specific, generic and platform specific sectionsBroken down into application specific, generic and platform specific sections
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ATLASATLAS

•• Regularly outperforms the best existing approaches. Now the standard Regularly outperforms the best existing approaches. Now the standard 
approach to library generation. approach to library generation. 

•• Adaption?: Very portableAdaption?: Very portable -- works on any platform AND specializes to theworks on any platform AND specializes to theAdaption?: Very portable Adaption?: Very portable works on any platform AND specializes to the works on any platform AND specializes to the 
particular processor particular processor 

•• BUT specialized to a particular application: no portability across BUT specialized to a particular application: no portability across 
programs no exploitation of runtime data as static controlprograms no exploitation of runtime data as static control flowflowprograms, no exploitation of runtime data as static controlprograms, no exploitation of runtime data as static control--flow flow 

•• PHiPACPHiPAC tries to exploit data patterns in sparse structures by trying tries to exploit data patterns in sparse structures by trying 
simple optimizations offsimple optimizations off--line and applying them at runline and applying them at run--time when data time when data 
encountered.encountered.

•• However However -- domain specific, not domain specific, not generalizablegeneralizable or widely automatable or widely automatable 
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Iterative compilationIterative compilation

•• Iterative compilation started in 1997 with the OCEANS project Iterative compilation started in 1997 with the OCEANS project 

•• Similar in spirit to automatic tuning except the space of tuning is in fact Similar in spirit to automatic tuning except the space of tuning is in fact 
the entire program transformation spacethe entire program transformation spacethe entire program transformation space the entire program transformation space 

•• In a sense it is direct implementation of the formal compiler optimization In a sense it is direct implementation of the formal compiler optimization 
problem. Find transformation T that minimizes cost. problem. Find transformation T that minimizes cost. 

•• Main ideas was to combine high and low level optimization and use cost Main ideas was to combine high and low level optimization and use cost 
models to guide selection models to guide selection 

•• Highly ambitious but immature infrastructure prevented much progressHighly ambitious but immature infrastructure prevented much progressHighly ambitious but immature infrastructure prevented much progress Highly ambitious but immature infrastructure prevented much progress 
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OCEANS

• Similar iterative structure to ATLAS

M i k hi f b t til• Main work on searching for best tile 
and unroll parameters PFDC’98
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t i lti l N 400 Ult S h ti hmatrix multiply, N=400, UltraSparc, exhaustive search

Minimum at: Unroll=3, Tile size=57

N i i 2 6% i i l 4 99 i i 0 56Near minimum: 2.6%, original 4.99 sec, minimum 0.56 sec
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t i lti l N 400 Ult S d hmatrix multiply, N=400, UltraSparc, random search

50 steps: within 0.0%. Initially 2.65 times slower than minimum
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t i lti l N 512 Al h h ti hmatrix multiply, N=512, Alpha, exhaustive search

Minimum at: Unroll=4, Tile size=85

N i i 0 9% i i l 31 72 i i 3 34Near minimum: 0.9%, original 31.72 sec, minimum 3.34 sec, 
maximum 81.40 !
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t i lti l N 512 Al h d hmatrix multiply, N=512, Alpha, random search

50 steps: within 21.9%. Originally 5.25 times slower than minimum
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t i lti l N 400 P ti P h ti hmatrix multiply, N=400, Pentium Pro, exhaustive search

Minimum at: Unroll=19, Tile size=57

N i i 4 3% i i l 4 88 i i 1 43Near minimum: 4.3%, original 4.88 sec, minimum 1.43 sec
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t i lti l N 400 P ti P d hmatrix multiply, N=400, Pentium Pro, random search

50 steps: within 10.5%
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t i lti l N 512 R10000 h ti hmatrix multiply, N=512, R10000, exhaustive search

Minimum at: Unroll=4, Tile size=85

N i i 7 2% i i l 2 79 i i 1 09Near minimum: 7.2%, original 2.79 sec, minimum 1.09 sec
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t i lti l N 512 R10000 d hmatrix multiply, N=512, R10000, random search

50 steps: within 4.9%
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Phase orderPhase order

•• Oceans work looked at parameterized high level search spaces (tiling, Oceans work looked at parameterized high level search spaces (tiling, 
unrolling). Restricted by compilers and only small kernel exploration unrolling). Restricted by compilers and only small kernel exploration 

•• Impressive search results due to “tuned” heuristic and small spaces. InImpressive search results due to “tuned” heuristic and small spaces. InImpressive search results due to tuned  heuristic and small spaces. In Impressive search results due to tuned  heuristic and small spaces. In 
practice depends on space shape practice depends on space shape 

•• Keith Cooper et al ’99 onwards also looked at iterative compilation Keith Cooper et al ’99 onwards also looked at iterative compilation 

•• Cooper’s search space was the orderings of phases within a compiler Cooper’s search space was the orderings of phases within a compiler 

•• Lower level and not tied to any language. More generic and explores the Lower level and not tied to any language. More generic and explores the 
ageage--old phase ordering problem more directlyold phase ordering problem more directlyageage old phase ordering problem more directly old phase ordering problem more directly 
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•• Cooper has found improvements up to 25% over default sequencesCooper has found improvements up to 25% over default sequences

•• Examined search heuristics that find good points quicklyExamined search heuristics that find good points quickly

•• However, evaluation approach is strange and results don’t seem However, evaluation approach is strange and results don’t seem 
portableportable
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DSP systemsDSP systems

•• Iterative compilation proved to be useful for embedded applications or Iterative compilation proved to be useful for embedded applications or 
libraries.libraries.

•• It is difficult to improve on embedded compilers and hard to get accessIt is difficult to improve on embedded compilers and hard to get accessIt is difficult to improve on embedded compilers and hard to get access It is difficult to improve on embedded compilers and hard to get access 
to internals. HLT is attractive but pointers cause problems to internals. HLT is attractive but pointers cause problems 

•• Franke et al 2005 overcomes this with a pointer recovery + SUIF based Franke et al 2005 overcomes this with a pointer recovery + SUIF based 
transformation explorer Uses 2 search strategiestransformation explorer Uses 2 search strategiestransformation explorer. Uses 2 search strategies transformation explorer. Uses 2 search strategies 
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DSP framework

Using this framework to exhaustively explore and characterize the Using this framework to exhaustively explore and characterize the 
optimization spaceoptimization spacep pp p
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Franke et alFranke et al

•• Looks through space of 80Looks through space of 808080 transformations on 3 platforms for UTDSP transformations on 3 platforms for UTDSP 
benchmark suite Not feasible to do exhaustively Really stresses SUIFbenchmark suite Not feasible to do exhaustively Really stresses SUIFbenchmark suite. Not feasible to do exhaustively. Really stresses SUIF benchmark suite. Not feasible to do exhaustively. Really stresses SUIF 

•• 2 algorithms. Trade2 algorithms. Trade--off between coverage and focus. Random search off between coverage and focus. Random search --
select a random length up to 80. Then randomly select any select a random length up to 80. Then randomly select any 
t f ti f h l ti L t f d d t t f tit f ti f h l ti L t f d d t t f titransformation for each location. Lots of redundant transformations. transformation for each location. Lots of redundant transformations. 

•• PBIL: Population based inference learning. Modify probability of PBIL: Population based inference learning. Modify probability of 
selecting transformation based on previous trials. Only examine effective selecting transformation based on previous trials. Only examine effective g p yg p y
transformations transformations 

•• Average 41% reduction. PBIL finds the best in majority of cases but Average 41% reduction. PBIL finds the best in majority of cases but 
Random best has higher speed upRandom best has higher speed upRandom best has higher speed up. Random best has higher speed up. 
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Impact of transformationsImpact of transformations
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Results

• Tried 500 runs. On UTDSP benchmark: TriMedia average speedup of 
1.43 and 1.73 for TigerSharc 

• Shows that HLT can give a big win compared to backend optimizationsShows that HLT can give a big win compared to backend optimizations 

• Also compared GCC and ICC on embedded Celeron 

• Original: ICC 1.22 faster than GCC g

• GCC + IC: speedup of 1.54 - better than ICC 

• BUT ICC + IC: speedup of 2.14 
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Interactive Compilation Interface (Fursin et al’2005)Interactive Compilation Interface (Fursin et al’2005)Interactive Compilation Interface (Fursin et al 2005)Interactive Compilation Interface (Fursin et al 2005)

http://gcchttp://gcc--ici.sourceforge.netici.sourceforge.net

InsteadInstead ofof developingdeveloping newnew compilercompiler oror transformationstransformations toolstools modifymodify currentcurrentInsteadInstead ofof developingdeveloping newnew compilercompiler oror transformationstransformations tools,tools, modifymodify currentcurrent
popularpopular (non(non--research)research) rigidrigid compilerscompilers intointo simplersimpler transparenttransparent openopen transformationtransformation
toolsetstoolsets withwith externallyexternally tunabletunable optimizationoptimization heuristicsheuristics throughthrough aa standardizedstandardized
InteractiveInteractive CompilationCompilation InterfaceInterface (ICI)(ICI)

ControlControl onlyonly decisiondecision processprocess atat globalglobal oror locallocal levellevel andand avoidavoid revealingrevealing allall
intermediateintermediate compilercompiler representationrepresentation toto allowallow furtherfurther transparenttransparent compilercompiler evolutionevolution

NarrowNarrow downdown optimizationoptimization spacespace byby suggestingsuggesting onlyonly legallegal transformationstransformations

EnableEnable iterativeiterative recompilationrecompilation algorithmalgorithm toto applyapply sequencessequences ofof transformationstransformations

TreatTreat currentcurrent optimizationoptimization heuristicheuristic asas aa blackblack--boxbox andand progressivelyprogressively adaptadapt itit toto aa
givengiven programprogram andand givengiven architecturearchitecture

AllowAllow lifelife--long,long, wholewhole--programprogram optimizationoptimization researchresearch withwith optimizationoptimization knowledgeknowledge
reusereuse
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Interactive Compilation InterfaceInteractive Compilation InterfaceInteractive Compilation InterfaceInteractive Compilation Interface
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Binary
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Interactive Compilation InterfaceInteractive Compilation InterfaceInteractive Compilation InterfaceInteractive Compilation Interface

A li ti
Source-to-source

A li ti

Adaptive Iterative 
Interactive Compiler

Application transformers

Decision for              Perform 
transformation 1 transf 1

Application

Compiler 
“black box” optimization 
heuristic

Sub-heuristic 1

S b h i ti

Compiler 
optimization 
heuristic

Perform
transf

Decision for 
t f tiSub-heuristic j

Sub-heuristic kSub-heuristic i Interactive Compilation 
Interface (ICI)

transf. 1transformation 1
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External plugins to 
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transformation i transf i

Perform
transf. i
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transformation i
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Optimization
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tune programs and 
default compiler 
optimization 
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Detect optimization

GCC

Detect optimization 
flags

GCC Controller
(Pass Manager)

Pass 1
...

Pass N

GCC Data Layer
AST CFG CF tAST, CFG, CF, etc
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Detect optimization ICI

GCC with ICI
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Detect optimization ICI

GCC with ICI

IC Plugins

High-level scripting
(java, python, etc)
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Detect optimization ICI

GCC with ICI

IC Plugins

High-level scripting
(java, python, etc)

flags

IC 
Event

Selecting pass 
sequences

<Dynamically linked 
shared libraries>

Interactive 
Compilation

GCC Controller
(Pass Manager)

IC 
Event

Extracting static 
program features

...

Compilation 
Interface

ML drivers

Pass N
IC 
Event

Pass 1
...

CCC
Continuous Collective 
Compilation Framework

ML drivers      
to optimize 
programs 
and tune 
compiler 
optimization

GCC Data Layer
AST, CFG, CF, etc

IC   
Data optimization 

heuristic
AST, CFG, CF, etc Data
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Interactive Compilation InterfaceInteractive Compilation Interfacepp

#include "ic#include "ic--controller.h"controller.h"
#include "ic#include "ic--interface.h"interface.h"
bool start (char *params)bool start (char *params)
{{
i  * i   i f i  ()i  * i   i f i  ()int *version = get_interface_version ();int *version = get_interface_version ();
bool ret = (*version > 100) ? true : false;bool ret = (*version > 100) ? true : false;
free(version);free(version);
return ret;return ret;

}}}}
void stop (void)void stop (void)
{{
/* nothing to be done; *//* nothing to be done; */

}}
void controller (void)void controller (void)void controller (void)void controller (void)
{{
char **passes = get_feature ("global_passes");char **passes = get_feature ("global_passes");
char **functions = get_feature ("functions");char **functions = get_feature ("functions");
char **tmp, **tmp1;char **tmp, **tmp1;
// IPA passes// IPA passes
for (tmp = passes; *tmp != NULL; tmp++)for (tmp = passes; *tmp != NULL; tmp++)
{{
char *pass_name = *tmp;char *pass_name = *tmp;
// run pass should never return false  since we are performing same pass// run pass should never return false  since we are performing same pass// run_pass should never return false, since we are performing same pass// run_pass should never return false, since we are performing same pass
// order as GCC.// order as GCC.
run_pass(pass_name);run_pass(pass_name);
free(pass_name);free(pass_name);
}}
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Continuous CompilationContinuous CompilationContinuous CompilationContinuous Compilation

applicationapplication

sourcesource--toto--source source 
transformationstransformations

current compilerscurrent compilers

binarybinary

executionexecution

binarybinary--toto--binary binary 
transformationstransformations
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Continuous CompilationContinuous CompilationContinuous CompilationContinuous Compilation

applicationapplication Development Websites:Development Websites:

sourcesource--toto--source source 
transformationstransformations

http://gcchttp://gcc--ici.sourceforge.netici.sourceforge.net

http://pathscalehttp://pathscale--
ici.sourceforge.netici.sourceforge.net

Iterative Interactive Iterative Interactive 
CompilerCompiler

gg

http://open64http://open64--ici.sourceforge.netici.sourceforge.net

http://gcchttp://gcc--ccc.sourceforge.netccc.sourceforge.net

binarybinary Program Program 
Transformation Transformation 

DatabaseDatabase

executionexecution
Iterative Optimizations/Iterative Optimizations/

Machine LearningMachine Learning

binarybinary--toto--binary binary 
transformationstransformations



Feedback directed compilation

Evaluating iterative compilation with multiple datasetsEvaluating iterative compilation with multiple datasets

MiDataSets for MiBench MiDataSets for MiBench –– 20 per program20 per program

Iterative search for best compiler flags using PathScale compiler suiteIterative search for best compiler flags using PathScale compiler suite

Grigori Fursin, John Cavazos, Michael O’Boyle and Olivier Temam. MiDataSets: Creating Grigori Fursin, John Cavazos, Michael O’Boyle and Olivier Temam. MiDataSets: Creating 
The Conditions For A More Realistic Evaluation of Iterative Optimization. Proceedings of The Conditions For A More Realistic Evaluation of Iterative Optimization. Proceedings of 
thethe International Conference on High Performance Embedded Architectures & CompilersInternational Conference on High Performance Embedded Architectures & Compilersthe the International Conference on High Performance Embedded Architectures & Compilers International Conference on High Performance Embedded Architectures & Compilers 
(HiPEAC 2007), Ghent, Belgium, January 2007(HiPEAC 2007), Ghent, Belgium, January 2007

Development website:Development website: http://midatasets.sourceforge.nethttp://midatasets.sourceforge.net



Feedback directed compilation

Data sets reactions to optimizations (dijkstra).Data sets reactions to optimizations (dijkstra).



Feedback directed compilation

Data sets reactions to optimizations (jpeg decode).Data sets reactions to optimizations (jpeg decode).



Feedback directed compilation

Variation of best optimizations across programs (SHA)Variation of best optimizations across programs (SHA)



Feedback directed compilation

Variation of best optimizations across programs (SUSAN Corners)Variation of best optimizations across programs (SUSAN Corners)



Feedback directed compilation

Search speedSearch speed

•• The main problem is optimization space size and speed to solution The main problem is optimization space size and speed to solution 

•• Many use a cut down transformation space Many use a cut down transformation space -- but this just imposes ad but this just imposes ad 
hoc non portable bias hoc non portable bias 

•• Need to have large interesting transformation space. OrthogonalNeed to have large interesting transformation space. Orthogonal -- nonoNeed to have large interesting transformation space. Orthogonal Need to have large interesting transformation space. Orthogonal no no 
repetition. SUIF is ad hoc. UTF framework from Shun et al 2004 very repetition. SUIF is ad hoc. UTF framework from Shun et al 2004 very 
systematic but doesn’t cover everything systematic but doesn’t cover everything 

•• Build search techniques to find good points quicklyBuild search techniques to find good points quickly•• Build search techniques to find good points quickly Build search techniques to find good points quickly 



Feedback directed compilation

Using modelsUsing models

•• Obvious approach is to use cheap static modes to help reduce number Obvious approach is to use cheap static modes to help reduce number 
of runsof runsof runsof runs

•• Difficulty is to balance savings gained by model against hardwiring Difficulty is to balance savings gained by model against hardwiring 
strategy strategy 

•• Wolfe and Mayadan generate many versions of a program and check Wolfe and Mayadan generate many versions of a program and check 
against an internal cache models rather than generate the best by against an internal cache models rather than generate the best by 
construction construction 

•• Although more successful doesn’t address problem of processor Although more successful doesn’t address problem of processor 
complexity. No real feedback (Pugh A* search ). Cannot adapt complexity. No real feedback (Pugh A* search ). Cannot adapt 

•• Knijnenburg et al PACT 2000 use simple cache models as filters. Used Knijnenburg et al PACT 2000 use simple cache models as filters. Used 
to eliminate bad options rather than as substitute for feedback. Obtained to eliminate bad options rather than as substitute for feedback. Obtained 
significant speed up significant speed up 



Feedback directed compilation

Search spaceSearch space

•• Understanding the shape or structure of search space is vital to Understanding the shape or structure of search space is vital to 
determining good ways to search itdetermining good ways to search itdetermining good ways to search it determining good ways to search it 

•• Unfortunately little agreementUnfortunately little agreement

•• Vuduc ’99 shows that minima dramatically vary across processorVuduc ’99 shows that minima dramatically vary across processorVuduc 99 shows that minima dramatically vary across processorVuduc 99 shows that minima dramatically vary across processor

•• Cooper shows that reasonable minima are very near any given pointCooper shows that reasonable minima are very near any given point

•• However, our recent work shows that it strongly depends on scenario. However, our recent work shows that it strongly depends on scenario. g y pg y p
Rich space on a TriMedia while golf green on the TI. Should use Rich space on a TriMedia while golf green on the TI. Should use 
structure to aid search structure to aid search 

•• Vuduc uses distribution of good points as stopping criteriaVuduc uses distribution of good points as stopping criteriaVuduc uses distribution of good points as stopping criteriaVuduc uses distribution of good points as stopping criteria

•• Fursin use upper bound of performance as guide. Fursin use upper bound of performance as guide. 



Conclusions

Finding a good solution may be 

Optimization spaces (set of all possible program transformations) are large, Optimization spaces (set of all possible program transformations) are large, 
nonnon--linear with many local minimalinear with many local minima

long and non-trivial

matmul, 2 transformations, 
search space = 2000

swim, 3 transformations,
search space = 1052

Recent technique Recent technique -- iterative compilation:iterative compilation:
learn program behavior across executionslearn program behavior across executions

High potential (O’Boyle, Cooper), but:High potential (O’Boyle, Cooper), but:High potential (O Boyle, Cooper), but:High potential (O Boyle, Cooper), but:
-- slowslow
-- the same dataset is usedthe same dataset is used
-- no runno run--time adaptationtime adaptation
-- no optimization knowledge reuseno optimization knowledge reuse

Solving these problems is nonSolving these problems is non--trivialtrivial



Next lecture

Next will focus on Next will focus on 

dynamic compilation/optimization approaches todynamic compilation/optimization approaches todynamic compilation/optimization approaches to dynamic compilation/optimization approaches to 
adapt to different programs behavior at runadapt to different programs behavior at run--time time 

and machine learning to speed up iterativeand machine learning to speed up iterativeand machine learning to speed up iterative and machine learning to speed up iterative 
search…search…
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