
Reducing Training
Time in a One-shot Machine Learning-based Compiler

John Thomson1, Michael O’Boyle1, Grigori Fursin2, Björn Franke1

1 University of Edinburgh, UKjohn.thomson@ed.ac.uk,[mob:bfranke]@inf.ed.ac.uk
2 INRIA Sarclay, Francegrigori.fursin@inria.fr

Abstract. Iterative compilation of applications has proved a popularand suc-
cessful approach to achieving high performance. This however, is at the cost of
many runs of the application. Machine learning based approaches overcome this
at the expense of a large off-line training cost. This paper presents a new approach
to dramatically reduce the training time of a machine learning based compiler.
This is achieved by focusing on the programs which best characterize the opti-
mization space. By using unsupervised clustering in the program feature space
we are able to dramatically reduce the amount of time required to train a com-
piler. Furthermore, we are able to learn a model which dispenses with iterative
search completely allowing integration within the normal program development
cycle. We evaluated our clustering approach on the EEMBCv2 benchmark suite
and show that we can reduce the number of training runs by morethan a factor
of 7. This translates into an average 1.14 speedup across thebenchmark suite
compared to the default highest optimization level.

1 Introduction

For many applications, particularly in the embedded and high performance domains,
performance is critical. Iterative compilation has been successfully applied to such ap-
plications [10] precisely because of this emphasis on performance. However, this comes
at a cost, namely the large number of compilations and evaluations needed. While this
may be acceptable for the final version of a program, it is ill-suited to the program de-
velopment cycle. Machine learning techniques [1, 6] have been proposed which have
the potential to overcome this by moving the online search cost for a particular program
to an off-line training cost. However, this training cost islarge and must be performed
whenever the underlying platform is modified.

This paper proposes a new technique to significantly reduce the training cost by
more than a factor of seven, allowing high-quality, machinelearning-based optimiz-
ing compilers to be produced for a new architecture in a fraction of the time. This
is particularly important for embedded applications due toinherent performance and
time-to-market constraints.

Previous work [10, 1, 6] has shown that it is possible to obtain considerable im-
provement in execution speed by applying learning techniques to the problem of op-
timization selection. However, the training time for the system is a significant cost,
which can run to weeks, or even months. Additionally, this training time grows linearly
with the number of benchmarks used for training, necessitating the use of small bench-
mark suites with limited scope. This lack of scope limits previous learning compilers
in their ability to properly characterize new programs, meaning they frequently rely on
additional search of the optimization space to achieve goodperformance[5]. This paper



1. Cluster

(a) Extract features vectorf from programP.
(b) Reducef to the most significant principal components using PCA.
(c) Cluster the new feature-spacef′ into n clusters, giving then most typical centroid

programs for the space.

2. Train

(a) Train a model using using randomly selected optimizations on then clustered programs.

3. Deploy

Fig. 1. Cluster Algorithm

presents a scalable technique to allow vastly greater coverage of the space of programs,
at a fraction of the cost of previous approaches.

Although previous work [14] has successfully produced machine-learning solutions
which do not require search of the target program, they typically focus on just one opti-
mization heuristic and are limited in scope. Those approaches that attempt to find good
solutions over wide optimisation spaces [10] inevitably require some type of feedback
via a small search of the target program’s optimization space. By significantly reduc-
ing the cost of learning, we can cover a larger program space than before, resulting
in one-shot compilation, with no feedback. This is particularly useful during program
development time, when the user does not want to spend additional runs of his/her pro-
gram to see what the eventual performance will be.

In our approach, each program is characterized by a set of code features describing
its overall structure. These sets of features form a featurespace. If we examine the struc-
ture of this space usingunsupervised learning, we can select a subset of programs that
are most representative of the space as a whole. This in turn reduces the number of pro-
grams that need to be evaluated during training. When applying suchclusteringto the
EEMBC benchmark suite we can reduce the number of programs toconsider to just 6.

Additionally, we show that by gaining large scale coverage of the whole space of
programs in our training data, we can dispense with search altogether, and produce a
simple-to-use, one-shot compiler that gives excellent performance, giving an average
speedup of 1.14 over O3 level across the benchmarks suite. Further, when trained in
this way, we have knowledge of how well our compiler is trained in a particular do-
main of programs. When a new program is to be compiled, we can judge how confident
we are that the new program is covered by our previous training, or whether retraining
would be beneficial.

The remainder of the paper is structured as follows: Section2 gives a description of
our clustering approach. Section 3 describes the experimental methodology used, while
section 4 presents our experimental results. After a short review of related work we
finally draw some brief concluding remarks.

2 The Cluster-based Approach

Figure 1 gives an overview of our approach. First off, we haveto extract the features
from each of the programs which are potential candidates fortraining. This feature ex-
traction is a way of representing the essence of a program forlater classification. These
features are represented as a vector of values, many of whichare redundant. We then



apply principal components analysis which determines those features that are useful
and those that are redundant. Once we have a have a reduced feature vector describing
each program, we then attempt to group them using clusteringto determine the most
representative programs that span the space. This is the endof the initial clustering
stage. The next stages are standard supervised learning anddeployment. Here we learn
a model based on training data associated with then selected programs.

2.1 Features and Feature Reduction

Program features are vectors of numerical values which characterize the space of pro-
grams. Machine learning techniques can use features as a metric to gauge similarity.
The features used in this paper are the ratios of each assembly level instruction to the
total number of instructions executed by a program, i.e. theproportions of each type of
instruction used. This is a very simple feature set, which iseasy to capture, and yet, as
we later show in section 4, provides excellent performance.We use ARM assembly in-
structions as our features to ensure that our technique is properly capturing information
about the program and not some facet peculiar to a particulararchitecture. Hoste and
Eeckhout [9] argue that the use of a generic RISC architecture is capable of represent-
ing and characterizing program performance and the ARM is used as an approximation
a generic RISC core.

Features are extracted statically using a simple fast profiling tool, which counts the
number and type of instructions used by the program, and predicts unbounded values.
These raw counts are normalized and used our basic program features. The output of
this stage is a 30-element feature vector describing the program.

These extracted features can be reduced in number, using a technique calledPrinci-
pal Components Analysis[4]. This technique reduces the dimensionality of the feature
space by examining the variance within the data, and while preserving as much vari-
ance as possible, generating a new set of features which are alinear combination of the
original set.

2.2 Clustering

The feature-space of programs is clustered using the a fuzzyclustering method called
the GustafsonKessel algorithm[8], which is a variation on a standard C-means fuzzy
clustering algorithm [4] which allows the detection of different geometrical shapes in
one data set. The algorithm minimizes the objective function so that the fuzzy distances
between the data points and cluster centers are minimised. The input to the algorithm
was the reduced feature set of 9 principal components, as described above. Our GK
clustering technique cannot determine the correct number of clusters which most accu-
rately depict the space, which must be supplieda priori. We employed the technique
suggested by Ray and Turi [13] which considers the proportion of the intra-cluster vari-
ance in respect to the inter-cluster variance, and selecting the first local minimum of
this valueK as the number of considered clusters increases.

2.3 Training and Deployment

Once we have selected the benchmarks we wish to train with, weuse standard ap-
proaches to learn a model. This is achieved by applying random optimization to each of
the programs to find the best optimization settings. We then need to build a model which
maps the program features to the best optimizations found. There are many approaches



to building such a model. Since the goal of our approach is one-shot compilation, we
simply record the best optimization flags found for our training programs and use a
nearest neighbor model [1].

Having fixed the selected programs and completed the training for each, the com-
piler is ready for deployment. Firstly, feature extractionis performed on the new pro-
gram input, and those features are then input to a nearest neighbor classifier which
determines which of then centroids it is most near using the squared Mahalanobis dis-
tance norm. Having been assigned a neighbor, the benchmark is compiled and executed,
using the best performing compiler flags associated with that point, and the execution
time recorded. Although this is simple model, it is later shown to be an effective one.

3 Experimental Methodology

We evaluated each approach on the EEMBCv2 [7] benchmark suite, which is targetted
at the embedded domain. It contains many computationally intensive kernels and pro-
grams utilized in the embedded and general purpose worlds. Afew EEMBC programs
were excluded due to difficulties with GCC. When a choice of dataset was offered by
EEMBC, the default dataset was chosen. These experiments were carried out on an
Intel Core 2 Duo E6750 processor running at 2.66GHz. The machine was running a
stripped down version of Ubuntu Linux 8.04 with linux kernelversion 2.6.24. GCC
compiler version 4.2.2 was used which allows additional optimizations over and above
the default GCC to be accessed via compiler flags. We selected88 of the different flags
supported by GCC which formed our optimization space. By setting each flag to a par-
ticular value, we can evaluate many distinct optimizations

Cluster Approach

On applying our technique to the EEMBC benchmark suite, we found the correct num-
ber of clusters to be 6. The centroid programs were selected giving the 6 most typical
programs to represent those clusters. These 6 programs werethen used to train on. For
each training program, we probe the optimization space by selecting 4000 random flag
settings and executing the resulting code. The best performing flag setting is recorded
and used by the nearest neighbor model. We use standard leave-one-out cross-validation
[4] both for clustering and deployment. This means we exclude the benchmark being
evaluated from the clustering process so that that the program has never been seen by
the compiler before.

Standard Random Training SelectionGiven a limited amount of time and resources is
available to train a machine learning compiler, the standard way to select programs to
train on, is simply to use random selection. For a fair comparison 6 benchmarks were
randomly chosen from the set of 44. Having selected the programs to be trained, the
process proceeds in the same way as the clustering approach.

Given that there may be high variation in performance depending on the exact 6
programs selected, we repeated this random selection 1000 times to give a robust mean
performance. This should minimise the effect of randomly choosing particularly good
or bad training programs.



Fig. 2. Speedups obtained for EEMBCv2 for random selection, cluster selection, and the
likely upper bound. Average is over all graphs: 1 of 3

Generating the upper boundFinally we need a measure of how much of the available
performance we actually achieve using a machine learned model. We randomly applied
4000 different optimizations to a program and recorded the best execution time. It is
unlikely that a model that predicts a good optimization setting without any feedback
information will outperform the best of 4000 runs, so this provides a reasonable upper
bound limit.

4 Results

This section evaluates our approach in terms of the performance gained on the EEMBC
benchmark suite. To give a useful comparison, we show a reasonable upper bound for
performance for each program and also compare our approach against standard uniform
selection of training data.

Figures 2 to 4 show the performance of the 3 schemes describedin section 3 on the
benchmarks. The x-axis in each figure is simply the name of each of the 44 EEMBC
benchmarks, while the y-axis shows the speedup relative to O3 of each approach. The
first black bar shows the results from a machine-learning model when the training data
is randomly selected. The middle dark grey bar shows the results of using the same
model with our cluster based selection of training data. Thefinal light gray bar shows
the performance of an iterative search of that program’s optimization space and repre-
sents the best that can be found after trying 4000 different optimization settings.

Uniform random training Consider the results of the first dark bar labeledRandom.
Here 6 random programs have been used to train the nearest neighbor model. The av-
erage speedup across the benchmarks it achieves is shown in the last set of bars in Fig
4. Using random training data leads to just a 1.03 speedup on average for the nearest
neighbor model. Although it is able to determine significantperformance improvements
of up to 1.4 onmp3player, in 23 out of the 44 programs it actually causes a slowdown
of upto 0.7 in 3 casesairfirrf01, idctrn01, pntrch01. This shows that although
machine-learning techniques can improve performance, with a limited training budget,
it is difficult to learn a model that performs well across the program space.



Fig. 3. Speedups obtained for EEMBCv2 for random selection, cluster selection, and the
likely upper bound. Average is over all graphs: 2 of 3

Our clustering approach The light colored bars labelledClustered in Figures 2 to
4 show the results of the same modeling approach with the sametraining budget of 6
programs. This time, however, the training programs have been selected using our clus-
tering approach. As again the final set of bars in figure 4 show the average performance.
On average, using just one evaluation, our clustering-based approach yields a speedup
of 1.14 over the whole benchmark suite. This compares to a speedup of only 1.03 if
a machine leaned compiler uses programs selected at random.This is a dramatic im-
provement over the standard approach given that both use exactly the same model and
training budget. Our approach is able to avoid the large slowdowns onairfirrf01,
idctrn01, pntrch01 and achieves speedups of 1.5 oncacheb01, 1.9 onpuwmod01
and 2.71 onmp3player. These speedups are likely to be due to the kernelized natureof
these codes, where changing a small section of code which is frequently used can have
a large impact on the resulting speedup.

Iterative Search: Upper bound The final light gray bar labelledUpper in Figures
2 to 4 describes the best performance achieved when trying 4000 different oprimi-
sations on each program. It is unlikely that a machine-learning based one-shot com-
piler could ever outperfrom this, so it acts as a useful upperbound. In every case
it is at least as good as O3, by definition, hence there are no slowdowns. For cer-
tain codesa2time01,basefp01,ospf it shows that there is little room for improve-
ment hence the poor behavior of the learned models. In other such aspuwmodel01,
mp3player, autocor00, it shows there is significant room for improvement, which
our learned cluster based model frequently achieves. If we once again look at the aver-
age values, we see that it can can achieve on average a 1.28 times speedup. This shows
the large potential performance available if there is sufficient time to tune each program.
However, on average, our approach can achieve half of the performance improvement
(1.14 vs 1.28) attained by iterative optimization using 4000 runs, in just a single evalua-
tion. Additionally, we achieve a factor 7 increase in the additional optimization possible
by using our clustering-based approach rather than standard random selection, which
shows itself not to be a viable option when no search of the space is allowed.



Fig. 4. Speedups obtained for EEMBCv2 for random selection, cluster selection, and the
likely upper bound. Average is over all graphs: 2 of 3

5 Related Work

Most machine-learning based compiler techniques require some profiling or search.
However, machine learning have been used previously to predict the most effective opti-
mizations to apply, but in a heavily constrained environment without profiling. Stephen-
son et al. [14] examine the problem of parameter selection for loop unrolling. These
papers consider a limited optimization space, consisting of either binary decisions or
just one optimisation, which limits their scope for code improvement.

Intelligent search-based techniques can be thought of as a specialized example of
online supervised learning, in which the search strategy isupdated during the search.
They traverse an optimisation space, evaluating points in that space and attempting to
find the best result. In this case, compiler transformationsare evaluated. The space
can be searched, and if structure can be observed, then previous results can be used to
determine where in the space is most profitable to search. Examples of this arehill-
climbersandgreedy algorithms[6]. Iterative techniques have progressed from simple
random searching to evolutionary selection techniques, based on fitness [10] and sto-
castic search techniques [6]. Complimentary techniques employing probabilistic search
have also been proposed and models used to speed up the searchprocess [1].

Berube et al. [3] use clustering as a means to reduce workloadas inputs vary in
profile-directed compilation. Clustering profile data allows the authors to characterize
the input data and specialize code transformation for different datasets. This work does
not provide a baseline comparison and therefore it is hard tosay if the clustering tech-
nique is better than a naı̈ve selection process. Additionally, the work is intended to assist
in estimating the performance of the benchmarks evaluated in the paper, and it is not
possible to gain a similar benchmark subset on a different benchmark suite, without
running the whole suite through a slow simulator and profiler.

6 Conclusion

We have demonstrated that, by clustering in the feature-space, we can dramatically re-
duce the amount of training required to achieve good performance by more than a factor
of 7 when using a machine-learning compiler. By carefully selecting the training data



to be used, we can better characterize the program-space with a small number of points,
rather than randomly selecting them. In addition, we have shown that a compiler trained
in this way gives an average of 1.14 speedup on the EEMBCv2 benchmark suite over
the O3 baseline in just one evaluation. This was achieved by training on just 6 programs.
Finally, we have shown that instruction ratios are effective features for clustering.

References

[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, Michael O’Boyle, John Thom-
son, Marc Toussaint, and Chris Williams. Proceedings of the4th Annual International
Symposium on Code Generation and Optimization (CGO), New York, March 2006.

[2] R. Babuska, P.J. van der Veen, and U. Kaymak. Improved covariances estimation for
Gustafson-Kessel clustering. IEEE International Conference on Fuzzy Systems, 2002.

[3] Paul Berube, Jose Nelson Amaral, Rayson Ho and Raul Silvera Workload Reduction for
Multi-input Profile Directed Optimization,Proceedings of the 7th Annual International
Symposium on Code Generation and Optimization (CGO) 2009.

[4] C. Bishop,Neural Networks for Pattern Recognition, OUP, 2005
[5] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. O’Boyle and O. Temam. Rapidly Selecting

Good Compiler Optimizations using Performance Counters. CGO March 2007
[6] K. D. Cooper, A. Grosul, T.J. Harvey, S. Reeves, D. Subramanian, L. Torzon, and T. Wa-

termanExploring the Structure of the Space of Compilation Sequences Using Randomized
Search AlgorithmsIn Proceedings of the 2004 LACSI Symposium, 2004.

[7] EEMBCv2 benchmark suite. http://www.eembc.org/
[8] D.E. Gustafson and W.C. Kessel.Fuzzy clustering with fuzzy covariance matrix. In

Proceedings of the IEEE CDC, San Diego, pages 761766. 1979.
[9] Kenneth Hoste and Lieven Eeckhout,Comparing Benchmarks Using Key

Microarchitecture-Independent Characteristics, IISWC, pp. 83-92, 2006.
[10] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley, J. Davidson, M. Bailey, Y. Park, and

K. Gallivan.Finding effective optimization phase sequences.In ACM LCTES, 2003.
[11] P. Kulkarni, D. Whalley, G. Tyson, and J. Davidson,Evaluating Heuristic Optimization

Phase Order Search Algorithmspublished in the IEEE/ACM International Symposium on
Code Generation and Optimization (CGO ’07), pp. 157-169, March 2007

[12] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks, B. Mendelson,
F. Bodin, E. Bonilla, J. Thomson, H. Leather, C. Williams andM. O’Boyle. MILEPOST
GCC: machine learning based research compiler.In Proceedings of the GCC Developers’
Summit 2008

[13] S. Ray and R. Turi,Determination of number of clusters in k-means clustering and appli-
cation in colour image segmentation,In Proceedings of the 4th International Conference
on Advances in Pattern Recognition and Digital Techniques,pp. 137–143, 1999.

[14] M. Stephenson, S. Amarasinghe, M. Martin and U-M. O’Reilly Meta Optimization:
Improving Compiler Heuristics with Machine LearningIn PLDI 2003.


