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Abstract. Designing faster, more energy efficient and reliable computer
systems requires effective collaboration between hardware designers, sys-
tem programmers and performance analysts, as well as feedback from
system users. We present Collective Knowledge (CK), an open frame-
work for reproducible and collaborative design and optimization. CK
enables systematic and reproducible experimentation, combined with
leading edge predictive analytics to gain valuable insights into system
performance. The modular architecture of CK helps engineers create and
share entire experimental workflows involving modules such as tools, pro-
grams, data sets, experimental results, predictive models and so on. We
encourage a wide community, including system engineers and users, to
share and reuse CK modules to fuel R&D on increasing the efficiency
and decreasing the costs of computing everywhere.

1 Introduction

1.1 The need for collaboration

Designing faster, more energy efficient and reliable computer systems requires
effective collaboration between several groups of engineers, for example:

– hardware designers develop and optimize hardware, and provide low-level
tools to analyze their behavior such as simulators and profilers with event
counters;

– system programmers port to new hardware and then optimize proprietary
or open-source compilers (e.g. LLVM, GCC) and libraries (e.g. OpenCL,1

OpenVX,2 OpenCV,3 Caffe,4 BLAS5);
– performance analysts collect benchmarks and representative workloads, and

automate running them on new hardware.

In our experience, the above groups still collaborate infrequently (e.g. on
achieving development milestones), despite the widely recognized virtues of hard-
ware/software co-design [1]. Moreover, the effectiveness of collaboration typically

1 Khronos Group’s standard API for heterogeneous systems: khronos.org/opencl
2 Khronos Group’s standard API for computer vision: khronos.org/openvx
3 Open library for computer vision: opencv.org
4 Open library for deep learning: caffe.berkeleyvision.org
5 Standard API for linear algebra: netlib.org/blas

khronos.org/opencl
khronos.org/openvx
opencv.org
caffe.berkeleyvision.org
netlib.org/blas


depends on the proactivity and diligence of individual engineers, the level of in-
vestment into collaboration tools, the pressure exerted by customers and users,
and so on. Ineffective collaboration could perhaps be tolerated many decades
ago when design and optimization choices were limited. Today systems are so
complex that any seemingly insignificant choice can lead to dramatic degrada-
tion of performance and other important characteristics [2,3,4,5]. To mitigate
commercial risks, companies develop proprietary infrastructures for testing and
performance analysis, and bear the associated maintenance costs.

For example, whenever a performance analyst reports a performance issue,
she should provide the program code along with instructions for how to build
and run it, and the experimental conditions (e.g. the hardware and compiler re-
visions). Reproducing the reported issue may take many days, while omitting a
single condition in the report may lead to frustrating back-and-forth communi-
cation and further time being wasted. Dealing with a performance issue reported
by a user is even harder: the corresponding experimental conditions need to be
elicited from the user (or guessed), the program code and build scripts imported
into the proprietary infrastructure, the environment painstakingly reconstructed,
etc.

Ineffective collaboration wastes precious resources and runs the risk of de-
signing uncompetitive computer systems.

1.2 The need for representative workloads

The conclusions of performance analysis intrinsically depend on the workloads
selected for evaluation [6]. Several companies devise and license benchmark suites
based on their guesses of what representative workloads might be in the near fu-
ture. Since benchmarking is their primary business, their programs, data sets and
methodology often go unchallenged, with the benchmarking scores driving the
purchasing decisions both of OEMs (e.g. phone manufacturers) and consumers
(e.g. phone users). When stakes are that high, the vendors have no choice but to
optimize their products for the commercial benchmarks. When those turn out
to have no close resemblance to real workloads, the products underperform.

Leading academics have long recognized the need for representative work-
loads to drive research in hardware design and software tools [7,8]. With fund-
ing agencies increasingly requiring academics to demonstrate impact, academics
have the right incentives to share representative workloads and data sets with
the community.

Incentives to share representative workloads may be somewhat different for
industry. Consider the example of Realeyes,6 a participant in the EU CARP
project.7 Recognizing the value of collaborative R&D, Realeyes released under
a permissive license a benchmark comprised of several standard image process-
ing algorithms used in their pipeline for evaluating human emotions [9]. Now

6 realeyesit.com
7 carpproject.eu
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Realeyes enjoy the benefits of our research on run-time adaptation (§3) and
accelerator programming ([10]) that their benchmark enabled.

We thus have reasons to believe that the expert community can tackle the
issue of representative workloads. The challenge for vendors and researchers alike
will be to keep up with the emerging workloads, as this will be crucial for com-
petitiveness.

1.3 The need for predictive analytics

While traditionally performance analysts would only obtain benchmarking fig-
ures, recently they also started performing more sophisticated analyses to detect
unexpected behavior and suggest improvements to hardware and system software
engineers. Conventional labour-intensive analysis (e.g. frame by frame, shader
by shader for graphics) is not only extremely costly but is simply unsustainable
for analyzing hundreds of real workloads (e.g. most popular mobile games).

Much of success of companies like Google, Facebook and Amazon can be
attributed to using statistical (“machine learning”, “predictive analytics”) tech-
niques, which allow them to make uncannily accurate predictions about users’
preferences. Whereas most people would agree with this, the same people would
resist the idea of using statistical techniques in their own area of expertise. A
litmus test for our community is to ask ten computer engineers whether statis-
tical techniques would help them design better processors and compilers. In our
own experience, only one out of ten would say yes, while others would typically
lack interdisciplinary knowledge.

We have grown to appreciate the importance of statistical techniques over
the years. (One of us actually flunked statistics at university.) We constantly find
useful applications of predictive analytics in computer engineering. For exam-
ple, identifying a minimal set of representative programs and inputs has many
benefits for design space exploration, including vastly reduced simulation time.

1.4 Our humble proposal for solution

We present Collective Knowledge, a simple and extensible framework for collab-
orative and reproducible R&D ([11], §2). With Collective Knowledge, engineers
can systematically investigate design and optimization choices using leading edge
statistical techniques, conveniently exchange experimental workflows across or-
ganizational boundaries (including benchmarks), and automatically maintain
programming tools and documentation.

Several performance-oriented open-source tools exist including LLVM’s LNT,8

ARM’s Workload Automation,9 and Phoronix Media’s OpenBenchmarking.10

These tools do not provide, however, robust mechanisms for reproducible ex-
perimentation and capabilities for collaborative design and optimization. We

8 llvm.org/docs/lnt
9 github.com/ARM-software/workload-automation

10 openbenchmarking.org
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Fig. 1. Converting a typical experimental workflow to the Collective Knowledge format.

demonstrate some of these mechanisms and capabilities on a computationally
intensive algorithm from the Realeyes benchmark (§3). We believe that Col-
lective Knowledge can be combined with open-source and proprietary tools to
create robust, cost-effective solutions to accelerate computer engineering.

2 Collective Knowledge

Fig. 1 shows how a typical experimental workflow can be converted into a col-
lection of CK modules such as programs (e.g. benchmarks), data sets, tools
(e.g. compilers and libraries), scripts, experimental results, predictive models,
articles, etc. In addition, CK modules can abstract away access to hardware,
monitor run-time state, apply predictive analytics, etc.

Each CK module has a class. Classes are implemented in Python, with a
JSON11 meta description, JSON-based API, and unified command line interface.
New classes can be defined as needed.

Each CK module has a DOI-style unique identifier (UID). CK modules can
be referenced and searched through by their UIDs using Hadoop-based Elas-

11 JavaScript Object Notation: json.org

json.org


ticsearch.12 CK modules can be flexibly combined into experimental workflows,
similar to playing with LEGO R© modules.

Engineers can share CK workflows complete with all their modules via repos-
itories such as GitHub. Other engineers can reproduce an experiment under the
same or similar conditions using a single CK command. Importantly, if the other
engineers are unable to reproduce an experiment due to uncaptured dependencies
(e.g. on run-time state), they can “debug” the workflow and share the “fixed”
workflow back (possibly with new extensions, experiments, models, etc.)

Collaborating groups of engineers are thus able to gradually expose in a uni-
fied way multi-dimensional design and optimization choices c of all modules,
their features f, dependencies on other modules, run-time state s and observed
behavior b, as shown in Fig. 1 and described in detail in [12,13]. This, in turn,
enables collaboration on the most essential question of computer engineering:
how to optimize any given computation in terms of performance, power con-
sumption, resource usage, accuracy, resiliency and cost; in other words, how to
learn and optimize the behavior function B :

b = B(c, f , s)

2.1 Systematic benchmarking

Collective Knowledge supports systematic benchmarking of a program’s perfor-
mance profile under reproducible conditions, with the experimental results being
aggregated in a local or remote CK repository. Engineers gradually improve re-
producibility of CK benchmarking by implementing CK modules to set run-time
state and monitor unexpected behavior across participating systems.

For example, on mobile devices, unexpected performance variation can of-
ten be attributed to dynamic voltage and frequency scaling (DVFS). Mobile
devices have power and temperature limits to prevent device damage; in ad-
dition, when a workload’s computational requirements can still be met at a
lower frequency, lowering the frequency conserves energy. Further complications
arise when benchmarking on heterogeneous multicore systems such as ARM
big.LITTLE: in a short time, a workload can migrate between cores having dif-
ferent microarchitectures, as well as running at different frequencies. Controlling
for such factors (or at least accounting for them with elementary statistics) is
key to meaningful performance evaluation on mobile devices.

3 Example

Systematically collecting performance data that can be trusted is essential but
does not by itself produce insights. The Collective Knowledge approach permits
to seamlessly apply leading edge statistical techniques on the collected data, thus
converting “raw data” into “useful insights”.

12 Open-source distributed real-time search and analytics: elastic.co

elastic.co


Platform CPU (ARM) GPU (ARM)

Chromebook 1 Cortex-A15×2 Mali-T604×4

Chromebook 2 Cortex-A15×4 Mali-T628×4

Table 1. Experimental platforms: Samsung Chromebooks 1 (XE303C12, 2012) and 2
(XE503C12, 2014). Notation: “processor architecture” × “number of cores”.

Consider the Histogram of Oriented Gradients (HOG), a widely used com-
puter vision algorithm for detecting objects [14]. Realeyes deploy HOG in several
stages of their image processing pipeline. Different stages use different “flavours”
of HOG, considerably varying in their computational requirements. For exam-
ple, one stage of the pipeline may invoke HOG on a small-sized image but with
a high amount of computation per pixel (“computational intensity”); another
stage, may invoke HOG on a medium-sized image but with low computational
intensity. In addition, the Realeyes pipeline may be customized differently for
running on mobile devices (e.g. phones), personal computers (e.g. laptops) or in
the cloud.

In this paper, we use two versions of HOG: an OpenCV-based CPU imple-
mentation (with TBB parallelization) and a hand-written OpenCL implementa-
tion (data parallel kernel).13 Suppose we are interested in optimizing the execu-
tion time of HOG.14 Computing HOG on the GPU is typically faster than on the
CPU. The total GPU execution time (including the memory transfer overhead),
however, may exceed the CPU execution time.

Figure 2 shows a performance surface plot for one flavour of HOG with DVFS
disabled and the processors’ frequencies controlled for. The X and Y axis show
the CPU and the GPU frequencies, while the Z axis shows the CPU execution
time divided by the total GPU execution time. When this ratio is greater than 1
(the light pink to bright red areas), using the GPU is faster than using the CPU,
despite the memory transfer overhead. A sensible scheduling decision, therefore,
is to schedule the workload on the GPU.

While it may be possible to infer when to use the GPU from this plot (just
avoid the light blue to navy areas), what if the performance also depends on
other factors as well as the processors’ frequencies? Will we still be able to make
sensible scheduling decisions most of the time?

To answer this question, we conducted multiple experiments with HOG (1×1
cells) on two Chromebook platforms (see Table 1). The experiments covered the
Cartesian product of the CPU and GPU frequencies available on both platforms
(CPU: 1600 MHz, 800 MHz; GPU: 533 MHz, 266 MHz), 3 block size (16, 64,
128), 23 images (in different shapes and sizes), for the total of 276 samples (with
5 repetitions each).

13 The related CK repository is at github.com/ctuning/reproduce-carp-project.
14 We can also consider multi-objective optimization e.g. finding appropriate trade-offs

between execution time vs. energy consumption vs. cost.

github.com/ctuning/reproduce-carp-project
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Fig. 2. Platform: Chromebook 2. Program: HOG 4 × 4; block size: 64. X axis: CPU
frequency (MHz); Y axis: GPU frequency (MHz); Z axis: CPU execution time divided
by GPU [kernel + memory transfer] execution time.

To analyze the collected experimental data, we use decision trees, a popular
supervised learning method for classification and regression.15 We build deci-
sion trees using a Collective Knowledge interface to the Python scikit-learn

package.16 We thus obtain a predictive model that tells us whether it is faster
to execute HOG on the GPU or on the CPU by considering several features
of a sample (experiment). In other words, the model classifies a sample by as-
signing to it one of the two labels: “YES” means the GPU should be used;
“NO” means the CPU should be used. We train the model on the experimental
data, by labelling a sample with “YES” if the CPU execution time exceeds the
GPU execution time by at least 7% (to account for variability), and with “NO”
otherwise.

Figure 3 shows a decision tree of depth 1 built from the experimental data
obtained on Chromebook 1 using just one feature: the block size (designated
as ‘worksize’ in the figure), which, informally, determines the computational
intensity of the algorithm. The root node divides the training set of 276 samples
into two subsets. For 92 samples in the first subset, represented by the left leaf
node (“L1”), the worksize is less than or equal to 40 (i.e. 16). For 184 samples
in the second subset, represented by the right leaf node (“L2”), the worksize is
greater than 40 (i.e. 64 and 128).

15 en.wikipedia.org/wiki/Decision_tree_learning
16 scikit-learn.org
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Fig. 3. Platform: Chromebook 1. Model: feature set: 1; depth: 1.
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Fig. 4. Platform: Chromebook 1. Model: feature set: 1; depth: 2.
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Fig. 5. Platform: Chromebook 1. Model: feature set: 2; depth: 4.



Id Features

FS1 worksize [block size]

FS2 all features from FS1, CPU frequency, GPU frequency,
image rows (m), image columns (n), image size (m× n),
(GWS0, GWS1, GWS2) [OpenCL global work size]

FS3 all features from FS2, CPU frequency / GPU frequency,
image size / CPU frequency, image size / GPU frequency,

Table 2. Feature sets: simple (FS1); natural (FS2); designed (FS3).

In the first subset, 90 samples are labelled with “NO” and 2 samples are
labelled with “YES”. Since the majority of the samples are labelled with “NO”,
the tree predicts that the workload for which the worksize is less than or equal
to 40 should be executed on the CPU. Similarly, the workload for which the
worksize is greater than 40 should be executed on the GPU. Intuitively, this
makes sense: the workload with a higher computational intensity (a higher value
of the worksize) should be executed on the GPU, despite the memory transfer
overhead.

For 6 samples out of 276, the model in Figure 3 mispredicts the correct
scheduling decision. (We say that the rate of correct predictions is 270/276 or
97.8%.) For example, for the two samples out of 92 in the subset for which the
worksize is 16 (“L1”), the GPU was still faster than the CPU. Yet, based on
labelling of the majority of the samples in this subset, the model mispredicts
that the workload should be executed on the CPU.

Figure 4 shows a decision tree of depth 2 using the same worksize feature.
The right child of the root now has two children of its own. All the samples in
the rightmost leaf (“L3”) for which the worksize is greater than 96 (i.e. 128) are
labelled with “YES”. This means that at the highest computational intensity, the
GPU was always faster than the CPU, thus confirming our intuition. However,
the model in Figure 4 still makes 6 mispredictions. To improve the prediction
rate, we build models using more features, as well as having more levels. In
Table 2, we consider two more sets of features.

The “natural” set is constructed from the features that we expected would
impact the scheduling. Figure 5 shows a decision tree of depth 4 built using the
natural feature set. This model uses 4 additional features (the GPU frequency,
the CPU frequency, the number of image columns, the number of image rows)
and has 8 leaf nodes, but still results in 2 mispredictions (“L7”), achieving the
prediction rate of 99.3%. This model makes the same decision on the worksize
at the top level, but better fits the training data at lower levels. However, this
model is more difficult to grasp intuitively and may not fit new data well.

The “designed” set can be used to build models achieving the 100.0% pre-
diction rate. A decision tree of depth 5 (not shown) uses all the new features
from the designed set. With 12 leaf nodes, however, this model is even more
difficult to grasp intuitively and exhibits even more overfitting than the model
in Figure 5.
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Fig. 6. Platform: Chromebook 2. Model: feature set: 1; depth: 2.

Now, if we use a simple model trained on data from Chromebook 1 (Fig-
ure 4) for predicting scheduling decisions on Chromebook 2, we only achieve
a 51.1% prediction rate (not shown). A similar model retrained on data from
Chromebook 2 (Figure 6) achieves a 82.3% prediction rate. Note that the top-
level decision has changed to the worksize being less than 96. In other words,
up to that worksize the CPU is generally faster than the GPU even as prob-
lems become more computationally intensive. This makes sense: the CPU of
Chromebook 2 has 4 cores, whereas the CPU of Chromebook 1 has 2 cores. This
demonstrates the importance of retraining models for different platforms.

As before, using more features and levels can bring the prediction rate to
100.0%. For example, using the natural feature set improves the prediction rate
to 90.2% (Figure 7). Note that the top-level decision no longer depends on the
worksize but on the first dimension of the OpenCL global work size.

For brevity, we omit a demonstration of the importance of using more data
for training. For example, to build more precise models, we could have added
experiments with the worksize of 32 to determine if that would still be considered
non-intensive as the worksize of 16. The Collective Knowledge approach allows
to crowdsource such experiments and rebuild models as more mispredictions are
detected and more data becomes available.

High-level programming frameworks for heterogeneous systems such as An-
droid’s RenderScript,17 Qualcomm’s Symphony,18 and Khronos’s OpenVX19 can
be similarly trained to dispatch tasks to system resources efficiently.

17 developer.android.com/guide/topics/renderscript
18 developer.qualcomm.com/symphony (formerly known as MARE)
19 khronos.org/openvx
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Fig. 7. Platform: Chromebook 2. Model: feature set: 2; depth: 2.

4 Conclusion

We have presented Collective Knowledge, an open methodology that enables
collaborative design and optimization of computer systems. This methodology
encourages contributions from the expert community to avoid common bench-
marking pitfalls (allowing, for example, to fix the processor frequency, capture
run-time state, find missing software/hardware features, improve models, etc.)

4.1 Representative workloads

We believe the expert community can tackle the issue of representative work-
loads as well as the issue of rigorous evaluation. The community will both provide
representative workloads and rank them according to established quality crite-
ria. Furthermore, a panel of recognized experts could periodically (say, every 6
months) provide a ranking to complement commercial benchmark suites.

The success will depend on establishing the right incentives for the com-
munity. As the example of Realeyes shows, even when commercial sensitivity
prevents a company from releasing their full application under an open-source
license, it may still be possible to distill a performance-sensitive portion of it into
a standalone benchmark. The community can help the company to optimize their
benchmark (for free or for fee), thus improving the overall performance of their
full application.20 Some software developers will just want to see their bench-
mark appear in the ranked selection of workloads, highlighting their skill and
expertise (similar to “kudos” for open-source contributions).

4.2 Predictive analytics

We believe that the Collective Knowledge approach convincingly demonstrates
that statistical techniques can indeed help computer engineers do a better job

20 The original HOG paper [14] has over 12500 citations. Just imagine this commu-
nity combining their efforts to squeeze out every gram of HOG performance across
different “flavours”, data sets, hardware platforms, etc.



in many practical scenarios. Why do we think it is important? Although we are
not suggesting that even most advanced statistical techniques can ever substi-
tute human expertise and ingenuity, applying them can liberate engineers from
repetitive, time-consuming and error-prone tasks that machines are better at.
Instead, engineers can unleash their creativity on problem solving and innovat-
ing. Even if this idea is not particularly novel, Collective Knowledge brings it
one small step closer to reality.

4.3 Trust me, I am a catalyst!

We view Collective Knowledge as a catalyst for accelerating knowledge discovery
and stimulating flows of reproducible insights across largely divided hardware/-
software and industry/academia communities. Better flows will lead to break-
throughs in energy efficiency, performance and reliability of computer systems.
Effective knowledge sharing and open innovation will enable new exciting appli-
cations in consumer electronics, robotics, automotive and healthcare—at better
quality, lower cost and faster time-to-market.
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