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Abstract

This article provides the motivation and overview of the Collective Knowledge framework (CK or cKnowledge).
The CK concept is to decompose research projects into reusable components that encapsulate research artifacts
and provide unified APIs, CLI, meta descriptions, and common automation actions for related artifacts. The CK
framework is used to organize and manage research projects as a database of such components.
Inspired by the USB ”plug and play” approach for hardware, CK also helps to assemble portable workflows that
can automatically plug in compatible components from different users and vendors (models, datasets, frameworks,
compilers, tools). Such workflows can build and run algorithms on different platforms and environments in a unified
way using the universal CK program pipeline with software detection plugins and the automatic installation of
missing packages.
This article presents several industrial projects where the modular CK approach was successfully validated to
automate benchmarking, auto-tuning, and co-design of efficient software and hardware for ML and AI in terms
of speed, accuracy, energy, size, and various costs. The CK framework also helped to automate the artifact
evaluation process at several computer science conferences and make it easier to reproduce, compare, and reuse
research techniques from published papers, deploy them in production, and automatically adapt them to continuously
changing datasets, models, and systems.
The long-term goal is to accelerate innovation by connecting researchers and practitioners to share and reuse all their
knowledge, best practices, artifacts, workflows, and experimental results in a common, portable, and reproducible
format at cKnowledge.io.

Keywords: knowledge management, best practices, reproducibility, reusability, automation, collaboration, optimization,

portable workflow, adaptive container, machine learning, artificial intelligence, DevOps, MLOps, MLPerf, API,
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1 Motivation

10 years ago I developed the cTuning.org platform and
released all my research code and data to the public
domain to crowdsource the training of our machine
learning based compiler (MILEPOST GCC) [40]. My
intention was to accelerate the very time consuming
auto-tuning process and help our compiler to learn
the most efficient optimizations across real programs,
datasets, platforms, and environments provided by
volunteers.

We had a great response from the community and

it took me just a few days to collect as many
optimization results as during the entire MILEPOST
project. However, the initial excitement quickly faded
when I struggled to reproduce most of the performance
numbers and ML model predictions because even a tiny
change in software, hardware, environment, and the
run-time state of the system could influence performance
while I did not have a mechanism to detect such
changes [50, 42].

Even worse, I could not compare these empirical results
with other published techniques because they rarely
included the full experiment specification and all the
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Figure 1: Reproducing research papers and adopting novel techniques in production is a tedious, repetitive, and
time consuming process because of continuously changing software, hardware, models, and datasets, and a lack of
common formats and APIs for shared artifacts (code, data, models, experimental results, scripts, and so on).

necessary artifacts along with shared research code to be
able to reproduce results. Furthermore, it was always a
nightmare to add new tools, benchmarks and datasets to
any research code because it required numerous changes
in different ad-hoc scripts, repetitive recompilation of the
whole project when new software was released, complex
updates of database tables with results, and so on [41].

These problems motivated me to establish the
non-profit cTuning foundation and continue working
with the community on a common methodology and
open-source tools to enable collaborative, reproducible,
reusable, and trustable R&D. We helped to initiate
reproducibility initiatives and support artifact evaluation
at several computer science conferences in collaboration
with ACM [5, 39]. We also promoted sharing of code,
artifacts and results in a unified way along with research
papers [4].

This community service gave me a unique chance
to participate in reproducibility studies of more than
100 research papers at ASPLOS, CGO, PPoPP,
Supercomputing, MLSys, and other computer science
conferences during the past 5 years [26]. I
also started deploying some of these techniques
in production in collaboration with my industrial
partners to better understand all the problems when
building trustable, reproducible, and production-ready
computational systems.

This practical experience confirmed my previous
findings: while sharing ad-hoc research code, artifacts,
trained models, and Docker images along with research

papers is a great step forward, it is only a tip of
the reproducibility iceberg [41]. The major challenge
afterwards is to figure out how to use research techniques
outside original containers with other data, code, and
models and run them in a reliable and efficient way across
rapidly evolving software, heterogeneous hardware, and
legacy platforms with continuously changing interfaces
and data formats while balancing multiple characteristics
including speed, latency, accuracy, memory size, power
consumption, reliability, and costs (Figure 1).

2 Collective Knowledge concept

When helping to organize the artifact evaluation process
at CGO, PPoPP, MLSys, ASPLOS, and other systems
and machine learning conferences, I decided to introduce
an Artifact Appendix and a reproducibility checklist [4,
26]. My goal was to help researchers to describe how
to configure, build, run, validate, and compare research
techniques in a unified way across different conferences
and journals. It also helped me to notice that most
research projects use some ad-hoc scripts often with
hardwired paths to perform the same repetitive tasks
including downloading models, and datasets, detecting
platform properties, installing software dependencies,
building research code, running experiments, validating
outputs, reproducing results, plotting graphs, and
generating papers [41].

This experience motivated me to search for a solution
to automate such common tasks and make them reusable
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and customizable across different research projects,
platforms, and environments. First, I started looking
at related tools that were introduced to automate
experiments and make research more reproducible:

� Workflow frameworks such as MLFlow [56],
Kedro [51], Amazon SageMaker [3], Kubeflow [33],
Apache Taverna [55], popper [47], CommonWL [35],
and many others help to abstract and automate
data science operations. They are very useful
for data scientists but do not yet provide a
universal mechanism to automatically build and run
algorithms across different platforms, environments,
libraries, tools, models, and datasets. Researchers
and engineers often have to implement this
functionality for each new project from scratch
that can become very complicated particularly
when targeting new hardware, embedded devices,
TinyML, and IoT.

� Machine Learning benchmarking initiatives such as
MLPerf [52], MLModelScope [38], and Deep500 [36]
attempt to standardize machine learning model
benchmarking and make it more reproducible.
However, production deployment, integration with
complex systems, and adaptation to continuously
changing user environments, platforms, tools, and
data is currently out of their scope.

� Package managers such as Spack [45] and
EasyBuild [46] are very useful to rebuild and
fix the whole software environment. However,
the integration with workflow frameworks and
automatic adaptation to existing environments,
native cross-compilation particularly for embedded
devices, and support for non-software packages
(models, datasets, scripts) is still in progress.

� Container technology such as Docker [49] is very
useful to prepare and share stable software releases.
However, it hides the software chaos rather than
solving it, lacks common APIs for research projects,
requires enormous amount of space, have a very poor
support for embedded devices, and do not yet help
to integrate models with existing projects, legacy
systems, and user data.

� PapersWithCode platform [23] helps to find relevant
research code for machine learning papers and keep
track of the state-of-the-art ML research using
public scoreboards with non-validated experimental
results from papers. However, my experience
reproducing research papers suggests that sharing
ad-hoc research code is not enough to make research
techniques reproducible, customizable, portable, and
trustable [41].

While testing all these useful tools and analyzing
Jupyter notebooks, Docker images, and GitHub

repositories shared along with research papers, I started
thinking that we can reorganize them as some sort of
database of reusable components with a common API,
command line, web interface, and meta description. We
can then reuse artifacts and some common automation
actions across different projects while applying DevOps
principles to research projects.

Furthermore, we can also gradually abstract and
interconnect all existing tools rather than rewriting
or substituting them. This, in turn, can help to
create ”plug and play” workflows that can automatically
connect compatible components from different users and
vendors (models, datasets, frameworks, compilers, tools,
platforms) while minimizing manual interventions and
providing a common interface for all shared research
projects.

I called my project Collective Knowledge (CK) because
my goal was to connect researchers and practitioners to
share their knowledge, best practices, and research results
in the form of reusable components, portable workflows,
and automation actions with common APIs and meta
descriptions.

3 CK framework and an open CK
format

I have developed the CK framework as a small Python
library with minimal dependencies to be very portable
while having the possibility to be re-implemented in other
languages such as C, C++, Java, and Go. The CK
framework has a unified command line interface (CLI),
a Python API, and a JSON-based web service to manage
CK repositories and add, find, update, delete, rename,
and move CK components (sometimes called CK entries
or CK data) [8].

CK repositories are human-readable databases of
reusable CK components that can be created in any local
directory and inside containers, pulled from GitHub and
similar services, and shared as standard archive files [7].
CK components simply wrap (encapsulate) user artifacts
and provide an extensible JSON meta description with
common automation actions [6] for related artifacts.

Automation actions are implemented using CK
modules - Python modules with functions exposed in a
unified way via CK API and CLI and using dictionaries
for input and output (extensible and unified CK I/O).
The use of dictionaries makes it easier to support
continuous integration tools and web services and extend
the functionality while keeping backward compatibility.
The unified I/O also makes it possible to reuse such
actions across projects and chain them together into
unified CK pipelines and workflows.

Since I wanted CK to be non-intrusive and technology
neutral, I decided to use a simple 2-level directory
structure to wrap user artifacts into CK components
as shown in Figure 2. The root directory of the
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1) GitHub repo or archive file

.ckr.json

/.cm/alias-a-dataset

/.cm/alias-a-module

/.cm/alias-a-program

/.cm/alias-a-paper

/dataset/.cm/alias-a-images

/dataset/images/1.png

/.cm/meta.json

/.cm/info.json

/program/.cm/alias-a-detect-edges

/program/detect-edges/program.cpp

Makefile

run.sh

check-output.sh

autotune.sh

/.cm/meta.json

/.cm/info.json

/paper/.cm/alias-a-report

/paper/report/pldi.tex

/.cm/meta.json

/.cm/info.json

/module/.cm/alias-a-program

/module/program/module.py

/.cm/meta.json

/.cm/info.json

2) User home directory

$HOME/project/2000-forgot-everything/

.ckr.json

/.cm/alias-a-dataset

/.cm/alias-a-program

/.cm/alias-a-experiment

/.cm/alias-a-paper

/dataset/images-2000/2.png

/.cm/meta.json

/program/crazy-algorithm/source.cpp

build.bat

/.cm/meta.json

/experiment/autotuning/many.logs

/lots-of-stats.sql

/.cm/meta.json

/paper/asplos/source.tex

/.cm/meta.json      

3) Jupyter/colab notebook

import matplotlib.pyplot as plt

import pandas

import numpy

...

import ck.kernel as ck

# We can now access all our software projects as a database

r=ck.access({‘action’:’search’, 

‘module_uoa’:’dataset’,

‘add_meta’:’yes’})

if r[‘return’]>0: ck.err(r)

list_of_all_ck_entries=r[‘lst’]

for ck_entry in list_of_ck_entries:

# CK will find all dataset entries in all CK-compatible projects,

#  even old ones – you don’t need to remember 

#  the project structure. Furthermore, you can continue

# reusing project even if students or engineers leave!

image=ck_entry[‘path’]+ck_entry[‘meta’][‘image_filename’]

…

# Call reusable CK automation action to extract features

features=ck.access({‘action’:’get_features’,

‘module_uoa’:’dataset’,

‘image’:image})

if features[‘return’]>0: ck.err(features)

4) Docker image

Install stable OS and  packages

Set environment

Use familiar CK API/CLI

to run experiments 

inside or outside your VM

Move data outside VM in the CK format 

to continue processing it via CK!

$ ck pull repo:ck-crowdtuning

$ ck add repo:2000-forgot-everything

$ ck ls dataset:image*

dataset:images

dataset:images-2000

$ ck ls program

program:detect-edges

program:object-classification

$ ck compile program:detect-edges --speed

Detecting compilers on your system…

1) LLVM 10.0.1

2) GCC 8.1

3) GCC 9.3

4) ICC 19.1

$ ck run program:detect-edges

Searching for datasets ...

Select dataset:

1) images

2) images-2000

$ ck benchmark program:detect-edges

--record --ecord_uoa=autotuning

...

$ ck reproduce experiment:autotuning...

Figure 2: Organizing software projects as a human-readable database of reusable components that wrap artifacts
and provide unified APIs, CLI, meta descriptions, and common automation actions for related artifacts. The CK
APIs and control files are highlighted in blue.

CK repository contains the .ckr.json file to describe
this repository and specify dependencies on other CK
repositories to explicitly reuse their components and
automation actions.

CK uses .cm directories (Collective Meta) similar to
.git to store meta information of all components as well
as Unique IDs to be able to find components even if their
user-friendly names have changed over time (CK alias).
CK modules are always stored in module / <CK module
name > directories in the CK repository. CK components
are stored in <CK module name >/ <CK data name
> directories. Each CK component has a .cm directory
with the meta.json file describing a given artifact and

info.json file to keep the provenance of a given artifact
including copyrights, licenses, creation date, names of all
contributors, and so on.

CK framework has an internal default CK repository
with stable CK modules and the most commonly used
automation actions across many research projects. When
CK framework is used for the first time, it also creates
a local CK repository in the user space to be used as a
scratch pad.

After discussing the CK CLI with my colleagues, I
decided to implement it similar to natural language to
make it easier for users to remember the commands:

ck <act ion> <CK module name> ( f l a g s ) (@input . j son or @input . yaml )
ck <act ion> <CK module name>:<CK data name> ( f l a g s )
ck <act ion> <CK repo s i t o r y name>:<CK module name>:<CK data name>

The next example demonstrates how to compile and
run the shared automotive benchmark on any platform,
and then create a copy of the CK program component :
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pip i n s t a l l ck

ck pu l l repo ==u r l=https : // github . com/ ctuning /ck=crowdtuning

ck search datase t ==tags=jpeg

ck search program : cbench=automotive=*

ck f i nd program : cbench=automotive=susan

ck load program : cbench=automotive=susan

ck help program

ck compi le program : cbench=automotive=susan ==speed
ck run program : cbench=automotive=susan ==env .OMPNUMTHREADS=4

ck run program ==help

ck cp program : cbench=automotive=susan l o c a l : program : new=program=workflow
ck f i nd program : new=program=workflow

ck benchmark program : new=program=workflow ==r ecord ==record uoa=my=t e s t
ck rep lay experiment :my=t e s t

The CK program module describes dependencies on
software detection plugins and meta packages using

simple tags and version ranges that the community has
to agree on:

{
” compi le r ” : {

”name” : ”C++ compi le r ” ,
” s o r t ” : 10 ,
” tags ” : ” compiler , lang=cpp”

} ,
” l i b r a r y ” : {

”name” : ”TensorFlow C++ API” ,
” no tags ” : ” tensor f l ow= l i t e ” ,
” s o r t ” : 20 ,
” ve r s i on f rom ” : [ 1 , 1 3 , 1 ] ,
” v e r s i o n t o ” : [ 2 , 0 , 0 ] ,
” tags ” : ” l i b , t ensor f l ow , v s t a t i c ”

}
}

I also implemented a simple access function in the CK
Python API to access all the CK functionality in a very

simple and unified way:

import ck . k e rne l as ck

# Equivalent o f ”ck compi le program : cbench=automotive=susan ==speed ”
r=ck . a c c e s s ({ ’ a c t i on ’ : ’ compi le ’ , ’ module uoa ’ : ’ program ’ ,

’ data uoa ’ : ’ cbench=automotive=susan ’ ,
’ speed ’ : ’ yes ’ })

i f r [ ’ r e turn ’ ]>0: r e turn r # un i f i e d e r r o r handl ing

p r i n t ( r )

# Equivalent o f ”ck run program : cbench=automotive=susan
# ==env .OMPNUMTHREADS=4
r=ck . a c c e s s ({ ’ a c t i on ’ : ’ run ’ , ’ module uoa ’ : ’ program ’ ,

’ data uoa ’ : ’ cbench=automotive=susan ’ ,
’ env ’ :{ ’OMPNUMTHREADS’ : 4}} )

i f r [ ’ r e turn ’ ]>0: r e turn r # un i f i e d e r r o r handl ing

p r i n t ( r )
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Such approach allowed me to connect my
colleagues, students, researchers, and engineers from
different workgroups to implement, share, and reuse
automation actions and CK components rather than
reimplementing them from scratch. Furthermore, the
Collective Knowledge concept supported the so-called
FAIR principles to make data findable, accessible,
interoperable, and reusable [54] while also extending it
to code and other research artifacts.

4 CK components and workflows
to automate Machine Learning
and Systems research

One of the biggest challenges I faced throughout my
research career automating the co-design process of
efficient and self-optimizing computing systems was how
to deal with rapidly evolving, hardware, models, datasets,
compilers, and research techniques. That is why my
first use case for the CK framework was to work with
my colleagues to collaboratively solve these problems
and enable trustable, reliable, and efficient computational
systems that can be easily deployed and used in the real
world.

We started using CK as a flexible playground to
decompose complex computational systems into reusable,
customizable, and non-virtualized CK components while
agreeing on their APIs and meta descriptions. As the first
step, I implemented basic actions that could automate
the most common R&D tasks that I encountered during
artifact evaluation and in my own research on systems
and machine learning [41]. I then shared the automation
actions to analyze platforms and user environments
in a unified way, detect already installed code, data,
and ML models, (CK software detection plugins [31])
and automatically download, install, and cross-compile
missing packages (CK meta packages [30]). At the same
time, I provided initial support for different compilers,
operating systems (Linux, Windows, MacOS, Android)
and hardware from different vendors including Intel,
Nvidia, Arm, Xilinx, AMD, Qualcomm, Apple, Samsung,
and Google.

Such approach allowed my collaborators [11] to create,
share, and reuse different CK components with unified
API to detect, install, and use different AI and ML
frameworks, libraries, tools, compilers, models, and
datasets. The unified automation actions, APIs, and
JSON meta descriptions of all CK components also helped
us to connect them into platform-agnostic, portable
and customizable program pipelines (workflows) with
a common interface across all research projects while
applying the DevOps methodology.

Such ”plug&play” workflows [44] can automatically
adapt to evolving environments, models, datasets, and
non-virtualized platforms by automatically detecting the

properties of a target platform, finding all required
dependencies and artifacts (code, data, and models)
on a user platform with the help of CK software
detection plugins [31], installing missing dependencies
using portable CK meta packages [30], building and
running code, and unifying and testing outputs [24].
Moreover, rather than substituting or competing with
existing tools the CK approach helped to abstract and
interconnect them in a relatively simple and non-intrusive
way.

CK also helps to protect user workflows whenever some
external files or packages are broken, disappear, or move
to another URL because it is possible to fix such issues
in a shared CK meta package without changing existing
workflows. For example, our users already took advantage
of this functionality when the Eigen library moved from
BitBucket to GitLab or when the old ImageNet dataset
was not supported anymore but could still be downloaded
via BitTorrent and other peer-to-peer services.

Modular CK workflows can help to keep track of the
information flow within such workflows, gradually expose
configuration and optimization parameters as vectors via
dictionary-based I/O, and combine public and private
code and data. They also help to monitor, model,
and auto-tune system behavior, retarget research code
and machine learning models to different platforms from
data centers to edge devices, integrate them with legacy
systems, and reproduce results.

Furthermore, we can use CK workflows inside standard
containers such as Docker while providing a unified
CK API to customize, rebuild, and adapt them to
any platform (Adaptive CK container) [2] thus making
research techniques truly portable, reproducible, and
reusable. I envision that such adaptive CK containers and
portable workflows can complement existing marketplaces
to deliver portable, customizable, trustable, and efficient
AI and ML solutions that can be continuously optimized
across diverse models, datasets, frameworks, libraries,
compilers, and run-time systems.

In spite of some doubts, my collaborative CK approach
worked out well to decompose complex research projects
and computational systems into reusable components
while agreeing on common APIs and meta descriptions:
the CK functionality evolved from just a few core
CK modules and abstractions to hundreds of CK
modules [29] and thousands of reusable CK components
and workflows [32] to automate the most repetitive
research tasks particularly for AI, ML, and Systems R&D
as shown in Figure 3.

5 CK use cases

5.1 Unifying benchmarking, auto-tuning,
and machine learning

The MILEPOST and cTuning projects were like the
Apollo mission: on the one hand, we managed to
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Figure 3: Collective Knowledge framework provided a flexible playground for researchers and practitioners to
decompose complex computational systems into reusable components while agreeing on APIs and meta descriptions.
Over the past 5 years the Collective Knowledge project has grown to thousands of reusable CK components and
automation actions.

demonstrate that it was indeed possible to crowdsource
auto-tuning and machine learning across multiple
users to automatically co-design efficient software and
hardware [40, 43]. On the other hand, we exposed so
many issues when using machine learning for system
optimization in the real world that I had to stop this
research and focus on solving many related engineering
problems since then.

That is why my first step was to test the CK concept
by converting all artifacts and automation actions from
all my past research projects related to self-optimizing
computer systems into reusable CK components and
workflows. I shared them with the community in
the CK-compatible Git repositories [7] and started
reproducing experiments from my own or related research
projects [19].

I then implemented a customizable and portable
program pipeline as a CK module to unify benchmarking
and auto-tuning while supporting all research techniques
and experiments from my PhD research and the
MILEPOST project [9]. Such pipeline could perform
compiler auto-tuning and software/hardware co-design
combined with machine learning in a unified way across
different programs, datasets, frameworks, compilers, ML
models, and platforms as shown in Figure 4.

The CK program pipeline helps to gradually expose
different design choices and optimization parameters
from all CK components (models, frameworks, compilers,
run-time systems, hardware) via unified CK APIs and
meta descriptions and thus enable the whole ML and
system auto-tuning. It also helps to keep track of
all information passed between components in complex
computational systems to ensure the reproducibility of
results while finding the most efficient configuration on a
Pareto frontier in terms of speed, accuracy, energy and
other characteristics also exposed via unified CK APIs.
More importantly, it can be now reused and extended in
other real-world projects [11].

5.2 Bridging the growing gap between
education, research, and practice

During the MILEPOST project I noticed how difficult
it is to start using research techniques in the real world.
New software, hardware, datasets, and models are usually
available at the end of such research projects making it
very challenging, time consuming, and costly to make
research software work with the latest systems or legacy
technology.

That is why we organized a proof-of-concept project
with the Raspberry Pi foundation to check if it
was possible to use portable CK workflows and
components to enable sustainable research software that
can automatically adapt to rapidly evolving systems. We
also wanted to teach students and researchers how to
share their code, data, and models as reusable, portable,
and customizable workflows and artifacts - something
known now as FAIR principles [54].

For this purpose, we decided to reuse the CK
program workflow to demonstrate that it was crowdsource
compiler auto-tuning similar to the MILEPOST project
but across any Raspberry Pi devices with any
environment and any version of any compiler (GCC
or LLVM) at any time to automatically improve the
performance and code size of the most popular RPi
applications. CK helped to automate experiments,
collect performance numbers on live CK scoreboards,
and automatically plug in CK components with various
machine learning and predictive analytics techniques
including decision trees, nearest neighbor classifiers,
support vector machines (SVM), and deep learning to
automatically learn the most efficient optimizations [44].

With this project, we demonstrated that it was
possible to reuse portable CK workflows and let users
participate in collaborative auto-tuning (crowd-tuning)
on new systems while sharing best optimizations and
unexpected behavior on public CK scoreboards even after
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Figure 4: Portable, customizable, and reusable program pipeline (workflow) assembled from the CK components
to unify benchmarking, auto-tuning, and machine learning. It is possible to gradually expose design search space,
optimizations, features, and the run-time state from all CK components to make it easier to unify performance
modeling and auto-tuning.

the project!

5.3 Co-designing efficient software and
hardware for AI, ML, and other
emerging workloads

While helping companies to assemble efficient software
and hardware for image classification, object detection,
and other emerging AI and ML workloads, I noticed that
it can easily take several months to build an efficient and
reliable system before moving it to production.

This process is so long and tedious because one
has to navigate a multitude of design decisions when
selecting components from different vendors for different
applications (image classification, object detection, NLP,
speech recognition, and many others) while trading off
speed, latency, accuracy, energy, and other costs: what
network architecture to deploy and how to customize
it (ResNet, MobileNet, GoogleNet, SqueezeNet, SSD,
GNMT), what framework to use (PyTorch vs. MXNet
vs. TensorFlow vs. TF Lite vs. Caffe vs. CNTK),
what compilers to use (XLA vs. nGraph vs. Glow
vs. TVM), what libraries and which optimizations to
employ (ArmNN vs. MKL vs. OpenBLAS vs. cuDNN),
which is generally a consequence of the target hardware
platform (CPU vs. GPU vs. DSP vs. FPGA vs. TPU
vs. Edge TPU vs. numerous accelerators). Even worse,
this semi-manual process is usually repeated from scratch

for each new version of hardware, models, frameworks,
libraries, and datasets.

My modular CK program pipeline helped to automate
this process. We just slightly extended it to plug
in different AI and ML algorithms, datasets, models,
frameworks, and libraries for different hardware such
as CPU, GPU, DSP, and TPU and different target
platforms from servers to Android devices and IoT [11].
We also customized this ML workflow with the new
CK plugins that performed pre- and post-processing of
different models and datasets to make them compatible
with different frameworks, backends, and hardware
while unifying benchmarking results such as throughput,
latency, mAP (mean Average Precision), recall, and other
characteristics. We also exposed different design and
optimization parameters including model topology, batch
sizes, hardware frequency, compiler flags, and so on.

Eventually, CK allowed to automate and systematize
design space exploration (DSE) and distribute it
across diverse platforms and environments. This
is possible because CK automatically detects all
necessary dependencies on any platform, installs and/or
rebuilds the prerequisites, runs experiments, and records
all results together with the complete experiment
configuration (resolved dependencies and their versions,
environment variables, optimization parameters, and so
on) in a unified JSON format inside CK repositories.
CK also ensured the reproducibility of results while
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Figure 5: The use of the CK framework to automate benchmarking, optimization, and co-design of efficient software
and hardware for machine learning and artificial intelligence. The goal is to make it easier to reproduce, reuse, adopt,
and build upon ML and Systems research.

making it easier to analyze and visualize results locally
using Jupyter notebooks and standard toolsets or
within workgroups using universal CK dashboards also
implemented as CK modules [19].

Note that it is also possible to share the entire
experimental setup in the CK format inside Docker
containers thus automating all the DSE steps using the
unified CK API instead of trying to figure them out
from the ReadMe files. This method enables CK-powered
adaptive containers that help users to start using and
customizing research techniques across diverse software
and hardware from severs to mobile devices in just
a few simple steps while sharing experimental results
within workgroups or along research papers in the CK
format, reproducing and comparing experiments, and
even automatically reporting unexpected behavior such
as bugs and mispredictions [34].

Eventually, I managed to substitute my original
cTuning framework completely with the modular,
portable, customizable, and reproducible experimental
framework while addressing most of the engineering and
reproducibility issues exposed by the MILEPOST and
cTuning projects [40]. It also helped me to get back to my
original research on lifelong benchmarking, optimization,
and co-design of efficient software and hardware for
emerging workloads including machine learning and
artificial intelligence.

5.4 Automating MLPerf and enabling
portable MLOps

The modularity of my portable CK program workflow
helped to enable portable MLOps when combined with AI
and ML components, FAIR principles, and the DevOps
methodology. For example, my CK workflows and
components were reused and extended by General Motors
and dividiti to collaboratively benchmark and optimizing
deep learning implementations [10]. They were also
used by Amazon to enable scaling of deep learning
on AWS using C5 instances with MXNet, TensorFlow,
and BigDL from the edge to the cloud [48]. Finally,
the CK framework made it easier to prepare, submit,
and reproduce MLPerf inference benchmark results
(”fair and useful benchmark for measuring training and
inference performance of ML hardware, software, and
services”) [22, 52].

5.5 Enabling reproducible papers with
portable workflows and reusable
artifacts

Ever since my very first research project I wished to be
able to easily find all artifacts (code, data, models) from
research papers, reproduce and compare results in just
a few clicks, and immediately test research techniques in
the real world with different platforms, environments, and
data. That is why one of my main goals when designing
the CK framework was to use portable CK workflows for
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CK workflow1 with validated results

AWS with c5.18xlarge instance; Intel® Xeon® Platinum 8124M

From the authors: “The 8-bit optimized model is automatically 

generated with a calibration process from FP32 model without the 

need of fine-tuning or retraining. We show that the inference 

throughput and latency with ResNet-50, Inception-v3 and SSD are 

improved by 1.38X-2.9X and 1.35X-3X respectively with negligible 

accuracy loss from IntelCaffe FP32 baseline and by 56X-75X and 

26X-37X from BVLC Caffe.”

https://github.com/ctuning/ck-request-asplos18-caffe-intel

Figure 6: The CK dashboard with reproduced results from the ACM ASPLOS-REQUEST’18 tournament to co-design
Pareto-efficient image classification in terms of speed, accuracy, energy, and other costs. Each paper submission was
accompanied by the portable CK workflow to be able to reproduce and compare results in a unified way.

these purposes.

I got a chance to test my CK approach to co-organize
the first reproducible tournament at ACM ASPLOS’18
conference (the International Conference on Architectural
Support for Programming Languages and Operating
Systems) to co-design Pareto-efficient systems for deep
learning in terms of speed, accuracy, energy, costs,
and other metrics [28]. We wanted to extend
existing optimization competitions, tournaments, and
hackathons including Kaggle [18], ImageNet [17], the
Low-Power Image Recognition Challenge (LPIRC) [20],
DAWNBench (an end-to-end deep learning benchmark
and competition) [16], and MLPerf [52, 21] with a
customizable experimental framework for collaborative
and reproducible optimization of Pareto-efficient software
and hardware stack for deep learning and other emerging
workloads.

This tournament helped to validate my CK approach
for reproducible papers. The community submitted
5 complete implementations (code, data, scripts, etc.)
for the popular ImageNet object classification challenge.
We then collaborated with the authors to convert their
artifacts into the CK format, evaluate the converted
artifacts on the original or similar platforms, and
reproduce the results based on the rigorous artifact
evaluation methodology [5]. The evaluation metrics
included accuracy on the ImageNet validation set (50,000
images), latency (seconds per image), throughput (images
per second), platform price (dollars) and peak power
consumption (Watts). Since collapsing all metrics
into one to select a single winner often results in
over-engineered solutions, we decided to aggregate all

reproduced results on a universal CK scoreboard shown in
Figure 6 and then select multiple implementations from
a Pareto-frontier, based on their uniqueness or simply to
obtain a reference implementation.

We then published all five papers with our unified
artifact appendix [4] and a set of ACM reproducibility
badges in the ACM Digital Library [37], accompanied
by adaptive CK containers (CK-powered Docker)
and portable CK workflows covering a very diverse
model/software/hardware stack:

� Models: MobileNets, ResNet-18, ResNet-50,
Inception-v3, VGG16, AlexNet, SSD.

� Data types: 8-bit integer, 16-bit floating-point
(half), 32-bit floating-point (float).

� AI frameworks and libraries: MXNet,
TensorFlow, Caffe, Keras, Arm Compute Library,
cuDNN, TVM, NNVM.

� Platforms: Xilinx Pynq-Z1 FPGA, Arm Cortex
CPUs and Arm Mali GPGPUs (Linaro HiKey960
and T-Firefly RK3399), a farm of Raspberry Pi
devices, NVIDIA Jetson TX1 and TX2, and Intel
Xeon servers in Amazon Web Services, Google Cloud
and Microsoft Azure.

The reproduced results also exhibited amazing
diversity:

� Latency: 4 .. 500 milliseconds per image

� Throughput: 2 .. 465 images per second
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� Top 1 accuracy: 41 .. 75 percent

� Top 5 accuracy: 65 .. 93 percent

� Model size (pre-trained weights): 2 .. 130
megabytes

� Peak power consumption: 2.5 .. 180 Watts

� Device frequency: 100 .. 2600 megahertz

� Device cost: 40 .. 1200 dollars

� Cloud usage cost: 2.6E-6 .. 9.5E-6 dollars per
inference

The community can now access all the above
CK workflows under permissive licenses and continue
collaborating on them via dedicated GitHub projects with
CK repositories. These workflows can be automatically
adapted to new platforms and environments by either
detecting already installed dependencies (frameworks,
libraries, datasets) or rebuilding dependencies using CK
meta packages supporting Linux, Windows, MacOS, and
Android. They can be also extended to expose new
design and optimization choices such as quantization,
as well as evaluation metrics such as power or memory
consumption. We also used these CK workflows to
crowdsource the design space exploration across devices
provided by volunteers such as mobile phones, laptops,
and servers with the best solutions aggregated on live
CK scoreboards [19].

After validating that my portable CK program
workflow can support reproducible papers for deep
learning systems, I decided to make one more test and
check if CK could also support the quantum computing
R&D. Quantum computers have the potential to solve
certain problems dramatically faster than conventional

computers, with applications in areas such as machine
learning, drug discovery, materials, optimization, finance,
and cryptography. However it is not yet known when
the first demonstration of quantum advantage will be
achieved, or what shape it will take.

That is why I decided to co-organize several Quantum
hackathons with IBM, Rigetti, Riverlane, and dividiti
similar to the REQUEST tournament [25]. My main
goal was to check if we could aggregate and share
multidisciplinary knowledge about the state-of-the-art
in quantum computing using portable CK workflows
that can run on classical hardware and quantum
platforms from IBM, Rigetti, and other companies,
can be connected to a public dashboard to simplify
reproducibility and comparison of different algorithms
across different platforms, and can be extended by the
community even after hackathons.

Figure 7 shows the results from one of such
Quantum hackathons where over 80 participants from
undergraduate and graduate students to startup founders
and experienced professionals from IBM and CERN,
worked together to solve a quantum machine learning
problem designed by Riverlane. All participants were
given some labeled quantum data and had to develop
algorithms for solving a classification problem.

We also taught participants how to perform these
experiments in a collaborative, reproducible, and
automated way using the CK framework so that the
results could be transfered to industry. For example,
we introduced the CK repository with workflows and
components for the Quantum Information Science Kit
(QISKit) - an open source software development kit
(SDK) for working IBM Q quantum processors [12].
Using the CK program workflow from this repository,
the participants were able to start running quantum
experiments with a standard CK command:

ck pu l l repo ==u r l=https : // github . com/ ctuning /ck=q i s k i t
ck run program : q i s k i t=demo ==cmd key=quantum co in f l i p

Whenever ready, the participants could submit their
solutions to the pubic CK dashboards to let other users
validate and reuse their results [19, 25].

Following the successful validation of portable
CK workflows for reproducible papers, I continued
collaborating with ACM [1] and ML and systems
conferences to automate the tedious artifact evaluation
process [5, 41]. For example, we developed several CK
workflows to support the Student Cluster Competition
Reproducibility Challenge (SCC) at the Supercomputing
conference [14]. We demonstrated that it was possible
to reuse the CK program workflow to automate the
installation, execution, customization, and validation of
the SeisSol application (Extreme Scale Multi-Physics
Simulations of the Tsunamigenic 2004 Sumatra

Megathrust Earthquake) [53] from the SC18 Student
Cluster Competition Reproducibility Challenge across
several supercomputers and HPC clusters [13]. We
also showed that it was possible to abstract HPC job
managers including Slurm and Flux and connect them
with our portable CK workflows.

Some authors already started using CK to share their
research research artifacts and workflows at different ML
and systems conferences during artifact evaluation [27].
My current goal is to make the CK onboarding as
simple as possible and help researchers to automatically
convert their ad-hoc artifacts and scripts into CK
workflows, reusable artifacts, adaptive containers, and
live dashboards.
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The most efficient design

Figure 7: The CK dashboard connected with portable CK workflows to visualize and compare public results from
reproducible Quantum Hackathons. Over 80 participants worked together to solve a quantum machine learning
problem and minimize time to solution.

5.6 Connecting researchers and
practitioners to co-design efficient
computational systems

CK use cases demonstrated that it was possible to develop
and use a common research infrastructure with different
levels of abstraction to bridge the gap between researchers
and practitioners and help them to collaboratively
co-design efficient computational systems. Scientists
could then work with a higher-level abstraction while
allowing engineers to continue improving the lower-level
abstractions for continuously evolving software and
hardware in deploying new techniques in production
without waiting for each other as shown in Figure 8.
Furthermore, the unified interfaces and meta descriptions
of all CK components and workflows made it possible to
explain what was happening inside complex and ”black
box” computational systems, integrate them with legacy

systems, use them inside ”adaptive” Docker, and share
them along with published papers while applying the
DevOps methodology and agile principles in scientific
research.

6 CK platform

The practical use of CK as a portable and customizable
workflow framework in multiple academic and industrial
projects exposed several limitations:

� The distributed nature of the CK technology, the
lack of a centralized place to keep all CK components,
automation actions, and workflows, and the lack
of a convenient GUI made it very challenging to
keep track of all contributions from the community.
As a result, it is not easy to discuss and test
APIs, add new components and assemble workflows,
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Figure 8: The CK concept helps to connect researchers and practitioners to co-design complex computational systems
using DevOps principles while automatically adapting to continuously evolving software, hardware, models and
datasets. CK framework also helps to unify, automate and crowdsource the benchmarking and auto-tuning process
across diverse components from different vendors to automatically find the most efficient systems on the Pareto
frontier.

automatically validate them across diverse platforms
and environments, and connect them with legacy
systems.

� The concept of backward compatibility of CK
APIs and the lack of versioning similar to Java
made it challenging to keep stable and bug-free
workflows in the real world - any bug in a reusable
CK component from one GitHub project could
easily break dependent workflows in another GitHub
project.

� The CK command-line interface with the access to all
automation actions with numerous parameters was
too low-level for researchers. This is similar to the
situation with Git - a powerful but quite complex and
CLI-based tool that requires extra web services such
as GitHub and GitLab to make it more user friendly.

This feedback from CK users motivated me to start
developing cKnowledge.io (Figure 9) - an open web-based
platform with a GUI to aggregate, version, and test
all CK components and portable workflows. I also
wanted to substitute cTuning.org with an extensible
and modular platform to crowdsource and reproduce
tedious experiments such as benchmarking and co-design
of efficient systems for AI and ML across diverse platforms
and data provided by volunteers.

The CK platform is inspired by GitHub and PyPI:
I see it as a collaborative platform to share reusable
automation actions for repetitive research tasks and

assemble portable workflows. It also includes the
open-source CK client [15] that provides a common
API to initialize, build, run, and validate different
research projects based on a simple JSON or YAML
manifest. This client is connected with live scoreboards
at the CK platform to collaboratively reproduce and
compare the state-of-the-art research results during
Artifact Evaluation that we helped to organize at ML
and Systems conferences [19].

My intention is to use the CK platform to complement
and enhance MLPerf, the ACM Digital Library,
PapersWithCode.com, and existing reproducibility
initiatives and artifact evaluation at ACM, IEEE, and
NeurIPS conferences with the help of CK-powered
adaptive containers, portable workflows, reusable
components, ”live” papers, and reproducible results
validated by the community using realistic data across
diverse models, software, and hardware.

7 CK demo: automating
and customizing MLPerf
benchmarking

I prepared a live and interactive demo of the CK
solution that automates the MLPerf inference benchmark,
connects it with the live CK dashboard, and helps
volunteers to crowdsource benchmarking across diverse
platforms similar to the Collective Tuning Initiative [40]
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Figure 9: cKnowledge.io: an open platform to organize AI, ML, and Systems knowledge in the form of portable
workflows, reusable components, and reproducible research results. It already contains many automation actions
and components needed to co-design efficient and self-optimizing computational systems, enable reproducible and
live papers validated by the community, and keep track of the state-of-the-art research techniques that can be
deployed in production.

and the SETI@home project: cKnowledge.io/test.
This demo shows how to use a unified CK API to

automatically build, run and validate object detection
based on SSD-Mobilenet, TensorFlow, and COCO
dataset across Raspberry Pi computers, Android phones,
laptops, desktops, and data centers. This solution is
based on a simple JSON file describing the following tasks
and their dependencies on CK components:

� prepare a Python virtual environment (can be
skipped for the native installation),

� download and install the Coco dataset (50 or 5000
images),

� detect C++ compilers or Python interpreters needed
for object detection,

� install Tensorflow framework with a specified version
for a given target machine,

� download and install the SSD-MobileNet model
compatible with selected Tensorflow,

� manage installation of all other dependencies and
libraries,

� compile object detection for a given machine and
prepare pre/post-processing scripts.

This solution was published on the cKnowledge.io
platform using the open-source CK client [15] to help
users participate in crowd-benchmarking on their own
machines as follows:

# I n s t a l l the CK c l i e n t from PyPi us ing :

pip i n s t a l l cbench

# Download and bu i ld the s o l u t i o n on a given machine ( example f o r Linux ) :

cb i n i t demo=obj=detec t i on=coco=t f=cpu=benchmark=l inux=portab le=workf lows

# Run the s o l u t i o n on a given machine :

cb benchmark demo=obj=detec t i on=coco=t f=cpu=benchmark=l inux=portab le=workf lows

14

https://cKnowledge.io/test
https://cKnowledge.io


The users can then see the benchmarking results
(speed, latency, accuracy, and other exposed
characteristics through the CK workflow) on the
live CK dashboard associated with this solution

and compare them against the official MLPerf
results or with the results shared by other users:

cKnowledge.io/result/sota-mlperf-object-detection-v0.5-crowd-benchmarking.

After validating this solution on a given platform, the
users can also clone it and update the JSON description
to retarget this benchmark to other devices and operating
systems such as MacOS, Windows, Android phones,
servers with CUDA-enabled GPUs, and so on.

The users have a possibility to integrate such
ML solutions with production systems with the
help of unified CK APIs as demonstrated by
connecting the above CK solution for object
detection with the webcam in any browser:

cKnowledge.io/solution/demo-obj-detection-coco-tf-cpu-webcam-linux-azure.

Finally, it is possible to use containers with CK

repositories, workflows and common APIs as follows:

docker run ctuning / cbrain=obj=detec t i on=coco=t f=cpu=benchmark=l inux=portab le=workf lows \
/bin /bash =c ”cb benchmark demo=obj=detec t i on=coco=t f=cpu=benchmark=l inux=portab le=workf lows

docker run ctuning /cbench=mlperf=i n f e r en c e=v0.5= detec t i on=openvino=ssd=mobilenet=coco=500= l i nux \
/bin /bash =c ”cb benchmark mlperf=i n f e r en c e=v0.5= detec t i on=openvino=ssd=mobilenet=coco=500= l i nux

Combining Docker and portable CK workflows enables
”adaptive” CK containers for MLPerf that can be easily
customized, rebuilt with different ML models, datasets,
compilers, frameworks, and tools encapsulated inside CK
components, and deployed in production [2].

8 Conclusions and future work

My very first research project to prototype an analog
neural network stalled in the late 90s because it took me
way too long to build all the infrastructure from scratch
to model and train Hopfield neural networks, generate
diverse datasets, co-design and optimize software and
hardware, run and reproduce all experiments, compare
them with other techniques from published papers, and
use this technology in practice in a completely different
environment.

In this article, I explain why I have developed
the Collective Knowledge framework and how it can
help to address above issues by organizing all research
projects as a database of reusable components, portable
workflows, and reproducible experiments based on
FAIR principles (findable, accessible, interoperable, and
reusable). I also describe how the CK framework
attempts to bring DevOps and ”Software 2.0” principles
to scientific research and help users share and reuse best
practices, automation actions, and research artifacts in
a unified way along with reproducible papers. Finally,
I demonstrate how CK concept helps to complement,

unify, and interconnect existing tools, platforms, and
reproducibility initiatives with common APIs and
extensible meta descriptions rather than rewriting them
or competing with them.

I present several use cases how CK helps to connect
researchers and practitioners to collaboratively design
more reliable, reproducible, and efficient computational
systems for machine learning, artificial intelligence, and
other emerging workloads that can automatically adapt
to continuously evolving software, hardware, models,
and datasets. I also describe the https://cKnowledge.io
platform that I have developed to organize knowledge
about AI, ML, systems, and other innovative technology
in the form of portable CK workflows, automation
actions, reusable artifacts, and reproducible results from
research papers. My goal is to help the community find
useful methods from research papers, quickly build them
on any tech stack, integrate them with new or legacy
systems, and start using them in the real world with real
data.

Finally, I demonstrate the concept of ”live” research
papers connected with portable CK workflows and online
CK dashboards to let the community automatically
validate and update experimental results even after the
project, detect and share unexpected behavior, and
collaboratively fix problems [44]. I believe that such
collaborative approach can make computational research
more reproducible, portable, sustainable, explainable,
and trustable.
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However, CK is still a proof-of-concept and there is
a lot to be simplified and improved. The future work
is to make CK more user friendly and simplify the
onboarding process, standardize all APIs and JSON meta
descriptions, and develop a simple GUI to create and
share automation actions and CK components, assemble
portable workflows, run experiments, compare research
techniques, generate adaptive containers, and participate
in lifelong AI, ML, and Systems optimization.

My long-term goal is to use CK to develop a
virtual playground and a marketplace where researchers
and practitioners assemble AI, ML, and other novel
applications similar to live species that continue to
evolve, self-optimize, and compete with each other across
diverse tech. stack from different vendors and users.
The winning solutions with the best trade-offs between
speed, latency, accuracy, energy, size, costs, and other
metrics can be then selected at any time from the Pareto
frontier based on user constraints. Such solutions can
be immediately deployed in production on any platform
from data centers to the edge in the most efficient way
thus accelerating AI, ML, and Systems innovation and
the digital transformation.
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