Reducing Training
Timein a One-shot Machine L earning-based Compiler

John Thomsoh Michael O'Boylé", Grigori Fursirf, Bjorn Franké

1 University of Edinburgh, UK ohn. t homson@d. ac. uk, [nob: bf ranke] @ nf . ed. ac. uk
2 INRIA Sarclay, Francgri gori.fursin@nria.fr

Abstract. Iterative compilation of applications has proved a popualad suc-
cessful approach to achieving high performance. This hewés at the cost of
many runs of the application. Machine learning based aghermovercome this
at the expense of a large off-line training cost. This papesents a new approach
to dramatically reduce the training time of a machine leagrttased compiler.
This is achieved by focusing on the programs which best cheniae the opti-
mization space. By using unsupervised clustering in thgnara feature space
we are able to dramatically reduce the amount of time reduivetrain a com-
piler. Furthermore, we are able to learn a model which dispgnvith iterative
search completely allowing integration within the normedgram development
cycle. We evaluated our clustering approach on the EEMB@izhmark suite
and show that we can reduce the number of training runs by tharea factor
of 7. This translates into an average 1.14 speedup acrodsetighmark suite
compared to the default highest optimization level.

1 Introduction

For many applications, particularly in the embedded andh Ipigrformance domains,
performance is critical. Iterative compilation has beeccessfully applied to such ap-
plications [10] precisely because of this emphasis on perdace. However, this comes
at a cost, namely the large number of compilations and etiahsaneeded. While this

may be acceptable for the final version of a program, it isuiked to the program de-
velopment cycle. Machine learning techniques [1, 6] havenh@oposed which have
the potential to overcome this by moving the online search fow a particular program

to an off-line training cost. However, this training costasge and must be performed
whenever the underlying platform is modified.

This paper proposes a new technique to significantly reduedraining cost by
more than a factor of seven, allowing high-quality, macHesrning-based optimiz-
ing compilers to be produced for a new architecture in a ivacof the time. This
is particularly important for embedded applications duénteerent performance and
time-to-market constraints.

Previous work [10, 1, 6] has shown that it is possible to ebtainsiderable im-
provement in execution speed by applying learning tectegdo the problem of op-
timization selection. However, the training time for thestgm is a significant cost,
which can run to weeks, or even months. Additionally, thagrting time grows linearly
with the number of benchmarks used for training, necessitéihe use of small bench-
mark suites with limited scope. This lack of scope limitsyioes learning compilers
in their ability to properly characterize new programs, nieg they frequently rely on
additional search of the optimization space to achieve geofbrmance[5]. This paper

1. Cluster

(a) Extract features vectéfrom programP.

(b) Reducd to the most significant principal components using PCA.

(c) Cluster the new feature-spafeinto n clusters, giving then most typical centroid
programs for the space.

2. Train
(a) Train a model using using randomly selected optimiration then clustered programs.
3. Deploy

Fig. 1. Cluster Algorithm

presents a scalable technique to allow vastly greater ageasf the space of programs,
at a fraction of the cost of previous approaches.

Although previous work [14] has successfully produced nraetearning solutions
which do not require search of the target program, they aflsi¢ocus on just one opti-
mization heuristic and are limited in scope. Those appresdtiat attempt to find good
solutions over wide optimisation spaces [10] inevitablyuiee some type of feedback
via a small search of the target program’s optimization sp8y significantly reduc-
ing the cost of learning, we can cover a larger program spaae before, resulting
in one-shot compilation, with no feedback. This is partielyl useful during program
development time, when the user does not want to spend alalitiuns of his/her pro-
gram to see what the eventual performance will be.

In our approach, each program is characterized by a set effeadures describing
its overall structure. These sets of features form a feapeee. If we examine the struc-
ture of this space usingnsupervised learningve can select a subset of programs that
are most representative of the space as a whole. This ing¢dutes the number of pro-
grams that need to be evaluated during training. When appltichclusteringto the
EEMBC benchmark suite we can reduce the number of prograstisider to just 6.

Additionally, we show that by gaining large scale coverafjthe whole space of
programs in our training data, we can dispense with seatogether, and produce a
simple-to-use, one-shot compiler that gives excellentoperance, giving an average
speedup of 1.14 over O3 level across the benchmarks suitdefuwhen trained in
this way, we have knowledge of how well our compiler is trairie a particular do-
main of programs. When a new program is to be compiled, weuwz#gej how confident
we are that the new program is covered by our previous trgjminwhether retraining
would be beneficial.

The remainder of the paper is structured as follows: Se@igires a description of
our clustering approach. Section 3 describes the expetaimaethodology used, while
section 4 presents our experimental results. After a steetew of related work we
finally draw some brief concluding remarks.

2 The Cluster-based Approach

Figure 1 gives an overview of our approach. First off, we htvextract the features
from each of the programs which are potential candidatesdoring. This feature ex-
traction is a way of representing the essence of a progratatfarclassification. These
features are represented as a vector of values, many of \ehéctedundant. We then

apply principal components analysis which determineseteatures that are useful
and those that are redundant. Once we have a have a redutiee fesctor describing
each program, we then attempt to group them using clustéoiggtermine the most
representative programs that span the space. This is thefaheé initial clustering
stage. The next stages are standard supervised learnirtgployment. Here we learn
a model based on training data associated witmtbelected programs.

2.1 Featuresand Feature Reduction

Program features are vectors of numerical values whichaclerize the space of pro-
grams. Machine learning techniques can use features asr& teegauge similarity.
The features used in this paper are the ratios of each asgéaabl instruction to the
total number of instructions executed by a program, i.eptioportions of each type of
instruction used. This is a very simple feature set, whiaaisy to capture, and yet, as
we later show in section 4, provides excellent performaeeuse ARM assembly in-
structions as our features to ensure that our techniquesedy capturing information
about the program and not some facet peculiar to a partiantdnitecture. Hoste and
Eeckhout [9] argue that the use of a generic RISC architeésucapable of represent-
ing and characterizing program performance and the ARMasd as an approximation
a generic RISC core.

Features are extracted statically using a simple fast profibol, which counts the
number and type of instructions used by the program, andgisaghbounded values.
These raw counts are normalized and used our basic progetards. The output of
this stage is a 30-element feature vector describing thgrano.

These extracted features can be reduced in number, usiogradee calledPrinci-
pal Components Analysjd]. This technique reduces the dimensionality of the fesatu
space by examining the variance within the data, and whisgmwing as much vari-
ance as possible, generating a new set of features whichiasmacombination of the
original set.

2.2 Clustering

The feature-space of programs is clustered using the a ftlmgtering method called
the GustafsonKessel algorithf8], which is a variation on a standard C-means fuzzy
clustering algorithm [4] which allows the detection of @ifent geometrical shapes in
one data set. The algorithm minimizes the objective fumctimthat the fuzzy distances
between the data points and cluster centers are minimisedinput to the algorithm
was the reduced feature set of 9 principal components, asilled above. Our GK
clustering technique cannot determine the correct numielusters which most accu-
rately depict the space, which must be supphegkiori. We employed the technique
suggested by Ray and Turi [13] which considers the propodfdhe intra-cluster vari-
ance in respect to the inter-cluster variance, and setgttie first local minimum of
this valueK as the number of considered clusters increases.

2.3 Training and Deployment

Once we have selected the benchmarks we wish to train withyseestandard ap-
proaches to learn a model. This is achieved by applying nangjatimization to each of
the programs to find the best optimization settings. We tleexno build a model which
maps the program features to the best optimizations foumekeTare many approaches

to building such a model. Since the goal of our approach issbregé compilation, we
simply record the best optimization flags found for our tianprograms and use a
nearest neighbor model [1].

Having fixed the selected programs and completed the tgaiioineach, the com-
piler is ready for deployment. Firstly, feature extractismperformed on the new pro-
gram input, and those features are then input to a nearegbwi classifier which
determines which of the centroids it is most near using the squared Mahalanobis dis-
tance norm. Having been assigned a neighbor, the benchsnashknipiled and executed,
using the best performing compiler flags associated withghant, and the execution
time recorded. Although this is simple model, it is laterwhdo be an effective one.

3 Experimental Methodology

We evaluated each approach on the EEMBCv?2 [7] benchmank ssitich is targetted
at the embedded domain. It contains many computationainsive kernels and pro-
grams utilized in the embedded and general purpose worlfsvAEMBC programs
were excluded due to difficulties with GCC. When a choice dasdat was offered by
EEMBC, the default dataset was chosen. These experimemés caeried out on an
Intel Core 2 Duo E6750 processor running at 2.66GHz. The maackas running a
stripped down version of Ubuntu Linux 8.04 with linux kernarsion 2.6.24. GCC
compiler version 4.2.2 was used which allows additionaimizations over and above
the default GCC to be accessed via compiler flags. We sel88teflithe different flags
supported by GCC which formed our optimization space. Byrageach flag to a par-
ticular value, we can evaluate many distinct optimizations

Cluster Approach

On applying our technique to the EEMBC benchmark suite, wadiahe correct num-
ber of clusters to be 6. The centroid programs were seledt@thghe 6 most typical
programs to represent those clusters. These 6 programshegresed to train on. For
each training program, we probe the optimization space legtieg 4000 random flag
settings and executing the resulting code. The best peirigrftag setting is recorded
and used by the nearest neighbor model. We use standaredeaveut cross-validation
[4] both for clustering and deployment. This means we exelid benchmark being
evaluated from the clustering process so that that the pnodpas never been seen by
the compiler before.

Standard Random Training SelectidBiven a limited amount of time and resources is
available to train a machine learning compiler, the stathdeay to select programs to
train on, is simply to use random selection. For a fair congpar6 benchmarks were
randomly chosen from the set of 44. Having selected the progrto be trained, the
process proceeds in the same way as the clustering approach.

Given that there may be high variation in performance dejpgndn the exact 6
programs selected, we repeated this random selection 088 to give a robust mean
performance. This should minimise the effect of randomlgaging particularly good
or bad training programs.

2.00
1.80
1.60
1.40

O¥Jﬁjfﬂﬂﬂﬁﬂﬂﬁ ﬂﬂﬂ

1.

N
o

Speedup

1.

=3

0.80

0.60

aifftr01 aiiffto1 bitmnp01 canrdr01 iirflt01 pntrch01 rspeed01 ttsprk01
a2time01 aifirf01 basefp01 cacheb01 idetrn01 matrix01 puw mod01 tblook01

Benchmark

B Random B Clustered [Upper

Fig. 2. Speedups obtained for EEMBCv2 for random selection, cluster selection, and the
likely upper bound. Average is over all graphs: 1 of 3

Generating the upper boun#inally we need a measure of how much of the available
performance we actually achieve using a machine learne@indé randomly applied
4000 different optimizations to a program and recorded #a& bxecution time. It is
unlikely that a model that predicts a good optimizationisgtivithout any feedback
information will outperform the best of 4000 runs, so thisyides a reasonable upper
bound limit.

4 Results

This section evaluates our approach in terms of the perfocsgained on the EEMBC
benchmark suite. To give a useful comparison, we show a ne&é® upper bound for
performance for each program and also compare our apprgaatsastandard uniform
selection of training data.

Figures 2 to 4 show the performance of the 3 schemes desdnilsedtion 3 on the
benchmarks. The x-axis in each figure is simply the name di eathe 44 EEMBC
benchmarks, while the y-axis shows the speedup relative3tof@ach approach. The
first black bar shows the results from a machine-learningehatien the training data
is randomly selected. The middle dark grey bar shows thdtsesfiusing the same
model with our cluster based selection of training data. fiired light gray bar shows
the performance of an iterative search of that program’smpation space and repre-
sents the best that can be found after trying 4000 differptitnization settings.

Uniform random training Consider the results of the first dark bar labeRaddom
Here 6 random programs have been used to train the nearghboeimodel. The av-
erage speedup across the benchmarks it achieves is sholast set of bars in Fig

4. Using random training data leads to just a 1.03 speedupenage for the nearest
neighbor model. Although it is able to determine signifigagrtformance improvements
of up to 1.4 ormp3pl ayer, in 23 out of the 44 programs it actually causes a slowdown
ofupto 0.7in 3 cases rfirrf0l, idctrn0l, pntrch0l. This shows that although
machine-learning techniques can improve performancé,avimited training budget,

it is difficult to learn a model that performs well across tliegram space.

2.00
1.80
1.60

1.40

Zﬂﬂﬂ#ﬁﬂﬂjﬂ;ﬂﬂﬁff

0.80

1.

IN)

Speedup

1.

o

0.60

djpeg conven00 fft00 ospf routelookup dither text
cjpeg autcor00 fbital00 viterb00 pktflow beizer rotate aes

Benchmark

B Random [Clustered [Upper

Fig. 3. Speedups obtained for EEMBCv2 for random selection, cluster selection, and the
likely upper bound. Average is over all graphs: 2 of 3

Our clustering approach The light colored bars labelled ust er ed in Figures 2 to

4 show the results of the same modeling approach with the s@inéng budget of 6
programs. This time, however, the training programs haeaiselected using our clus-
tering approach. As again the final set of bars in figure 4 shevaterage performance.
On average, using just one evaluation, our clusteringébapproach yields a speedup
of 1.14 over the whole benchmark suite. This compares to edsgeof only 1.03 if

a machine leaned compiler uses programs selected at rafdhdsns a dramatic im-
provement over the standard approach given that both us#yeitze same model and
training budget. Our approach is able to avoid the large dtows onai rfirrf01,

i dctrn01, pntrch0l and achieves speedups of 1.5aatheb01, 1.9 onpuwrnd01
and 2.71 ommp3pl ayer . These speedups are likely to be due to the kernelized natture
these codes, where changing a small section of code whicagaéntly used can have
a large impact on the resulting speedup.

Iterative Search: Upper bound The final light gray bar labelletpper in Figures
2 to 4 describes the best performance achieved when tryif@ diferent oprimi-
sations on each program. It is unlikely that a machine-iegrbased one-shot com-
piler could ever outperfrom this, so it acts as a useful uggamd. In every case
it is at least as good as O3, by definition, hence there are avedslwns. For cer-
tain codesa2ti me01, basef p01, ospf it shows that there is little room for improve-
ment hence the poor behavior of the learned models. In otiwr aspuwnodel 01,
mp3pl ayer, autocor 00, it shows there is significant room for improvement, which
our learned cluster based model frequently achieves. Ifivee again look at the aver-
age values, we see that it can can achieve on average a 1e8gfraedup. This shows
the large potential performance available if there is sigffittime to tune each program.
However, on average, our approach can achieve half of tHferpgance improvement
(1.14 vs 1.28) attained by iterative optimization using@€ns, in just a single evalua-
tion. Additionally, we achieve a factor 7 increase in theitiddal optimization possible
by using our clustering-based approach rather than stdndadom selection, which
shows itself not to be a viable option when no search of theesisaallowed.

2.00
2.71
1.80

1.60
1.40

0.80

1.

N

Speedup

1.

o

0.60
djpegv2 mp4encode rgbcmy rgbyiqv2 tcp ospf Average
cjpegv2 huffde mp4decode rgbhpgv2 mp3player ip_reassembly ip_pktcheck

Benchmark

B Random M Clustered [Upper

Fig.4. Speedups obtained for EEMBCv2 for random selection, cluster selection, and the
likely upper bound. Average is over all graphs: 2 of 3

5 Redated Work

Most machine-learning based compiler techniques requineesprofiling or search.
However, machine learning have been used previously tagiitke most effective opti-
mizations to apply, but in a heavily constrained environtméthout profiling. Stephen-
son et al. [14] examine the problem of parameter selectiotofap unrolling. These
papers consider a limited optimization space, consistingjtber binary decisions or
just one optimisation, which limits their scope for code nmyement.

Intelligent search-based techniques can be thought of pe@adized example of
online supervised learning, in which the search strategypdated during the search.
They traverse an optimisation space, evaluating pointsahgpace and attempting to
find the best result. In this case, compiler transformatimmsevaluated. The space
can be searched, and if structure can be observed, theropsa@sults can be used to
determine where in the space is most profitable to searchmpbes of this arehill-
climbersandgreedy algorithmg6]. Iterative techniques have progressed from simple
random searching to evolutionary selection techniquesedan fitness [10] and sto-
castic search techniques [6]. Complimentary techniqugsayimg probabilistic search
have also been proposed and models used to speed up the pemess [1].

Berube et al. [3] use clustering as a means to reduce worlkdedadputs vary in
profile-directed compilation. Clustering profile data altothe authors to characterize
the input data and specialize code transformation for gffedatasets. This work does
not provide a baseline comparison and therefore it is hasaydf the clustering tech-
nique is better than a naive selection process. Additigriae work is intended to assist
in estimating the performance of the benchmarks evaluatéie paper, and it is not
possible to gain a similar benchmark subset on a differenttmmark suite, without
running the whole suite through a slow simulator and profiler

6 Conclusion

We have demonstrated that, by clustering in the featureespege can dramatically re-
duce the amount of training required to achieve good perdoica by more than a factor
of 7 when using a machine-learning compiler. By carefullgsting the training data

to be used, we can better characterize the program-spdta siball number of points,
rather than randomly selecting them. In addition, we haessithat a compiler trained
in this way gives an average of 1.14 speedup on the EEMBCv2hmeark suite over
the O3 baseline in just one evaluation. This was achieverhining on just 6 programs.
Finally, we have shown that instruction ratios are effexfeatures for clustering.

References

(1]

(2]
(3]
[4]
(5]
(6]
[7]
(8]
[9]
(10]

(11]

(12]

(13]

(14]

F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursiricihdel O’Boyle, John Thom-
son, Marc Toussaint, and Chris Williams. Proceedings of4tie Annual International
Symposium on Code Generation and Optimization (CGO), Newk,Ydarch 2006.

R. Babuska, P.J. van der Veen, and U. Kaymak. Improvedrtances estimation for
Gustafson-Kessel clustering. IEEE International Confeeson Fuzzy Systems, 2002.
Paul Berube, Jose Nelson Amaral, Rayson Ho and Raul ri@iMrkload Reduction for
Multi-input Profile Directed OptimizationProceedings of the 7th Annual International
Symposium on Code Generation and Optimization (CGO) 2009.

C. Bishop,Neural Networks for Pattern Recognitio@UP, 2005

J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. O’'BoyledsD. Temam. Rapidly Selecting
Good Compiler Optimizations using Performance Counte@&O®Aarch 2007

K. D. Cooper, A. Grosul, T.J. Harvey, S. Reeves, D. Sulzmaian, L. Torzon, and T. Wa-
termanExploring the Structure of the Space of Compilation Segeefising Randomized
Search Algorithmsn Proceedings of the 2004 LACSI Symposium, 2004.

EEMBCv2 benchmark suite. http://www.eembc.org/

D.E. Gustafson and W.C. Kessdruzzy clustering with fuzzy covariance matrix
Proceedings of the IEEE CDC, San Diego, pages 761766. 1979.

Kenneth Hoste and Lieven EeckhoutComparing Benchmarks Using Key
Microarchitecture-Independent Characteristi¢tkSWC, pp. 83-92, 2006.

P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley, J. Ddsbn, M. Bailey, Y. Park, and
K. Gallivan.Finding effective optimization phase sequente®\CM LCTES, 2003.

P. Kulkarni, D. Whalley, G. Tyson, and J. Davidsdivaluating Heuristic Optimization
Phase Order Search Algorithnpgiblished in the IEEE/ACM International Symposium on
Code Generation and Optimization (CGO ’'07), pp. 157-169%did&007

G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-T8v Zaks, B. Mendelson,
F. Bodin, E. Bonilla, J. Thomson, H. Leather, C. Williams aidO’Boyle. MILEPOST
GCC: machine learning based research compileProceedings of the GCC Developers’
Summit 2008

S. Ray and R. TuriDetermination of number of clusters in k-means clusterind appli-
cation in colour image segmentatiolm Proceedings of the 4th International Conference
on Advances in Pattern Recognition and Digital Technigpps137-143, 1999.

M. Stephenson, S. Amarasinghe, M. Martin and U-M. OlReMeta Optimization:
Improving Compiler Heuristics with Machine LearnitgPLDI 2003.

