
Iterative feedbackIterative feedback--ff
directed compilationdirected compilation

Grigori FursinGrigori Fursin

Alchemy group, INRIA Saclay, FranceAlchemy group, INRIA Saclay, France

Grigori FursinGrigori Fursin

My background

•• Ph.D. degree from the University of Edinburgh, UK (1999 Ph.D. degree from the University of Edinburgh, UK (1999 -- 2004)2004)

Program iterative optimizations and performance predictionProgram iterative optimizations and performance prediction

•• Postdoctoral researcher at INRIA Postdoctoral researcher at INRIA FutursFuturs, France (2004 , France (2004 -- 2007)2007)
•• Research scientist at INRIA Saclay, France (2007 …)Research scientist at INRIA Saclay, France (2007 …)

Iterative feedback directed compilationIterative feedback directed compilation
RunRun--time adaptation and optimizationtime adaptation and optimization
Machine learningMachine learning
Architecture design space explorationArchitecture design space exploration

• Main collaborations:

IBM, NXP, STMicro, ARC, ARM, CAPS Enterprise
University of Edinburgh, UK
Universitat Politechinca de Catalunya (UPC), Spain
University of Illinois at Urbana-Champaign (UIUC), USA
ICT, China

Course overview

Assume that all understand basics of computer architecture and compilation Assume that all understand basics of computer architecture and compilation
process. process.

Focus on compilers that map user program to machine codeFocus on compilers that map user program to machine codeFocus on compilers that map user program to machine codeFocus on compilers that map user program to machine code

Explain general major compilation problems instead of focusing on individual Explain general major compilation problems instead of focusing on individual
components components

Describe current major research areas for compilation and optimizationDescribe current major research areas for compilation and optimization

•• MotivationMotivation

•• BackgroundBackgroundBackgroundBackground

•• Feedback directed compilation and optimizationFeedback directed compilation and optimization

•• Dynamic compilation and optimizationDynamic compilation and optimizationy p py p p

•• Machine learning and future directionsMachine learning and future directions

Motivation

Are compilers important?Are compilers important?

Motivation

Current innovations in science and industry demand everCurrent innovations in science and industry demand ever--increasing computing increasing computing
resources while placing strict requirements on resources while placing strict requirements on system performance, power system performance, power
consumption, size, response, reliability, portability and design timeconsumption, size, response, reliability, portability and design time..

Motivation

Current innovations in science and industry demand everCurrent innovations in science and industry demand ever--increasing computing increasing computing
resources while placing strict requirements on resources while placing strict requirements on system performance, power system performance, power
consumption, size, response, reliability, portability and design timeconsumption, size, response, reliability, portability and design time..

HighHigh--performance computing systems rapidly evolve toward performance computing systems rapidly evolve toward
complex heterogeneous multicomplex heterogeneous multi--core systemscore systems

dramatically increased optimization time dramatically increased optimization time

Motivation

Current innovations in science and industry demand everCurrent innovations in science and industry demand ever--increasing computing increasing computing
resources while placing strict requirements on resources while placing strict requirements on system performance, power system performance, power
consumption, size, response, reliability, portability and design timeconsumption, size, response, reliability, portability and design time..

HighHigh--performance computing systems rapidly evolve toward performance computing systems rapidly evolve toward
complex heterogeneous multicomplex heterogeneous multi--core systemscore systems

Optimizing compilers play a key role in Optimizing compilers play a key role in producing executable codes quickly producing executable codes quickly

dramatically increased optimization time dramatically increased optimization time

and automaticallyand automatically while satisfying all the above requirements for a broad while satisfying all the above requirements for a broad
range of programs and architectures. range of programs and architectures.

Motivation

I it ?I it ?Is it easy? Is it easy?
What are the challenges?What are the challenges?gg

Motivation

I it ?I it ?Is it easy? Is it easy?
What are the challenges?What are the challenges?gg

Before answering these questions we need to look at the basics of theBefore answering these questions we need to look at the basics of theBefore answering these questions we need to look at the basics of the Before answering these questions we need to look at the basics of the
current compilerscurrent compilers

Compiler background

•• Compilers translate user programs to machine codeCompilers translate user programs to machine code

•• Translation must be correctTranslation must be correct

•• Needed to hide machine complexityNeeded to hide machine complexity

•• Compilers need to optimize code to satisfy various requirementsCompilers need to optimize code to satisfy various requirements

•• Compilers automatically translate Can we automate compilerCompilers automatically translate Can we automate compilerCompilers automatically translate. Can we automate compiler Compilers automatically translate. Can we automate compiler
construction?construction?

•• Compilers generating compilers exit Compilers generating compilers exit -- GCC, GCC, CoSyCoSy

•• Automatic construction of compiler optimization is very challengingAutomatic construction of compiler optimization is very challenging

Compiler background

Some current popular static optimizing compilers for Linux:Some current popular static optimizing compilers for Linux:

•• GCC (GNU Compiler Collection)GCC (GNU Compiler Collection)

http://gcc.gnu.orghttp://gcc.gnu.org

•• Open64 Open64

http://www.open64.nethttp://www.open64.net

•• Intel CompilersIntel Compilers

http://www.intel.com/cd/software/products/asmohttp://www.intel.com/cd/software/products/asmo--na/na/
eng/compilers/284264 htmeng/compilers/284264 htmeng/compilers/284264.htmeng/compilers/284264.htm

•• PathScale CompilersPathScale Compilers

http://www.pathscale.comhttp://www.pathscale.comp pp p

Compiler structure

•• Compiler structure changed little since 1950s: consists of a linear Compiler structure changed little since 1950s: consists of a linear
sequence of passessequence of passessequence of passessequence of passes

•• Lexical Analysis: Lexical Analysis: Finds and verifies basic syntactic items, lexems, Finds and verifies basic syntactic items, lexems,
tokens using finite state automatatokens using finite state automata

•• Syntax Analysis: Syntax Analysis: Checks tokens following a grammar and builds an Checks tokens following a grammar and builds an
Abstract Syntax Tree (AST)Abstract Syntax Tree (AST)

•• Semantic Analysis:Semantic Analysis: Checks that all names are consistently used and Checks that all names are consistently used and
builds a symbol tablebuilds a symbol table

•• Code optimization and generation:Code optimization and generation: Optimize code using different Optimize code using different
intermediate formats (IR) and generate machine instructions for a intermediate formats (IR) and generate machine instructions for a
specific architecture while keeping the meaning of the programspecific architecture while keeping the meaning of the program

Compiler structure

sourcesource

codecode
Front Front
EndEnd

HLHL

ASTAST
RestructRestruct

HLHL

ASTAST
Middle Middle

EndEnd
LowLow

IRIR
Back Back
EndEnd

machinemachine

codecode

•• Front EndFront End translates “strings of characters” into a structured High Level translates “strings of characters” into a structured High Level
Abstract Syntax Tree (AST)Abstract Syntax Tree (AST)

•• Restructurer and Middle EndRestructurer and Middle End performs machine independent performs machine independent
optimizations including “sourceoptimizations including “source--toto--source transformations” and outputs a source transformations” and outputs a
Lower Level Intermediate Representation (IR)Lower Level Intermediate Representation (IR)p ()p ()

•• Can be several IRs to simplify program anlsysis, optimizations and Can be several IRs to simplify program anlsysis, optimizations and
code generationcode generation

•• Many choices for IR (affect form and strength of program analysis Many choices for IR (affect form and strength of program analysis
and optimizations)and optimizations)

•• Back EndBack End generally performs machine code generation including generally performs machine code generation including
instruction scheduling and register allocationinstruction scheduling and register allocation

Optimizer structure

IRIR

M i i i (M i i i (i li i d d d li i ti t ti li i d d d li i ti t t

Optimization Optimization
passpass11

Optimization Optimization
passpass22

Optimization Optimization
passpassNN

… IRIR

Many optimization passes (Many optimization passes (inlining; dead code elimination; constant inlining; dead code elimination; constant
propagation; loop transformations including loop tiling, interchange, fusionpropagation; loop transformations including loop tiling, interchange, fusion--
fision, vectorization, unrolling; automatic parallelization, etcfision, vectorization, unrolling; automatic parallelization, etc) with the fixed) with the fixed
linear orderlinear orderlinear orderlinear order

Optimization passes can be often Optimization passes can be often turned on and offturned on and off using compiler using compiler
command line flagscommand line flagsgg

Passes are generally applied to either the Passes are generally applied to either the whole programwhole program (Inter(Inter--Procedural Procedural
Optimizations) or at a Optimizations) or at a function (procedure) levelfunction (procedure) level..

Transformations within passes are often applied on a loop or basicTransformations within passes are often applied on a loop or basic--block block
level with the fixed linear order and can be level with the fixed linear order and can be parametricparametric

Some transformations can be selected by compiler command line flags but Some transformations can be selected by compiler command line flags but
optimization heuristic is often hiddenoptimization heuristic is often hidden from the userfrom the user

Optimizer structure

IRIR Optimization Optimization
passpass11

Optimization Optimization
passpass22

Optimization Optimization
passpassNN

… IRIR

Is this working well?Is this working well?Is this working well?Is this working well?

(DEMO(DEMO))(DEMO(DEMO11))

Optimizer structure

IRIR Optimization Optimization
passpass11

Optimization Optimization
passpass22

Optimization Optimization
passpassNN

… IRIR

Matmul benchmark and GCC 4.2.x compiler:Matmul benchmark and GCC 4.2.x compiler:

1) gcc1) gcc --O3O3 --funrollfunroll--loops matmul c [matrix size 160x160]loops matmul c [matrix size 160x160]1) gcc 1) gcc O3 O3 funrollfunroll loops matmul.c [matrix size 160x160]loops matmul.c [matrix size 160x160]

Using funrollUsing funroll--loops over default loops over default --O3 optimization level gives around O3 optimization level gives around
15% improvement in execution time on x86 architecture 15% improvement in execution time on x86 architecture

Optimizer structure

IRIR Optimization Optimization
passpass11

Optimization Optimization
passpass22

Optimization Optimization
passpassNN

… IRIR

Matmul benchmark and GCC 4.2.x compiler:Matmul benchmark and GCC 4.2.x compiler:

1) gcc1) gcc --O3O3 --funrollfunroll--loops matmul c [matrix size 160x160]loops matmul c [matrix size 160x160]1) gcc 1) gcc O3 O3 funrollfunroll loops matmul.c [matrix size 160x160]loops matmul.c [matrix size 160x160]

Using funrollUsing funroll--loops over default loops over default --O3 optimization level gives around O3 optimization level gives around
15% improvement in execution time on x86 architecture 15% improvement in execution time on x86 architecture

Wow! Found good compiler flag! Let’s use it all the time!Wow! Found good compiler flag! Let’s use it all the time!

Optimizer structure

IRIR Optimization Optimization
passpass11

Optimization Optimization
passpass22

Optimization Optimization
passpassNN

… IRIR

Matmul benchmark and GCC 4.2.x compiler:Matmul benchmark and GCC 4.2.x compiler:

1) gcc1) gcc --O3O3 --funrollfunroll--loops matmul c [matrix size 160x160]loops matmul c [matrix size 160x160]1) gcc 1) gcc O3 O3 funrollfunroll loops matmul.c [matrix size 160x160]loops matmul.c [matrix size 160x160]

Using funrollUsing funroll--loops over default loops over default --O3 optimization level gives around O3 optimization level gives around
15% improvement in execution time on x86 architecture 15% improvement in execution time on x86 architecture

Wow! Found good compiler flag! Let’s use it all the time!Wow! Found good compiler flag! Let’s use it all the time!

2) gcc 2) gcc --O3 O3 --funrollfunroll--loops matmul.c [matrix size 3x3]loops matmul.c [matrix size 3x3]

Using funrollUsing funroll--loops over default loops over default --O3 optimization level degrades O3 optimization level degrades
performance by about 10%performance by about 10%

S l ti thi fl i t l d!S l ti thi fl i t l d!So, selecting this flag is not always good!So, selecting this flag is not always good!

Room for improvement?

This problem is not new (40+ years)This problem is not new (40+ years)

1 8
2

1 2
1.4
1.6
1.8

sp
ee

du
p

0.6
0.8

1
1.2

cu
tio

n
tim

e

0
0.2
0.4ex

ec

baseline

feedback directed

Lam et al.

Coleman et al.

libraries

hand-tuned

(Optimizing matrix multiply code)(Optimizing matrix multiply code)

ed

Challenges

•• Optimizer has to exploit all architectural featuresOptimizer has to exploit all architectural features

-- Instruction and thread level parallelismInstruction and thread level parallelism

-- Effective management of memory hierarchy Effective management of memory hierarchy

(registers, caches, memory, disk)(registers, caches, memory, disk)

•• Optimization at many levels: source, internal formats, assemblerOptimization at many levels: source, internal formats, assembler

•• Optimization at many scopes: Optimization at many scopes:

(whole program, function/procedure, loop, basic block)(whole program, function/procedure, loop, basic block)

•• Which optimizations to use?Which optimizations to use?

•• What is the best order of optimizations?What is the best order of optimizations?

•• How to select right transformation parameters?How to select right transformation parameters?

What if transformation parameters depend on runWhat if transformation parameters depend on run time information?time information?•• What if transformation parameters depend on runWhat if transformation parameters depend on run--time information?time information?

Challenges

Machine dependent optimizations vs. independent optimizationsMachine dependent optimizations vs. independent optimizations

Optimizations typically split into those that are always worthwhile andOptimizations typically split into those that are always worthwhile andOptimizations typically split into those that are always worthwhile and Optimizations typically split into those that are always worthwhile and
machine specificmachine specific

Challenges

Machine dependent optimizations vs. independent optimizationsMachine dependent optimizations vs. independent optimizations

Optimizations typically split into those that are always worthwhile andOptimizations typically split into those that are always worthwhile andOptimizations typically split into those that are always worthwhile and Optimizations typically split into those that are always worthwhile and
machine specificmachine specific

Example: Common subExample: Common sub--expression eliminationexpression elimination

Aim: prevent redundant recalculation of termsAim: prevent redundant recalculation of terms

a = b + c + fa = b + c + f t = b + ct = b + c

d = b + c + ed = b + c + e a = t + fa = t + f

d = t + ed = t + e

S l lik d id 4 dd 3S l lik d id 4 dd 3Seems always like a good idea: 4 adds vs. 3Seems always like a good idea: 4 adds vs. 3

Challenges

Machine dependent optimizations vs. independent optimizationsMachine dependent optimizations vs. independent optimizations

Optimizations typically split into those that are always worthwhile andOptimizations typically split into those that are always worthwhile andOptimizations typically split into those that are always worthwhile and Optimizations typically split into those that are always worthwhile and
machine specificmachine specific

Example: Common subExample: Common sub--expression eliminationexpression elimination

Aim: prevent redundant recalculation of termsAim: prevent redundant recalculation of terms

a = b + c + fa = b + c + f t = b + ct = b + c

d = b + c + ed = b + c + e a = t + fa = t + f

d = t + ed = t + e

S l lik d id 4 dd 3S l lik d id 4 dd 3Seems always like a good idea: 4 adds vs. 3Seems always like a good idea: 4 adds vs. 3

However: potentially additional variableHowever: potentially additional variable pressure on register allocation!pressure on register allocation!However: potentially additional variable However: potentially additional variable -- pressure on register allocation!pressure on register allocation!

Challenges

Machine dependent optimizations vs. independent optimizationsMachine dependent optimizations vs. independent optimizationsp p p pp p p p

•• Rapidly evolving architectural features strongly determine the best code Rapidly evolving architectural features strongly determine the best code
sequencesequence

•• Rarely are all instructions of equal cost. Even if they have the same Rarely are all instructions of equal cost. Even if they have the same
latency, not all function units support all functions.latency, not all function units support all functions.y, ppy, pp

•• The more complex the hardware, the harder it is to determine the best The more complex the hardware, the harder it is to determine the best
code sequencecode sequence

•• Mixed multimedia instructions of different ISA for heterogeneous Mixed multimedia instructions of different ISA for heterogeneous
systems systems -- which version to select?which version to select?

ChallengesChallenges

Classic optimization: Static analysis and transformationClassic optimization: Static analysis and transformation

•• Statically (at compile time) analyze the program and transform it based Statically (at compile time) analyze the program and transform it based
on architectural features (such as ISA, memory hierarchy, etc) and on architectural features (such as ISA, memory hierarchy, etc) and
requirements (such as reducing execution time or program size) requirements (such as reducing execution time or program size)

Example of strideExample of stride--1 access. Array C has row1 access. Array C has row--major layout. Makes major layout. Makes
sense to traverse data rowsense to traverse data row--wise.wise.

for (i = 0; i<n; i++)for (i = 0; i<n; i++)for (i = 0; i<n; i++)for (i = 0; i<n; i++)

for (j = 0; j<n; j++)for (j = 0; j<n; j++)

a[j][i] + b[i];a[j][i] + b[i];a[j][i] + b[i];a[j][i] + b[i];

This code traverses the array columnThis code traverses the array column--wisewise

Does not exploit spatial locality. Can have excessive cache misses.Does not exploit spatial locality. Can have excessive cache misses.p p yp p y

Challenges

Poor stridePoor stride

for (i = 0; i<n; i++)for (i = 0; i<n; i++)

f (j 0 j j)f (j 0 j j)for (j = 0; j<n; j++)for (j = 0; j<n; j++)

a[j][i] + b[i];a[j][i] + b[i];

•• Neighboring fetched elements not referenced until much laterNeighboring fetched elements not referenced until much later•• Neighboring fetched elements not referenced until much laterNeighboring fetched elements not referenced until much later

•• Cache line probably evicted by thenCache line probably evicted by then

Challenges

Classic optimization: Static analysis and transformationClassic optimization: Static analysis and transformation

•• Static analysis suggests that the innermost iterator should be in Static analysis suggests that the innermost iterator should be in
outermost subscript outermost subscript -- should be transformed!should be transformed!

•• TransformTransform apply code restructuring to achieve thisapply code restructuring to achieve this loop interchangeloop interchange•• Transform Transform -- apply code restructuring to achieve this apply code restructuring to achieve this -- loop interchangeloop interchange

for (j = 0; j<n; j++)for (j = 0; j<n; j++)

for (i = 0; i<n; i++)for (i = 0; i<n; i++)for (i 0; i<n; i++)for (i 0; i<n; i++)

a[j][i] + b[i];a[j][i] + b[i];

•• This code now traverses the array rowThis code now traverses the array row--wise!wise!yy

•• Linear analysis and transformations can bring dramatic performance Linear analysis and transformations can bring dramatic performance
improvementsimprovements

Challenges

Improved strideImproved stride

for (j = 0; j<n; j++)for (j = 0; j<n; j++)

f (i 0 i i)f (i 0 i i)for (i = 0; i<n; i++)for (i = 0; i<n; i++)

a[j][i] + b[i];a[j][i] + b[i];

•• Neighboring fetched elements referenced immediatelyNeighboring fetched elements referenced immediately

•• Cache line unlikely to be evictedCache line unlikely to be evicted

Challenges

Classic optimization: Static analysis and transformationClassic optimization: Static analysis and transformation

•• However does not consider other costs. i.e. b[i] is no longer invariant However does not consider other costs. i.e. b[i] is no longer invariant --
temporal locality losttemporal locality lost

U id li d d l f hi N t f hi hU id li d d l f hi N t f hi h•• Uses idealized model of machine. No account of memory hierarchy, Uses idealized model of machine. No account of memory hierarchy,
cache replacement policy etc.cache replacement policy etc.

•• If any of this were to change, no way of changing the compilerIf any of this were to change, no way of changing the compiler

•• Fundamentally each analysis has a small focused scope and hardware Fundamentally each analysis has a small focused scope and hardware
issue to reduce complexity.issue to reduce complexity.

N h / i i iN h / i i i•• No theory/practice to integrate views.No theory/practice to integrate views.

Challenges
Some other transformations: Loop UnrollingSome other transformations: Loop UnrollingSome other transformations: Loop UnrollingSome other transformations: Loop Unrolling

original loop:original loop: unrolled loop (u unrolled loop (u -- unroll factor):unroll factor):

do i = 1 ndo i = 1 n do i = 1 n udo i = 1 n udo i = 1, ndo i = 1, n do i = 1, n, udo i = 1, n, u
S1(i) S1(i) S1(i)S1(i)
S2(i)S2(i) S2(i)S2(i)
…… ……

end doend do S1(i+1)S1(i+1)end doend do S1(i+1)S1(i+1)
S2(i+1)S2(i+1) loop body replicatedloop body replicated
…… u timesu times
S1(i+uS1(i+u--1)1)
S2(i+uS2(i+u--1)1)S2(i+uS2(i+u--1)1)
……

end doend do
do j = i, ndo j = i, n

S1(j)S1(j) processing allprocessing allS1(j)S1(j) processing allprocessing all
S2(j)S2(j) remainingremaining
…… elementselements

end doend do

Which unrolling factor to choose?Which unrolling factor to choose?

Challenges
Some other transformations: Loop TilingSome other transformations: Loop TilingSome other transformations: Loop TilingSome other transformations: Loop Tiling

original loop nest:original loop nest: transformed loop nest:transformed loop nest:
do IT = 1, N, SSdo IT = 1, N, SS
do JT = 1 N SSdo JT = 1 N SSdo JT = 1, N, SSdo JT = 1, N, SS

do I = 1, Ndo I = 1, N do I = IT, MIN(N, IT+SSdo I = IT, MIN(N, IT+SS--1)1)
do J = 1, Ndo J = 1, N do J = JT, MIN(N, JT+SSdo J = JT, MIN(N, JT+SS--1)1)

A(I,J) = A(I,J) + B(I,J)A(I,J) = A(I,J) + B(I,J) A(I,J) = A(I,J) + B(I,J) A(I,J) = A(I,J) + B(I,J)
C(I J) = A(IC(I J) = A(I 1 J) * 21 J) * 2 C(I J) = A(IC(I J) = A(I 1 J) * 21 J) * 2C(I,J) = A(IC(I,J) = A(I--1,J) * 21,J) * 2 C(I,J) = A(IC(I,J) = A(I--1,J) * 21,J) * 2

end doend do end doend do
end doend do end doend do

end doend do
end doend doend doend do

iteration spaceiteration space iteration spaceiteration space
of the original loop:of the original loop: of the transformed loop:of the transformed loop:

Motivation

Current stateCurrent state--ofof--thethe--art compilers and optimizers often fail to art compilers and optimizers often fail to
deliver best performance on modern systems due to deliver best performance on modern systems due to
f d t l f l it d d id bilitf d t l f l it d d id bilitfundamental reason of complexity and undecidabilityfundamental reason of complexity and undecidability
•• lack of runlack of run--time information time information -- impossible to know the best code sequence at impossible to know the best code sequence at
compilecompile--timetimepp

•• simplistic hardware models for rapidly evolving processor architecture while its simplistic hardware models for rapidly evolving processor architecture while its
behavior with outbehavior with out--ofof--order execution and caches is nonorder execution and caches is non--deterministicdeterministic

•• long chain of optimization passes long chain of optimization passes -- difficult to predict best order, inevitably loss of difficult to predict best order, inevitably loss of
information along the pathinformation along the path

•• fixed blackfixed black--box optimization heuristics and inability to finebox optimization heuristics and inability to fine--tune applicationstune applicationsfixed blackfixed black box optimization heuristics and inability to finebox optimization heuristics and inability to fine tune applicationstune applications

•• inability to reuse optimization knowledge among different programs and inability to reuse optimization knowledge among different programs and
architecturesarchitectures

•• inability to adapt to varying program and system behavior at runinability to adapt to varying program and system behavior at run--timetime

Motivation

CCurrent urrent compiler andcompiler and optimization technologies should be revisited optimization technologies should be revisited
to keep pace with rapidly evolving hardwareto keep pace with rapidly evolving hardware

Need static compilers that can continuously and automatically learn Need static compilers that can continuously and automatically learn p y yp y y
how to optimize programs, and have an ability to adapt at runhow to optimize programs, and have an ability to adapt at run--time time

for different behavior and constraintsfor different behavior and constraints

Formalization of optimization

Compilation as OptimizationCompilation as Optimization

•• Define “formal” optimization problem: minimize objective function over Define “formal” optimization problem: minimize objective function over
a space of options.a space of options.

•• Objective function is execution time, though code size, power and Objective function is execution time, though code size, power and
other constraints can be important.other constraints can be important.

•• Optimization search space: all possible equivalent programsOptimization search space: all possible equivalent programs

•• Objective function is undecidable in generalObjective function is undecidable in generalObjective function is undecidable in generalObjective function is undecidable in general

•• Optimization space: infiniteOptimization space: infinite

Formalization of optimization

IntractabilityIntractability

•• Solving an undecidable problem over an infinite space is clearly not Solving an undecidable problem over an infinite space is clearly not
feasible so simplification is necessaryfeasible so simplification is necessary

•• Traditionally have broken the problem into subTraditionally have broken the problem into sub--problems based on certain problems based on certain
assumptionsassumptions

S l h bl b l ki h i i l iS l h bl b l ki h i i l i•• Solve the problem by looking at each in isolation:Solve the problem by looking at each in isolation:

•• Code generationCode generation -- determining the best code for an expression is NPdetermining the best code for an expression is NP

•• SchedulingScheduling determining the best order of instruction is NPdetermining the best order of instruction is NP•• SchedulingScheduling -- determining the best order of instruction is NPdetermining the best order of instruction is NP

•• Register allocationRegister allocation determining the best use of registers to minimize determining the best use of registers to minimize
memory traffic is NPmemory traffic is NP

Formalization of optimization

How to overcome?How to overcome?

Two main problems:Two main problems:

C l itC l it f hit tf hit t d id bilitd id bilit ff•• ComplexityComplexity of processor architecture, of processor architecture, undecidability undecidability of programof program

Both problems arise from trying to optimize statically at compile timeBoth problems arise from trying to optimize statically at compile time

•• Have to Have to guess a tractable modelguess a tractable model, have to , have to guess about data inputguess about data input

•• Pros and Cons to all approaches Depends highly on applicationPros and Cons to all approaches Depends highly on applicationPros and Cons to all approaches. Depends highly on application Pros and Cons to all approaches. Depends highly on application
scenarioscenario

Formalization of optimization

Taxonomy:Taxonomy:

2 main causes: program undecidability and processor complexity2 main causes: program undecidability and processor complexity

•• Variables (what): Program (P) Data (D) and Processor (proc)Variables (what): Program (P) Data (D) and Processor (proc)•• Variables (what): Program (P), Data (D) and Processor (proc)Variables (what): Program (P), Data (D) and Processor (proc)

•• Variables (when): design, compile or runtimeVariables (when): design, compile or runtime

•• 2 sides of adaption: portability and specialization2 sides of adaption: portability and specialization

•• Examine all techniques in this lightExamine all techniques in this lightq gq g

Formalization of optimization

Taxonomy:Taxonomy:

•• Program (P), Data (D) and Processor (proc)Program (P), Data (D) and Processor (proc)

•• time = f(T(P),D,proc), Pick Transformation T to minimize ftime = f(T(P),D,proc), Pick Transformation T to minimize f

•• Standard compilation (SC) typically has a hardwired model of proc Standard compilation (SC) typically has a hardwired model of proc
built inbuilt in

•• SC also has an ad hoc view of typical programs (often biased bySC also has an ad hoc view of typical programs (often biased bySC also has an ad hoc view of typical programs (often biased by SC also has an ad hoc view of typical programs (often biased by
SPEC!) with a SPEC!) with a compiler strategy compiler strategy that is biased to themthat is biased to them

•• SC applies the strategy at compile time making no reference to dataSC applies the strategy at compile time making no reference to data

•• Data in no way affects SC behavior Data in no way affects SC behavior -- just guess a “typical” input setjust guess a “typical” input set

Formalization of optimization
Taxonomy:Taxonomy:Taxonomy:Taxonomy:

Design time:Design time:

•• Build a compiler: encode compiler optimization strategy Typically a timeBuild a compiler: encode compiler optimization strategy Typically a timeBuild a compiler: encode compiler optimization strategy. Typically a time Build a compiler: encode compiler optimization strategy. Typically a time
consuming manual process. Takes many personconsuming manual process. Takes many person--years. Particular to one years. Particular to one
processor, data and programs unknownprocessor, data and programs unknown

Compile time:Compile time:Compile time:Compile time:

•• Examine program and apply transformations based on design time Examine program and apply transformations based on design time
encoded strategy. Can take a reasonable amount of time. Must be less than encoded strategy. Can take a reasonable amount of time. Must be less than
accumulated runtime throughout lifetime of programaccumulated runtime throughout lifetime of program

•• Processor assumed, program known, data unknownProcessor assumed, program known, data unknown

RR titiRunRun--time:time:

•• Most knowledge about application available: processor, program and dataMost knowledge about application available: processor, program and data

•• Least amount of time available to do anything about it!Least amount of time available to do anything about it!•• Least amount of time available to do anything about it!Least amount of time available to do anything about it!

•• Typically compilers do nothing Typically compilers do nothing -- leave to independent runtime system/OSleave to independent runtime system/OS

Formalization of optimization

Taxonomy: Adaptation = Portability + SpecializationTaxonomy: Adaptation = Portability + Specialization

Compiler technology not normally discussed in this manner.

Appears as infrastructure rather than optimization issue.

Portability:

• Ability to MODIFY behavior to changing circumstances, changing data,
program processorprogram, processor

Specialization:Specialization:

• Ability to EXPLOIT fixed, known features: processor, program and data

Natural tension between the two: flexibility vs rigidity

Formalization of optimization

Taxonomy: current static compilersTaxonomy: current static compilers

• What and when to port/specialize: p p
processor, program, data, design, compile, runtime

• Currently: specialize to processor at design timeCurrently: specialize to processor at design time
BUT cannot easily port to a new processor

• Portable across a wide range of programs and dataPortable across a wide range of programs and data
at compile and runtime BUT

• Do not specialize to runtime data or program/processor interaction• Do not specialize to runtime data or program/processor interaction

• Very little exploitation of dynamic runtime knowledge/
Adaption to changing processor or data not consideredAdaption to changing processor or data not considered

Formalization of optimization

What are the ways to solve this problems?What are the ways to solve this problems?

Feedback directed compilation

•• Profile feedback directed compilationProfile feedback directed compilation

•• Application tuningApplication tuning

•• Iterative compilationIterative compilation

•• Efficient searchingEfficient searchingc e t sea c gc e t sea c g

•• ConclusionConclusion

Feedback directed compilation

Feedback directed (profile directed compilation)Feedback directed (profile directed compilation)

•• Directly addresses problem of compile time unknown data Directly addresses problem of compile time unknown data

•• Key (simple) idea: run program once and collect some useful information Key (simple) idea: run program once and collect some useful information

•• Use this runtime information to improve program performanceUse this runtime information to improve program performance•• Use this runtime information to improve program performance Use this runtime information to improve program performance

•• In effect move the first runtime info into the compile time phase In effect move the first runtime info into the compile time phase

•• Makes sense if gathering the profile data is cheap and user willing to pay Makes sense if gathering the profile data is cheap and user willing to pay
for 2 compiles. Can still use after first compile. for 2 compiles. Can still use after first compile.

•• Allows specialization to runAllows specialization to run--time data time data –– what are pros and cons? what are pros and cons?

Feedback directed compilation

OffOff--line vs online vs on--line compilationline compilationOffOff line vs online vs on line compilationline compilation

•• Profile directed compilation is one example of offProfile directed compilation is one example of off--line optimization line optimization

•• Information is gathered and utilized before the “production” run Information is gathered and utilized before the “production” run

•• OnOn--line schemes gather information and dynamically change program line schemes gather information and dynamically change program
as it runs. as it runs.

•• OffOff--line schemes work on basis that costs incurred at compileline schemes work on basis that costs incurred at compile--time are time are
t i h d b i d ti C b i tht i h d b i d ti C b i th lilioutweighed by improved runtime. Can be more aggressive than onoutweighed by improved runtime. Can be more aggressive than on--line line

schemes. schemes.

Feedback directed compilation

Multiple data

Program Compiler Executable

Results

Traditional compilation modelTraditional compilation model

Feedback directed compilation

Data0 Data1

Program Compiler Executable Profile Compiler Executable

Profile information as an additional outputProfile information as an additional output

Results0 Results1

Profile information as an additional outputProfile information as an additional output

Data can change from run to run. Executable is still correct.Data can change from run to run. Executable is still correct.

Feedback directed compilation

Brief historyBrief history

•• The use of profiling to aid program performance has been around for a The use of profiling to aid program performance has been around for a
whilewhile

•• prof, gprof (1982). A tool to help developers to understand their code.prof, gprof (1982). A tool to help developers to understand their code.prof, gprof (1982). A tool to help developers to understand their code. prof, gprof (1982). A tool to help developers to understand their code.
Instrumentation at compile time and then sampled at runtimeInstrumentation at compile time and then sampled at runtime

•• Hardware analysis (1980s). Monitor program behavior and adapt. Hardware analysis (1980s). Monitor program behavior and adapt.
Branch predictionBranch prediction pipelines means need to guess which branch to takepipelines means need to guess which branch to takeBranch prediction Branch prediction -- pipelines means need to guess which branch to takepipelines means need to guess which branch to take

•• Edge/node based profile information for compilers 1990s Edge/node based profile information for compilers 1990s

•• Path based profiling Larus + Ball late 1990s Smith 2000Path based profiling Larus + Ball late 1990s Smith 2000Path based profiling Larus + Ball late 1990s, Smith 2000 Path based profiling Larus + Ball late 1990s, Smith 2000

Feedback directed compilation

PDC for classic optimizationPDC for classic optimization

•• Record frequently taken edges of program controlRecord frequently taken edges of program control--flow graph flow graph

•• IMPACT compiler in 1990s good example of this but also used earlier IMPACT compiler in 1990s good example of this but also used earlier --
Josh Fisher et al, Multiflow.Josh Fisher et al, Multiflow.Josh Fisher et al, Multiflow. Josh Fisher et al, Multiflow.

•• Use weight information of edges and paths in graph to restructure Use weight information of edges and paths in graph to restructure
controlcontrol--flow graph to enable greater optimization flow graph to enable greater optimization

•• Main idea: merge frequently executed basic blocks increasing sizes of Main idea: merge frequently executed basic blocks increasing sizes of
basic block if possible (superblock/hyperblock) formation. Fix up rest of basic block if possible (superblock/hyperblock) formation. Fix up rest of
code. code.

•• Allows improved scheduling of instructions and more aggressive scalar Allows improved scheduling of instructions and more aggressive scalar
optimizations at expense of code size optimizations at expense of code size

Feedback directed compilation

PDC example 1PDC example 1

•• Sequence of basic blocksSequence of basic blocksSequence of basic blocks Sequence of basic blocks

•• Frequency of execution on Frequency of execution on
edges and nodes edges and nodes

•• Primarily ABEF Primarily ABEF

•• Other entry/exit controlOther entry/exit control--flow flow
prevents merging prevents merging p g gp g g

•• SuperSuper--block block --frequently frequently
executed path executed path

M d tidM d tid•• Merge and tidyMerge and tidy--up up

•• Optimize larger unit Optimize larger unit

Feedback directed compilation

PDC example 1PDC example 1

•• Selecting the traceSelecting the trace•• Selecting the trace Selecting the trace

•• Start at most frequent blockStart at most frequent block

•• Add blocks on most frequentAdd blocks on most frequentAdd blocks on most frequent Add blocks on most frequent
successors successors

•• Repeat on other nodes Repeat on other nodes

•• Done in both controlDone in both control--flow flow
directions directions

•• Do on remaining nodesDo on remaining nodesDo on remaining nodesDo on remaining nodes

Feedback directed compilation

PDC example 1PDC example 1

•• Tail DuplicationTail Duplication•• Tail Duplication Tail Duplication

•• Duplicate first block with Duplicate first block with
external entry edges external entry edges

•• But not the head But not the head

•• Redirect incoming edgesRedirect incoming edges

•• Duplicate outgoing Duplicate outgoing

•• Repeat Repeat

•• Much code duplication Much code duplication

Feedback directed compilation

PDC example 2PDC example 2

Common b + c on frequently taken pathCommon b + c on frequently taken pathq y pq y p

Feedback directed compilation

PDC example 2PDC example 2

Replicate first node on main path with external incoming edge Replicate first node on main path with external incoming edge p p g gp p g g

Now separate pathsNow separate paths

Feedback directed compilation

PDC example 2PDC example 2

Applying CSE eliminates redundant computation at cost of additional codeApplying CSE eliminates redundant computation at cost of additional codepp y g ppp y g p

Feedback directed compilation

Edge vs Path profilingEdge vs Path profiling

•• Overlapping paths cannot be distinguished by edge profilingOverlapping paths cannot be distinguished by edge profiling•• Overlapping paths cannot be distinguished by edge profiling Overlapping paths cannot be distinguished by edge profiling

•• Path profiling allows much greater accuracy Path profiling allows much greater accuracy

•• However, combinatorial explosion in paths. Cycles in graphs leads toHowever, combinatorial explosion in paths. Cycles in graphs leads toHowever, combinatorial explosion in paths. Cycles in graphs leads to However, combinatorial explosion in paths. Cycles in graphs leads to
potentially unbounded number potentially unbounded number

•• In practice Edge/node profiling only captures around 40In practice Edge/node profiling only captures around 40--50 50

•• Larus and Ball ’99 developed an efficient path profiler that avoids these Larus and Ball ’99 developed an efficient path profiler that avoids these
problems. In practice the benefit achieved was small though problems. In practice the benefit achieved was small though

•• Mike Smith at Harvard extended this idea for more targeted optimizationMike Smith at Harvard extended this idea for more targeted optimizationMike Smith at Harvard extended this idea for more targeted optimization Mike Smith at Harvard extended this idea for more targeted optimization

Feedback directed compilation

Some results when using PDC (Fursin’2002)Some results when using PDC (Fursin’2002)

40

20

30

ov
em

en
t,

%

-10

0

10

m
ul so

r

ca
tv

w
im

2c
or

gr
id

pp
lu

b3
d

ap
si

av
e5

on
 ti

m
e

im
pr

o

-30

-20

0

m
at

m

to
m

c sw su
2 m
g ap tu
rb a

w
av

ex
ec

ut
io

SPEC CPU95SPEC CPU95

-O3 vs -O2 -O3 with PDC vs -O2

Alpha compiler (21264)Alpha compiler (21264)

Feedback directed compilation

Some results when using PDC (Fursin’2002)Some results when using PDC (Fursin’2002)

4

2

3

ov
em

en
t,

%

-1

0

1

m
ul so

r

ca
tv

w
im

2c
or

gr
id

pp
lu

b3
d

ap
si

ve
5

on
 ti

m
e

im
pr

o

-3

-2

1

m
at

m s

to
m

c sw su
2c m
g ap tu
rb a

w
av

ex
ec

ut
io

SPEC CPU95SPEC CPU95

-O3 vs -O2 -O3 with PDC vs -O2

Intel Compiler (Pentium III) Intel Compiler (Pentium III) –– poor improvementpoor improvement
Extremely well studied benchmarksExtremely well studied benchmarks

Feedback directed compilation

Beyond PDCBeyond PDC

•• Although useful, the performance gains are modest Although useful, the performance gains are modest

•• Challenge of undecidability and processor behavior not addressed. Challenge of undecidability and processor behavior not addressed.

•• What happens if data changes on the second run? What happens if data changes on the second run?

•• Really focuses on persistent controlReally focuses on persistent control--flow behavior flow behavior

•• All other information i.e. runAll other information i.e. run--time values, memory locations accessed are time values, memory locations accessed are
ignoredignored

•• Can we get more out of knowing data and its impact on program Can we get more out of knowing data and its impact on program
behavior?behavior?

Feedback directed compilation

Evolution of PDC

Multiple data

Program Compiler Executable Profiles

Results

PDC with multiple (iterative) compilesPDC with multiple (iterative) compiles

Feedback directed compilation

Automatic library tuningAutomatic library tuning

•• A different offA different off--line approach that exploits knowledge gained by running line approach that exploits knowledge gained by running
the program in the optimization process the program in the optimization process

•• There is a (growing) family of application specific approaches to libraryThere is a (growing) family of application specific approaches to libraryThere is a (growing) family of application specific approaches to library There is a (growing) family of application specific approaches to library
tuningtuning

•• Rather than recording path information for later optimization Rather than recording path information for later optimization –– just record just record
execution timeexecution timeexecution time execution time

•• Try many different versions of the program and select the best for that Try many different versions of the program and select the best for that
machine. Key issue is how different programs are generated. machine. Key issue is how different programs are generated.

•• In effect move runIn effect move run--time into design time. time into design time.

Main examples Main examples ATLAS, PHiPAC and FFTWATLAS, PHiPAC and FFTW

Feedback directed compilation

ATLASATLAS

•• An automatic method of tuning linear algebraic libraries for differing An automatic method of tuning linear algebraic libraries for differing
processorsprocessors

•• It is domain specific and only focuses on tuning the core GEMM routineIt is domain specific and only focuses on tuning the core GEMM routineIt is domain specific and only focuses on tuning the core GEMM routine It is domain specific and only focuses on tuning the core GEMM routine
for a specific processor. for a specific processor.

•• Takes an adTakes an ad--hoc approach hoc approach -- generate different versions and measure generate different versions and measure
them against anything availablethem against anything available including vendor supplied libraries andincluding vendor supplied libraries andthem against anything available them against anything available -- including vendor supplied libraries and including vendor supplied libraries and
pick the best pick the best

•• It tries different software pipelining and register tiling parameters and It tries different software pipelining and register tiling parameters and
enumerates them all, selecting the best. The space of options is derived enumerates them all, selecting the best. The space of options is derived
from explicit knowledge of the application behavior. from explicit knowledge of the application behavior.

Feedback directed compilation

ATLASATLAS

Broken down into application specific, generic and platform specific sectionsBroken down into application specific, generic and platform specific sections

Feedback directed compilation

ATLASATLAS

•• Regularly outperforms the best existing approaches. Now the standard Regularly outperforms the best existing approaches. Now the standard
approach to library generation. approach to library generation.

•• Adaption?: Very portableAdaption?: Very portable -- works on any platform AND specializes to theworks on any platform AND specializes to theAdaption?: Very portable Adaption?: Very portable works on any platform AND specializes to the works on any platform AND specializes to the
particular processor particular processor

•• BUT specialized to a particular application: no portability across BUT specialized to a particular application: no portability across
programs no exploitation of runtime data as static controlprograms no exploitation of runtime data as static control flowflowprograms, no exploitation of runtime data as static controlprograms, no exploitation of runtime data as static control--flow flow

•• PHiPACPHiPAC tries to exploit data patterns in sparse structures by trying tries to exploit data patterns in sparse structures by trying
simple optimizations offsimple optimizations off--line and applying them at runline and applying them at run--time when data time when data
encountered.encountered.

•• However However -- domain specific, not domain specific, not generalizablegeneralizable or widely automatable or widely automatable

Feedback directed compilation

Iterative compilationIterative compilation

•• Iterative compilation started in 1997 with the OCEANS project Iterative compilation started in 1997 with the OCEANS project

•• Similar in spirit to automatic tuning except the space of tuning is in fact Similar in spirit to automatic tuning except the space of tuning is in fact
the entire program transformation spacethe entire program transformation spacethe entire program transformation space the entire program transformation space

•• In a sense it is direct implementation of the formal compiler optimization In a sense it is direct implementation of the formal compiler optimization
problem. Find transformation T that minimizes cost. problem. Find transformation T that minimizes cost.

•• Main ideas was to combine high and low level optimization and use cost Main ideas was to combine high and low level optimization and use cost
models to guide selection models to guide selection

•• Highly ambitious but immature infrastructure prevented much progressHighly ambitious but immature infrastructure prevented much progressHighly ambitious but immature infrastructure prevented much progress Highly ambitious but immature infrastructure prevented much progress

Feedback directed compilation

OCEANS

• Similar iterative structure to ATLAS

M i k hi f b t til• Main work on searching for best tile
and unroll parameters PFDC’98

Feedback directed compilation

t i lti l N 400 Ult S h ti hmatrix multiply, N=400, UltraSparc, exhaustive search

Minimum at: Unroll=3, Tile size=57

N i i 2 6% i i l 4 99 i i 0 56Near minimum: 2.6%, original 4.99 sec, minimum 0.56 sec

Feedback directed compilation

t i lti l N 400 Ult S d hmatrix multiply, N=400, UltraSparc, random search

50 steps: within 0.0%. Initially 2.65 times slower than minimum

Feedback directed compilation

t i lti l N 512 Al h h ti hmatrix multiply, N=512, Alpha, exhaustive search

Minimum at: Unroll=4, Tile size=85

N i i 0 9% i i l 31 72 i i 3 34Near minimum: 0.9%, original 31.72 sec, minimum 3.34 sec,
maximum 81.40 !

Feedback directed compilation

t i lti l N 512 Al h d hmatrix multiply, N=512, Alpha, random search

50 steps: within 21.9%. Originally 5.25 times slower than minimum

Feedback directed compilation

t i lti l N 400 P ti P h ti hmatrix multiply, N=400, Pentium Pro, exhaustive search

Minimum at: Unroll=19, Tile size=57

N i i 4 3% i i l 4 88 i i 1 43Near minimum: 4.3%, original 4.88 sec, minimum 1.43 sec

Feedback directed compilation

t i lti l N 400 P ti P d hmatrix multiply, N=400, Pentium Pro, random search

50 steps: within 10.5%

Feedback directed compilation

t i lti l N 512 R10000 h ti hmatrix multiply, N=512, R10000, exhaustive search

Minimum at: Unroll=4, Tile size=85

N i i 7 2% i i l 2 79 i i 1 09Near minimum: 7.2%, original 2.79 sec, minimum 1.09 sec

Feedback directed compilation

t i lti l N 512 R10000 d hmatrix multiply, N=512, R10000, random search

50 steps: within 4.9%

Feedback directed compilation

Phase orderPhase order

•• Oceans work looked at parameterized high level search spaces (tiling, Oceans work looked at parameterized high level search spaces (tiling,
unrolling). Restricted by compilers and only small kernel exploration unrolling). Restricted by compilers and only small kernel exploration

•• Impressive search results due to “tuned” heuristic and small spaces. InImpressive search results due to “tuned” heuristic and small spaces. InImpressive search results due to tuned heuristic and small spaces. In Impressive search results due to tuned heuristic and small spaces. In
practice depends on space shape practice depends on space shape

•• Keith Cooper et al ’99 onwards also looked at iterative compilation Keith Cooper et al ’99 onwards also looked at iterative compilation

•• Cooper’s search space was the orderings of phases within a compiler Cooper’s search space was the orderings of phases within a compiler

•• Lower level and not tied to any language. More generic and explores the Lower level and not tied to any language. More generic and explores the
ageage--old phase ordering problem more directlyold phase ordering problem more directlyageage old phase ordering problem more directly old phase ordering problem more directly

Feedback directed compilation

•• Cooper has found improvements up to 25% over default sequencesCooper has found improvements up to 25% over default sequences

•• Examined search heuristics that find good points quicklyExamined search heuristics that find good points quickly

•• However, evaluation approach is strange and results don’t seem However, evaluation approach is strange and results don’t seem
portableportable

Feedback directed compilation

DSP systemsDSP systems

•• Iterative compilation proved to be useful for embedded applications or Iterative compilation proved to be useful for embedded applications or
libraries.libraries.

•• It is difficult to improve on embedded compilers and hard to get accessIt is difficult to improve on embedded compilers and hard to get accessIt is difficult to improve on embedded compilers and hard to get access It is difficult to improve on embedded compilers and hard to get access
to internals. HLT is attractive but pointers cause problems to internals. HLT is attractive but pointers cause problems

•• Franke et al 2005 overcomes this with a pointer recovery + SUIF based Franke et al 2005 overcomes this with a pointer recovery + SUIF based
transformation explorer Uses 2 search strategiestransformation explorer Uses 2 search strategiestransformation explorer. Uses 2 search strategies transformation explorer. Uses 2 search strategies

Feedback directed compilation

DSP framework

Using this framework to exhaustively explore and characterize the Using this framework to exhaustively explore and characterize the
optimization spaceoptimization spacep pp p

Feedback directed compilation

Franke et alFranke et al

•• Looks through space of 80Looks through space of 808080 transformations on 3 platforms for UTDSP transformations on 3 platforms for UTDSP
benchmark suite Not feasible to do exhaustively Really stresses SUIFbenchmark suite Not feasible to do exhaustively Really stresses SUIFbenchmark suite. Not feasible to do exhaustively. Really stresses SUIF benchmark suite. Not feasible to do exhaustively. Really stresses SUIF

•• 2 algorithms. Trade2 algorithms. Trade--off between coverage and focus. Random search off between coverage and focus. Random search --
select a random length up to 80. Then randomly select any select a random length up to 80. Then randomly select any
t f ti f h l ti L t f d d t t f tit f ti f h l ti L t f d d t t f titransformation for each location. Lots of redundant transformations. transformation for each location. Lots of redundant transformations.

•• PBIL: Population based inference learning. Modify probability of PBIL: Population based inference learning. Modify probability of
selecting transformation based on previous trials. Only examine effective selecting transformation based on previous trials. Only examine effective g p yg p y
transformations transformations

•• Average 41% reduction. PBIL finds the best in majority of cases but Average 41% reduction. PBIL finds the best in majority of cases but
Random best has higher speed upRandom best has higher speed upRandom best has higher speed up. Random best has higher speed up.

Feedback directed compilation

Impact of transformationsImpact of transformations

Feedback directed compilation

Results

• Tried 500 runs. On UTDSP benchmark: TriMedia average speedup of
1.43 and 1.73 for TigerSharc

• Shows that HLT can give a big win compared to backend optimizationsShows that HLT can give a big win compared to backend optimizations

• Also compared GCC and ICC on embedded Celeron

• Original: ICC 1.22 faster than GCC g

• GCC + IC: speedup of 1.54 - better than ICC

• BUT ICC + IC: speedup of 2.14

Feedback directed compilation
Interactive Compilation Interface (Fursin et al’2005)Interactive Compilation Interface (Fursin et al’2005)Interactive Compilation Interface (Fursin et al 2005)Interactive Compilation Interface (Fursin et al 2005)

http://gcchttp://gcc--ici.sourceforge.netici.sourceforge.net

InsteadInstead ofof developingdeveloping newnew compilercompiler oror transformationstransformations toolstools modifymodify currentcurrentInsteadInstead ofof developingdeveloping newnew compilercompiler oror transformationstransformations tools,tools, modifymodify currentcurrent
popularpopular (non(non--research)research) rigidrigid compilerscompilers intointo simplersimpler transparenttransparent openopen transformationtransformation
toolsetstoolsets withwith externallyexternally tunabletunable optimizationoptimization heuristicsheuristics throughthrough aa standardizedstandardized
InteractiveInteractive CompilationCompilation InterfaceInterface (ICI)(ICI)

ControlControl onlyonly decisiondecision processprocess atat globalglobal oror locallocal levellevel andand avoidavoid revealingrevealing allall
intermediateintermediate compilercompiler representationrepresentation toto allowallow furtherfurther transparenttransparent compilercompiler evolutionevolution

NarrowNarrow downdown optimizationoptimization spacespace byby suggestingsuggesting onlyonly legallegal transformationstransformations

EnableEnable iterativeiterative recompilationrecompilation algorithmalgorithm toto applyapply sequencessequences ofof transformationstransformations

TreatTreat currentcurrent optimizationoptimization heuristicheuristic asas aa blackblack--boxbox andand progressivelyprogressively adaptadapt itit toto aa
givengiven programprogram andand givengiven architecturearchitecture

AllowAllow lifelife--long,long, wholewhole--programprogram optimizationoptimization researchresearch withwith optimizationoptimization knowledgeknowledge
reusereuse

Feedback directed compilation
Interactive Compilation InterfaceInteractive Compilation InterfaceInteractive Compilation InterfaceInteractive Compilation Interface

A li ti
Source-to-source

Application transformers

Decision for Perform
transformation 1 transf 1

Compiler
“black box” optimization
heuristic

Sub-heuristic 1

S b h i ti

Compiler
optimization
heuristic

Sub-heuristic j

Sub-heuristic kSub-heuristic i

Decision for Perform
transformation i transf i

Binary

Feedback directed compilation
Interactive Compilation InterfaceInteractive Compilation InterfaceInteractive Compilation InterfaceInteractive Compilation Interface

A li ti
Source-to-source

A li ti

Adaptive Iterative
Interactive Compiler

Application transformers

Decision for Perform
transformation 1 transf 1

Application

Compiler
“black box” optimization
heuristic

Sub-heuristic 1

S b h i ti

Compiler
optimization
heuristic

Perform
transf

Decision for
t f tiSub-heuristic j

Sub-heuristic kSub-heuristic i Interactive Compilation
Interface (ICI)

transf. 1transformation 1

P
External plugins to

Decision for Perform
transformation i transf i

Perform
transf. i

Decision for
transformation i

Program
Optimization
Database

tune programs and
default compiler
optimization
heuristic

Binary Binary

Feedback directed compilation

Detect optimization

GCC

Detect optimization
flags

GCC Controller
(Pass Manager)

Pass 1
...

Pass N

GCC Data Layer
AST CFG CF tAST, CFG, CF, etc

Feedback directed compilation

Detect optimization ICI

GCC with ICI

Detect optimization
flags

IC
Event

ICI

Interactive

GCC Controller
(Pass Manager)

IC
Event

Compilation
Interface

Pass N
IC
Event

Pass 1
...

Event

GCC Data Layer
AST CFG CF t

IC
D tAST, CFG, CF, etc Data

Feedback directed compilation

Detect optimization ICI

GCC with ICI

IC Plugins

High-level scripting
(java, python, etc)

Detect optimization
flags

IC
Event

ICI g

Selecting pass
sequences

<Dynamically linked
shared libraries>

Interactive

GCC Controller
(Pass Manager)

IC
Event

sequences

Extracting static
program features

...

Compilation
Interface

Pass N
IC
Event

Pass 1
...

Event

GCC Data Layer
AST CFG CF t

IC
D tAST, CFG, CF, etc Data

Feedback directed compilation

Detect optimization ICI

GCC with ICI

IC Plugins

High-level scripting
(java, python, etc)

flags

IC
Event

Selecting pass
sequences

<Dynamically linked
shared libraries>

Interactive
Compilation

GCC Controller
(Pass Manager)

IC
Event

Extracting static
program features

...

Compilation
Interface

ML drivers

Pass N
IC
Event

Pass 1
...

CCC
Continuous Collective
Compilation Framework

ML drivers
to optimize
programs
and tune
compiler
optimization

GCC Data Layer
AST, CFG, CF, etc

IC
Data optimization

heuristic
AST, CFG, CF, etc Data

Feedback directed compilation
Interactive Compilation InterfaceInteractive Compilation Interfacepp

#include "ic#include "ic--controller.h"controller.h"
#include "ic#include "ic--interface.h"interface.h"
bool start (char *params)bool start (char *params)
{{
i * i i f i ()i * i i f i ()int *version = get_interface_version ();int *version = get_interface_version ();
bool ret = (*version > 100) ? true : false;bool ret = (*version > 100) ? true : false;
free(version);free(version);
return ret;return ret;

}}}}
void stop (void)void stop (void)
{{
/* nothing to be done; *//* nothing to be done; */

}}
void controller (void)void controller (void)void controller (void)void controller (void)
{{
char **passes = get_feature ("global_passes");char **passes = get_feature ("global_passes");
char **functions = get_feature ("functions");char **functions = get_feature ("functions");
char **tmp, **tmp1;char **tmp, **tmp1;
// IPA passes// IPA passes
for (tmp = passes; *tmp != NULL; tmp++)for (tmp = passes; *tmp != NULL; tmp++)
{{
char *pass_name = *tmp;char *pass_name = *tmp;
// run pass should never return false since we are performing same pass// run pass should never return false since we are performing same pass// run_pass should never return false, since we are performing same pass// run_pass should never return false, since we are performing same pass
// order as GCC.// order as GCC.
run_pass(pass_name);run_pass(pass_name);
free(pass_name);free(pass_name);
}}

Feedback directed compilation
Continuous CompilationContinuous CompilationContinuous CompilationContinuous Compilation

applicationapplication

sourcesource--toto--source source
transformationstransformations

current compilerscurrent compilers

binarybinary

executionexecution

binarybinary--toto--binary binary
transformationstransformations

Feedback directed compilation
Continuous CompilationContinuous CompilationContinuous CompilationContinuous Compilation

applicationapplication Development Websites:Development Websites:

sourcesource--toto--source source
transformationstransformations

http://gcchttp://gcc--ici.sourceforge.netici.sourceforge.net

http://pathscalehttp://pathscale--
ici.sourceforge.netici.sourceforge.net

Iterative Interactive Iterative Interactive
CompilerCompiler

gg

http://open64http://open64--ici.sourceforge.netici.sourceforge.net

http://gcchttp://gcc--ccc.sourceforge.netccc.sourceforge.net

binarybinary Program Program
Transformation Transformation

DatabaseDatabase

executionexecution
Iterative Optimizations/Iterative Optimizations/

Machine LearningMachine Learning

binarybinary--toto--binary binary
transformationstransformations

Feedback directed compilation

Evaluating iterative compilation with multiple datasetsEvaluating iterative compilation with multiple datasets

MiDataSets for MiBench MiDataSets for MiBench –– 20 per program20 per program

Iterative search for best compiler flags using PathScale compiler suiteIterative search for best compiler flags using PathScale compiler suite

Grigori Fursin, John Cavazos, Michael O’Boyle and Olivier Temam. MiDataSets: Creating Grigori Fursin, John Cavazos, Michael O’Boyle and Olivier Temam. MiDataSets: Creating
The Conditions For A More Realistic Evaluation of Iterative Optimization. Proceedings of The Conditions For A More Realistic Evaluation of Iterative Optimization. Proceedings of
thethe International Conference on High Performance Embedded Architectures & CompilersInternational Conference on High Performance Embedded Architectures & Compilersthe the International Conference on High Performance Embedded Architectures & Compilers International Conference on High Performance Embedded Architectures & Compilers
(HiPEAC 2007), Ghent, Belgium, January 2007(HiPEAC 2007), Ghent, Belgium, January 2007

Development website:Development website: http://midatasets.sourceforge.nethttp://midatasets.sourceforge.net

Feedback directed compilation

Data sets reactions to optimizations (dijkstra).Data sets reactions to optimizations (dijkstra).

Feedback directed compilation

Data sets reactions to optimizations (jpeg decode).Data sets reactions to optimizations (jpeg decode).

Feedback directed compilation

Variation of best optimizations across programs (SHA)Variation of best optimizations across programs (SHA)

Feedback directed compilation

Variation of best optimizations across programs (SUSAN Corners)Variation of best optimizations across programs (SUSAN Corners)

Feedback directed compilation

Search speedSearch speed

•• The main problem is optimization space size and speed to solution The main problem is optimization space size and speed to solution

•• Many use a cut down transformation space Many use a cut down transformation space -- but this just imposes ad but this just imposes ad
hoc non portable bias hoc non portable bias

•• Need to have large interesting transformation space. OrthogonalNeed to have large interesting transformation space. Orthogonal -- nonoNeed to have large interesting transformation space. Orthogonal Need to have large interesting transformation space. Orthogonal no no
repetition. SUIF is ad hoc. UTF framework from Shun et al 2004 very repetition. SUIF is ad hoc. UTF framework from Shun et al 2004 very
systematic but doesn’t cover everything systematic but doesn’t cover everything

•• Build search techniques to find good points quicklyBuild search techniques to find good points quickly•• Build search techniques to find good points quickly Build search techniques to find good points quickly

Feedback directed compilation

Using modelsUsing models

•• Obvious approach is to use cheap static modes to help reduce number Obvious approach is to use cheap static modes to help reduce number
of runsof runsof runsof runs

•• Difficulty is to balance savings gained by model against hardwiring Difficulty is to balance savings gained by model against hardwiring
strategy strategy

•• Wolfe and Mayadan generate many versions of a program and check Wolfe and Mayadan generate many versions of a program and check
against an internal cache models rather than generate the best by against an internal cache models rather than generate the best by
construction construction

•• Although more successful doesn’t address problem of processor Although more successful doesn’t address problem of processor
complexity. No real feedback (Pugh A* search). Cannot adapt complexity. No real feedback (Pugh A* search). Cannot adapt

•• Knijnenburg et al PACT 2000 use simple cache models as filters. Used Knijnenburg et al PACT 2000 use simple cache models as filters. Used
to eliminate bad options rather than as substitute for feedback. Obtained to eliminate bad options rather than as substitute for feedback. Obtained
significant speed up significant speed up

Feedback directed compilation

Search spaceSearch space

•• Understanding the shape or structure of search space is vital to Understanding the shape or structure of search space is vital to
determining good ways to search itdetermining good ways to search itdetermining good ways to search it determining good ways to search it

•• Unfortunately little agreementUnfortunately little agreement

•• Vuduc ’99 shows that minima dramatically vary across processorVuduc ’99 shows that minima dramatically vary across processorVuduc 99 shows that minima dramatically vary across processorVuduc 99 shows that minima dramatically vary across processor

•• Cooper shows that reasonable minima are very near any given pointCooper shows that reasonable minima are very near any given point

•• However, our recent work shows that it strongly depends on scenario. However, our recent work shows that it strongly depends on scenario. g y pg y p
Rich space on a TriMedia while golf green on the TI. Should use Rich space on a TriMedia while golf green on the TI. Should use
structure to aid search structure to aid search

•• Vuduc uses distribution of good points as stopping criteriaVuduc uses distribution of good points as stopping criteriaVuduc uses distribution of good points as stopping criteriaVuduc uses distribution of good points as stopping criteria

•• Fursin use upper bound of performance as guide. Fursin use upper bound of performance as guide.

Conclusions

Finding a good solution may be

Optimization spaces (set of all possible program transformations) are large, Optimization spaces (set of all possible program transformations) are large,
nonnon--linear with many local minimalinear with many local minima

long and non-trivial

matmul, 2 transformations,
search space = 2000

swim, 3 transformations,
search space = 1052

Recent technique Recent technique -- iterative compilation:iterative compilation:
learn program behavior across executionslearn program behavior across executions

High potential (O’Boyle, Cooper), but:High potential (O’Boyle, Cooper), but:High potential (O Boyle, Cooper), but:High potential (O Boyle, Cooper), but:
-- slowslow
-- the same dataset is usedthe same dataset is used
-- no runno run--time adaptationtime adaptation
-- no optimization knowledge reuseno optimization knowledge reuse

Solving these problems is nonSolving these problems is non--trivialtrivial

Next lecture

Next will focus on Next will focus on

dynamic compilation/optimization approaches todynamic compilation/optimization approaches todynamic compilation/optimization approaches to dynamic compilation/optimization approaches to
adapt to different programs behavior at runadapt to different programs behavior at run--time time

and machine learning to speed up iterativeand machine learning to speed up iterativeand machine learning to speed up iterative and machine learning to speed up iterative
search…search…

Literature

•• Hennessy and Patterson: Hennessy and Patterson: Computer Architecture: A Quantitative Approach
(4th Edition), Morgan Kaufmann, 2006

St M h i k Ad d C il D i d I l t ti• Steven Muchnick: Advanced Compiler Design and Implementation,
Morgan Kaufmann, 1997

• Randy Allen, Ken Kennedy: Optimizing compilers for modern architectures, y y p g p
Morgan Kaufmann, 2002

• Keith D. Cooper, Linda Torczon: Engineering a Compiler, Morgan
Kaufmann 2004Kaufmann, 2004

Literature
•• D. Bacon, S. Graham and O. Sharp: Compiler Transformations for HighD. Bacon, S. Graham and O. Sharp: Compiler Transformations for High--Performance Computing. ACM Computing Surveys, Volume 26,Performance Computing. ACM Computing Surveys, Volume 26,D. Bacon, S. Graham and O. Sharp: Compiler Transformations for HighD. Bacon, S. Graham and O. Sharp: Compiler Transformations for High Performance Computing. ACM Computing Surveys, Volume 26, Performance Computing. ACM Computing Surveys, Volume 26,
Issue 4, 1999Issue 4, 1999

•• R.C. Whaley, A. Petitet and J. Dongarra: ATLAS project, Parallel Computing, 2001 R.C. Whaley, A. Petitet and J. Dongarra: ATLAS project, Parallel Computing, 2001

•• S.L. Graham, P.B. Kessler, and M.K. McKusick: Gprof: A call graph execution profiler. Proceedings of the 1982 SIGPLAN SymposiS.L. Graham, P.B. Kessler, and M.K. McKusick: Gprof: A call graph execution profiler. Proceedings of the 1982 SIGPLAN Symposium um on on
Compiler Construction pages 120Compiler Construction pages 120--126 June 1982126 June 1982Compiler Construction, pages 120Compiler Construction, pages 120--126, June 1982126, June 1982

•• T. Ball and J.R. Larus: Efficient Path Profiling, International Symposium on Microarchitecture, pages 46T. Ball and J.R. Larus: Efficient Path Profiling, International Symposium on Microarchitecture, pages 46--57, 199657, 1996

•• T. Ball, P. Mataga and M. Sagiv: Edge Profiling versus Path Profiling: The Showdown, In Symposium on Principles of ProgramminT. Ball, P. Mataga and M. Sagiv: Edge Profiling versus Path Profiling: The Showdown, In Symposium on Principles of Programming g
Languages, Jan. 1998Languages, Jan. 1998

•• B. Aarts, M. Barreteau, F. Bodin, P. Brinkhaus, Z.Chamski, H.B. Aarts, M. Barreteau, F. Bodin, P. Brinkhaus, Z.Chamski, H.--P. Charles, C. Eisenbeis,J. Gurd, J.Hoogerbrugge, P. Hu, W. JalbP. Charles, C. Eisenbeis,J. Gurd, J.Hoogerbrugge, P. Hu, W. Jalby, y,
P.M.W. Knijnenburg, M.F.P O'Boyle, E. Rohou, R. Sakellariou, H. Schepers, A. Seznec, E.A. Stohr, M. Verhoeven and H.A.G. WijP.M.W. Knijnenburg, M.F.P O'Boyle, E. Rohou, R. Sakellariou, H. Schepers, A. Seznec, E.A. Stohr, M. Verhoeven and H.A.G. Wijshoshoff: ff:
OCEANS: Optimizing Compilers for Embedded Applications, in proceedings of EuroPar'97, LNCSOCEANS: Optimizing Compilers for Embedded Applications, in proceedings of EuroPar'97, LNCS--1300, pages 13511300, pages 1351--1356, 19971356, 1997

•• F. Bodin, T. Kisuki, P. Knijnenburg,M. O’Boyle and E. Rohou: Iterative compilation in a nonF. Bodin, T. Kisuki, P. Knijnenburg,M. O’Boyle and E. Rohou: Iterative compilation in a non--linear optimisation space, in procelinear optimisation space, in proceedings of edings of
th W k h P fil d F db k Di t d C il ti 1998th W k h P fil d F db k Di t d C il ti 1998the Workshop on Profile and Feedback Directed Compilation,1998the Workshop on Profile and Feedback Directed Compilation,1998

•• K. D. Cooper, P. J. Schielke, and D. Subramanian: Optimizing for reduced code space using genetic algorithms, in proceedings K. D. Cooper, P. J. Schielke, and D. Subramanian: Optimizing for reduced code space using genetic algorithms, in proceedings ofof the the
Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), pages 1Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), pages 1––9, 19999, 1999

•• GG..GG..FursinFursin, , MM..FF..PP..OO’’BoyleBoyle, , and Pand P..MM..WW. . Knijnenburg:Knijnenburg: Evaluating Iterative Compilation, in proceedings of the 15th Workshop on Evaluating Iterative Compilation, in proceedings of the 15th Workshop on
Languages and Compilers for Parallel Computing (LCPC’02), College Park, MD, USA, pages 305Languages and Compilers for Parallel Computing (LCPC’02), College Park, MD, USA, pages 305--315, 2002315, 2002

•• K. D. Cooper, D. Subramanian, and L. Torczon: Adaptive optimizing compilers for the 21st century, journal of Supercomputing, K. D. Cooper, D. Subramanian, and L. Torczon: Adaptive optimizing compilers for the 21st century, journal of Supercomputing, 2323(1), (1),
20022002

•• G. Fursin: Iterative Compilation and Performance Prediction for Numerical Applications, Ph.D. thesis, University of EdinburghG. Fursin: Iterative Compilation and Performance Prediction for Numerical Applications, Ph.D. thesis, University of Edinburgh, E, Edinburgh, dinburgh, p pp y gp pp y g gg
UK, January 2004UK, January 2004

Literature
•• K D Cooper A Grosul T J Harvey S Reeves D Subramanian L Torczon and T Waterman: Acme: adaptive compilation madK D Cooper A Grosul T J Harvey S Reeves D Subramanian L Torczon and T Waterman: Acme: adaptive compilation madee•• K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subramanian, L. Torczon, and T. Waterman: Acme: adaptive compilation madK. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subramanian, L. Torczon, and T. Waterman: Acme: adaptive compilation made e
efficient, in proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), pages 69efficient, in proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), pages 69––77, 200577, 2005

•• B. Franke, M. O'Boyle, J. Thomson and G. Fursin: Probabilistic SourceB. Franke, M. O'Boyle, J. Thomson and G. Fursin: Probabilistic Source--Level Optimisation of Embedded Systems Software, in Level Optimisation of Embedded Systems Software, in
proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES’05), pages 78proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES’05), pages 78--86, Chicago, IL, USA,86, Chicago, IL, USA,
June 2005June 2005

•• G Fursin and A Cohen: Building a Practical Iterative Interactive Compiler in proceedings of the 1G Fursin and A Cohen: Building a Practical Iterative Interactive Compiler in proceedings of the 1stst International Workshop on StatisticalInternational Workshop on Statistical•• G. Fursin and A. Cohen: Building a Practical Iterative Interactive Compiler, in proceedings of the 1G. Fursin and A. Cohen: Building a Practical Iterative Interactive Compiler, in proceedings of the 1stst International Workshop on Statistical International Workshop on Statistical
and Machine Learning Approaches Applied to Architectures and Compilation (SMART'07), Ghent, Belgium, January 2007and Machine Learning Approaches Applied to Architectures and Compilation (SMART'07), Ghent, Belgium, January 2007

•• S. Triantafyllis, M. Vachharajani, N. Vachharajani and D. August: Compiler optimizationS. Triantafyllis, M. Vachharajani, N. Vachharajani and D. August: Compiler optimization--space exploration, in proceedings of thspace exploration, in proceedings of the e
International Symposium on Code Generation and Optimization (CGO), pages 204International Symposium on Code Generation and Optimization (CGO), pages 204––215, 2003215, 2003

P K lk i D Wh ll G T d J D id E l ti h i ti ti i ti h d h l ith iP K lk i D Wh ll G T d J D id E l ti h i ti ti i ti h d h l ith i didi f thf th•• P. Kulkarni, D. Whalley, G. Tyson and J. Davidson: Evaluating heuristic optimization phase order search algorithms, in proceeP. Kulkarni, D. Whalley, G. Tyson and J. Davidson: Evaluating heuristic optimization phase order search algorithms, in proceedidings of the ngs of the
International Symposium on Code Generation and Optimization (CGO’07), pages 157International Symposium on Code Generation and Optimization (CGO’07), pages 157––169, March 2007169, March 2007

•• G. Fursin, J. Cavazos, M.F.P. O’Boyle and O. Temam: MiDataSets: Creating The Conditions For A More Realistic Evaluation of ItG. Fursin, J. Cavazos, M.F.P. O’Boyle and O. Temam: MiDataSets: Creating The Conditions For A More Realistic Evaluation of Itererative ative
Optimization, in proceedings of the Optimization, in proceedings of the International Conference on High Performance Embedded Architectures & Compilers (HiPEAC 2007), International Conference on High Performance Embedded Architectures & Compilers (HiPEAC 2007),
Ghent, Belgium, January 2007Ghent, Belgium, January 2007

•• B. Grant, M. Mock, M. Philipose, C. Chambers and S.J. Eggers: DyC: An Expressive AnnotationB. Grant, M. Mock, M. Philipose, C. Chambers and S.J. Eggers: DyC: An Expressive Annotation--Directed Dynamic Compiler for C, Directed Dynamic Compiler for C,
Theoretical Computer Science, volume 248, number 1Theoretical Computer Science, volume 248, number 1--2, pages 1472, pages 147--199, 2000199, 2000

•• M.Mock, C. Chambers and S.J.Eggers: Calpa: A Tool for Automating Selective Dynamic Compilation, International Symposium on M.Mock, C. Chambers and S.J.Eggers: Calpa: A Tool for Automating Selective Dynamic Compilation, International Symposium on
Microarchitecture, pages 291Microarchitecture, pages 291--302, 2000302, 2000

•• K. Ebcioglu and E.R. Altman: DAISY: Dynamic Compilation for 100% Architectural Compatibility, ISCA, pages 26K. Ebcioglu and E.R. Altman: DAISY: Dynamic Compilation for 100% Architectural Compatibility, ISCA, pages 26--37, 199737, 1997g y p p y p gg y p p y p g

•• V. Bala, E. Duesterwald and Sanjeev Banerjia: Dynamo: A Transparent Dynamic Optimization System, ACM SIGPLAN Notices, 2000V. Bala, E. Duesterwald and Sanjeev Banerjia: Dynamo: A Transparent Dynamic Optimization System, ACM SIGPLAN Notices, 2000

•• C. J. Krintz, D. Grove, V. Sarkar and Brad Calder: Reducing the overhead of dynamic compilation, Software Practice and ExperiC. J. Krintz, D. Grove, V. Sarkar and Brad Calder: Reducing the overhead of dynamic compilation, Software Practice and Experienence, ce,
volume 31, number 8, pages 717volume 31, number 8, pages 717--738, 2001738, 2001

•• M.J. Voss and R. Eigenmann: M.J. Voss and R. Eigenmann: ADAPT: Automated deADAPT: Automated de--coupled adaptive program transformation, in proceedings of ICPP, 2000coupled adaptive program transformation, in proceedings of ICPP, 2000

Literature
•• GG Fursin A Cohen M F P O'Boyle and O Temam: A Practical Method For Quickly Evaluating Program Optimizations in pFursin A Cohen M F P O'Boyle and O Temam: A Practical Method For Quickly Evaluating Program Optimizations in proceedings ofroceedings of•• G.G. Fursin, A. Cohen, M.F.P. O Boyle and O. Temam: A Practical Method For Quickly Evaluating Program Optimizations, in pFursin, A. Cohen, M.F.P. O Boyle and O. Temam: A Practical Method For Quickly Evaluating Program Optimizations, in proceedings of roceedings of
the 1st International Conference on High Performance Embedded Architectures & Compilers (HiPEAC 2005), number 3793 in LNCS, the 1st International Conference on High Performance Embedded Architectures & Compilers (HiPEAC 2005), number 3793 in LNCS,
pages 29pages 29--46, Barcelona, Spain, November 200546, Barcelona, Spain, November 2005

•• J.Lau, M.Arnold, M.Hind and B.Calder: Online Performance Auditing: Using Hot Optimizations Without Getting Burned, in proceedJ.Lau, M.Arnold, M.Hind and B.Calder: Online Performance Auditing: Using Hot Optimizations Without Getting Burned, in proceedinings of gs of
PLDI, 2006PLDI, 2006

•• G. Fursin, C. Miranda, S. Pop, A. Cohen and O. Temam: Practical RunG. Fursin, C. Miranda, S. Pop, A. Cohen and O. Temam: Practical Run--time Adaptation with Procedure Cloning to Enable Continuous time Adaptation with Procedure Cloning to Enable Continuous
Collective Compilation, in proceedings of the GCC Developers’ Summit, Ottawa, Canada, July 2007Collective Compilation, in proceedings of the GCC Developers’ Summit, Ottawa, Canada, July 2007

•• C. Lattner and V. Adve: Llvm: A compilation framework for lifelong program analysis & transformation, in proceedings of the 2C. Lattner and V. Adve: Llvm: A compilation framework for lifelong program analysis & transformation, in proceedings of the 200004 4
International Symposium on Code Generation and Optimization (CGO’04), Palo Alto, California, March 2004International Symposium on Code Generation and Optimization (CGO’04), Palo Alto, California, March 2004

•• A. Monsifrot, F. Bodin, and R. Quiniou: A machine learning approach to automatic production of compiler heuristics, in proceeA. Monsifrot, F. Bodin, and R. Quiniou: A machine learning approach to automatic production of compiler heuristics, in proceedidings of the ngs of the
International Conference on Artificial Intelligence: Methodology, Systems, Applications, LNCS 2443, pages 41International Conference on Artificial Intelligence: Methodology, Systems, Applications, LNCS 2443, pages 41––50, 200250, 2002

•• M. Stephenson, S. Amarasinghe, M. Martin, and U.M. Stephenson, S. Amarasinghe, M. Martin, and U.--M. O’Reilly: Meta optimization: Improving compiler heuristics with machine leaM. O’Reilly: Meta optimization: Improving compiler heuristics with machine learning, in rning, in
proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’03), pages 77proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’03), pages 77––90, June 90, June
2003200320032003

•• S. Long, M.F.P. O’Boyle: Adaptive Java optimisation using instanceS. Long, M.F.P. O’Boyle: Adaptive Java optimisation using instance--based learning, in proceedings of ICS, 2004based learning, in proceedings of ICS, 2004

•• J. Cavazos, J.E.B.Moss, M.F.P.O’Boyle: Hybrid Optimizations: Which Optimization Algorithm to Use? in proceedings of CC, 2006J. Cavazos, J.E.B.Moss, M.F.P.O’Boyle: Hybrid Optimizations: Which Optimization Algorithm to Use? in proceedings of CC, 2006

•• F Agakov E Bonilla J Cavazos B Franke G Fursin M F P O'Boyle J Thomson M Toussaint and C K I Williams: UsingF Agakov E Bonilla J Cavazos B Franke G Fursin M F P O'Boyle J Thomson M Toussaint and C K I Williams: Using MaMachinechine•• F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.F.P. O Boyle, J. Thomson, M. Toussaint and C.K.I. Williams: Using F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.F.P. O Boyle, J. Thomson, M. Toussaint and C.K.I. Williams: Using MaMachine chine
Learning to Focus Iterative Optimization. in proceedings of the 4th Annual International Symposium on Code Generation and OpLearning to Focus Iterative Optimization. in proceedings of the 4th Annual International Symposium on Code Generation and Optimtimization ization
(CGO), New York, NY, USA, March 2006(CGO), New York, NY, USA, March 2006

•• John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F.P.O’Boyle and Olivier Temam: Rapidly Selecting Good CompJohn Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F.P.O’Boyle and Olivier Temam: Rapidly Selecting Good Compileiler r
Optimizations using Performance Counters, in proceedings of the 5Optimizations using Performance Counters, in proceedings of the 5th Annual International Symposium on Code Generation and th Annual International Symposium on Code Generation and
O ti i ti (CGO) S J USA M h 2007O ti i ti (CGO) S J USA M h 2007Optimization (CGO), San Jose, USA, March 2007Optimization (CGO), San Jose, USA, March 2007

•• Christophe Dubach, John Cavazos, Björn Franke, Grigori Fursin, Michael O'Boyle and Oliver Temam: Enabling fast compiler optimChristophe Dubach, John Cavazos, Björn Franke, Grigori Fursin, Michael O'Boyle and Oliver Temam: Enabling fast compiler optimizization ation
evaluation via codeevaluation via code--features based performance predictor, in proceedings of the ACM International Conference on Computing Frontifeatures based performance predictor, in proceedings of the ACM International Conference on Computing Frontiers, ers,
Ischia, Italy, May 2007Ischia, Italy, May 2007

Related Conferences
C f P i L D i d I l t ti (C f P i L D i d I l t ti (PLDIPLDI))•• Conference on Programming Language Design and Implementation (Conference on Programming Language Design and Implementation (PLDIPLDI))

•• International Conference on Code Generation and Optimization (International Conference on Code Generation and Optimization (CGOCGO))

•• Architectural Support for Programming Languages and Operating SystemsArchitectural Support for Programming Languages and Operating Systems•• Architectural Support for Programming Languages and Operating Systems Architectural Support for Programming Languages and Operating Systems
((ASPLOSASPLOS))

•• Conference on Parallel Architectures and Compilation Techniques (Conference on Parallel Architectures and Compilation Techniques (PACTPACT))

•• International Conference on Compilers, Architecture and Synthesis for International Conference on Compilers, Architecture and Synthesis for
Embedded Systems (Embedded Systems (CASESCASES))

•• Symposium on Principles of Programming Languages (Symposium on Principles of Programming Languages (PoPLPoPL))•• Symposium on Principles of Programming Languages (Symposium on Principles of Programming Languages (PoPLPoPL))

•• Principles and Practice of Parallel Computing (Principles and Practice of Parallel Computing (PPoPPPPoPP))

•• International Symposium on Microarchitecture (International Symposium on Microarchitecture (MICROMICRO))International Symposium on Microarchitecture (International Symposium on Microarchitecture (MICROMICRO))

•• International Symposium on Computer Architecture (International Symposium on Computer Architecture (ISCAISCA))

•• Symposium on HighSymposium on High--Performance Computer Architecture (Performance Computer Architecture (HPCAHPCA))y p gy p g p (p ())

•• Workshop on Statistical and Machine learning approaches to ARchitectures Workshop on Statistical and Machine learning approaches to ARchitectures
and compilaTion (and compilaTion (SMARTSMART))

Related Journals

•• ACM Transaction on Architecture and Code OptimizationACM Transaction on Architecture and Code Optimization

IEEE T ti C tIEEE T ti C t•• IEEE Transaction on ComputersIEEE Transaction on Computers

•• ACM Transactions on Computer SystemsACM Transactions on Computer Systems

•• ACM Transactions on Programming Languages and SystemsACM Transactions on Programming Languages and Systems•• ACM Transactions on Programming Languages and SystemsACM Transactions on Programming Languages and Systems

•• IEEE Transaction on Parallel and Distributed SystemsIEEE Transaction on Parallel and Distributed Systems

•• IEEE MicroIEEE MicroIEEE MicroIEEE Micro

Miscellaneous

MachMachiine ne LLearning for earning for EEmbedded mbedded PPrroogramgrams s
OOptimisation ptimisation (MILEPOST)(MILEPOST)

http://www.milepost.euhttp://www.milepost.eu

Network of Excellence on High Performance
E b dd d A hit t d C ilEmbedded Architectures and Compilers

(HiPEAC)
http://www.hipeac.netp p

Thanks

Thanks to Prof. Michael O’Boyle from the University of Edinburgh for Thanks to Prof. Michael O’Boyle from the University of Edinburgh for
providing some slides from his course on iterative feedbackproviding some slides from his course on iterative feedback--directed directed

compilation (2005)compilation (2005)

Contact email:Contact email:
grigori.fursin@inria.frgrigori.fursin@inria.fr

M i f ti b t h j t d ftM i f ti b t h j t d ftMore information about research projects and software:More information about research projects and software:
http://fursin.net/researchhttp://fursin.net/research

Lecture and publications onLecture and publications on--line:line:ectu e a d pub cat o s oectu e a d pub cat o s o ee
http://fursin.net/research_teaching.htmlhttp://fursin.net/research_teaching.html

