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Abstract

Nowadays, engineers have to develop software often without even knowing which hardware it will eventually
run on in numerous mobile phones, tablets, desktops, laptops, data centers, supercomputers and cloud services.
Unfortunately, optimizing compilers are not keeping pace with ever increasing complexity of ever changing
computer systems anymore and may produce severely underperforming executable codes while wasting expensive
resources and energy.

We present the first to our knowledge practical, collaborative and publicly available solution to this problem.
We help the software engineering community gradually implement and share light-weight wrappers around
any software piece with more than one implementation or optimization choice available. These wrappers are
connected with a public Collective Mind autotuning infrastructure and repository of knowledge to continuously
monitor all important characteristics of these pieces (computational species) across numerous existing hardware
configurations in realistic environments together with randomly selected optimizations. At the same time,
Collective Mind Node) allows to easily crowdsource time-consuming autotuning across existing Android-based
mobile device including commodity mobile phones and tables.

Similar to natural sciences, we can now continuously track all winning solutions (optimizations for a given
hardware such as compiler flags, OpenCL/CUDA/OpenMP/MPI/skeleton parameters, number of threads and
any other exposed by users) that minimize all costs of a computation (execution time, energy spent, code
size, failures, memory and storage footprint, optimization time, faults, contentions, inaccuracy and so on) of a
given species on a Pareto frontier along with any unexpected behavior at c-mind.org/repo . Furthermore, the
community can continuously classify solutions, prune redundant ones, and correlate them with various features
of software, its inputs (data sets) and used hardware either manually (similar to Wikipedia) or using available
big data analytics and machine learning techniques.

Our approach can also help computer engineering community create the first public, realistic, large, diverse,
distributed, representative, and continuously evolving benchmark with related optimization knowledge while
gradually covering all possible software and hardware to be able to predict best optimizations and improve
compilers depending on usage scenarios and requirements. Such continuously growing collective knowledge
accessible via simple web service can become an integral part of the practical software and hardware co-design
of self-tuning computer systems as we demonstrate in several real usage scenarios validated in industry.2.

Keywords: knowledge management, collaborative experimentation, collaborative knowledge discovery, repro-
ducible experimentation, crowdsourcing experimentation, machine learning, data mining, big data analytics, active
learning, compiler tuning, feature selection, natural science, systematic benchmarking, hardware validation, com-
putational species, performance tracking, experiment buildbot, JSON API, agile methodology, unexpected behavior,
multi-objective autotuning, Pareto frontier, statistical analysis, code and data sharing, reusable components, inter-
active articles

1We are now developing a smaller, simpler and faster version of our collaborative infrastructure and repository (Collective Knowledge
or CK). Preview is available at http://github.com/ctuning/ck and http://cknowledge.org/repo.

2Corresponding author’s email: Grigori.Fursin@cTuning.org

1

http://c-mind.org
http://c-mind.org/cmn
http://c-mind.org/repo
http://github.com/ctuning/ck
http://cknowledge.org/repo


1 Introduction and Related Work

There is an impressive and ever increasing number of diverse computer systems available nowadays on the market.
They all vary in performance, size, power consumption, reliability, price and other characteristics depending on
numerous available hardware features such as processor architecture, number of cores, availability of specialized
hardware accelerators, working frequency, memory hierarchy and available storage. As a result, engineers often
have to develop software that may end up running across different, heterogeneous and possibly virtualized hardware
in multiple mobile devices, desktops, HPC servers, data centers and cloud services. Such a rising complexity of
computer systems and limited development time usually force software engineers to rely almost exclusively on
existing compilers, operating systems and run-time libraries in a hope to deliver the fastest, smallest, most power
efficient, scalable and reliable executable code across all available hardware. Unfortunately, this complexity of
ever changing hardware also made development of compilers very challenging. They nowadays include hundreds of
optimizations and often fail to produce efficient code while wasting expensive resources and energy [72, 18, 20, 43, 40].

Numerous autotuning, run-time adaptation, genetic and machine learning techniques (including our own) have
been introduced in the past two decades to help software engineers optimize their applications for rapidly evolving
hardware [72, 18, 25, 63, 60, 28, 71, 51, 41, 70, 29, 52, 68, 56, 54, 34, 65, 47, 22, 50, 19, 59, 62, 66, 61, 58]. These tech-
niques usually demonstrate that it is possible to improve various characteristics of existing software by automatically
and empirically searching and predicting better combinations of optimizations. Such optimizations typically include
compiler flags, optimization parameters and their orders, different algorithm implementations, run-time scheduling
policies, working frequency among many other choices. The resulting 10% to 10x performance improvements of
frequently executed programs can already reduce usage costs of large data centers and supercomputer operators by
thousands of dollars per year. These improvements can also considerably improve overall performance, battery life
and storage space in mobile devices.

Nevertheless, in spite of so many promising results and research advances in the past twenty years, we still witness
the rising number of reports, complaints, public discussions and research articles showing that existing compilers
are missing many optimization opportunities for popular software [10, 8, 14]. This is caused by a fundamental
and yet unsolved problem - design and optimization spaces are already too large and continue growing. Therefore,
exhaustive exploration of the whole space to find the best solution is simply impossible. Practically all recent
long-term research visions acknowledge above problem [21, 30, 15, 43, 17]. They even advocate that some radically
new approaches should be invented to be able to continue building faster, more power efficient and reliable software
and hardware by 2020 while somehow decreasing all development, optimization and usage costs.

Indeed, hardware and compiler designers can afford to explore only a tiny fraction of the whole optimization
space together with a few ad-hoc benchmarks and data sets on a few architectures when tuning optimization and
run-time adaptation heuristics or training predictive models. However, this simply can not anymore represent a
vast amount of real-world software and hardware thus explaining why more and more optimization opportunities
are so easily missed. Furthermore, static compilers often lack data set specific information and run-time adaptation
mechanisms meaning that costly optimization process has to be restarted for practically every program input.
Dynamic compilers and run-time autotuning techniques were not able to solve the problem either. Such just-in-
time frameworks always have a very limited time budget to be able to react to varying execution contexts, and
hence can not explore many aggressive optimizations. Worse, almost all vast practical optimization knowledge
and experience from the software engineering community during their own attempts to analyze and tune program
behavior is often wasted instead of helping to improve compilers and run-time systems as conceptually shown in
Figure 1a.

Rather than waiting until 2020 in a hope that compiler and hardware designers will somehow find a ”holy grail”
solution, we propose an alternative and collaborative solution based on our interdisciplinary background in physics
and AI. With the help of the software engineering community, we started gradually identifying real and frequently
used software pieces ranging from the whole application to jut a few lines of code when more than one optimization
(or implementation) choice is available. Performance and associated usage costs of such software pieces usually
heavily depend on different optimizations for a given input (data set), utilized hardware, environment state, and
possible end-user requirements (such as algorithm precision versus energy usage and performance).

We then propose to use our recent Collective Mind framework and Hadoop-based repository of knowledge (cM
for short) [40, 4] to extract and share such open source software pieces together with various possible inputs and
meta data at c-mind.org/repo. This meta data is gradually extended by the community via popular, human readable
and easily extensible JSON format [12] currently describing how to build and run shared pieces together with all
dependencies on the specific hardware and software including compilers, operating systems and run-time libraries.
All these shared software pieces are then continuously and randomly optimized and executed with different data
sets using distributed cM buildbot for Linux and Windows-based devices [4] or cM node for Android devices [3]
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Figure 1: (a) traditional computer engineering versus (b) our new collaborative performance and cost-aware
software/hardware co-design as a web service.

across shared computational resources provided by volunteers. Such resources range from mobile phones, tablets,
laptops and desktops to data centers, supercomputers and cloud services gradually covering all existing hardware
configurations and environments. Furthermore, the community can use light weight cM wrappers around identified
software pieces within a real and possibly proprietary applications to continuously monitor their behavior and
interactions in the whole software project. Similar to nature and biological species, such approach treats all
exposed and shared software pieces as computational species while continuously tracking and learning their behavior
versus different optimizations across numerous hardware configurations, realistic software environments and run-
time conditions. cM infrastructure then continuously records only the winning solutions (optimizations for a given
data set and hardware) that minimize all or only monitored costs (execution time, power consumption, code size,
failures, memory and storage footprint, and optimization time) of a given software piece on a Pareto frontier [53]
in our public cM repository.

Software engineers can now assemble their projects from the cM plugins with continuously optimized compu-
tational species. Such software projects can continuously and collaboratively achieve better performance while
reducing all costs across all hardware thus making software engineering performance- and cost-aware. Furthermore,
software developers are now able to practically help compiler and hardware designers improve their technology as
conceptually shown in Figure 1b. Indeed, our approach helps create the first to our knowledge public, realistic,
large, diverse, distributed, evolving and continuously optimized benchmark with related optimization knowledge
while gradually covering all possible software and hardware.

At the same time, we can also apply an extensible, top down methodology originating from physics when learning
behavior of complex systems. The compiler community first learns and optimizes coarse grain behavior of large
shared software pieces including whole applications, library functions, kernels and most time consuming loops versus
global compiler optimization flags or other coarse-grain optimizations. After enough knowledge is collected, the
community can gradually move to finer grain levels including just a few source lines or binary instructions versus all
internal and individual compiler optimization decisions via our Interactive Compilation Interface. This plugin-based
interface is already available in mainline GCC [39], and we plan to add it to LLVM in the future [40].

More importantly, our approach helps considerably improve existing methodology on optimization and run-time
adaptation prediction using machine learning. Current methodology (used in most of the papers including ours and
referenced at the beginning of this section) usually focuses on showing that it is possible to predict one or several
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optimizations to improve execution time, power consumption or some other characteristics using some off-the-shelf
machine learning techniques such as SVM, (deep) neural networks or KNN [23, 45, 55] combined with a few ad-hoc
program or architecture features. In contrast, our growing, large and diverse benchmark allows the community for
the first time to apply methodology from sciences such as biology, medicine and AI based on big data predictive
analytics [44]. For this purpose, cM infrastructure continuously classifies all winning species in terms of distinct
optimizations and exposes them to the community in a unified and reproducible way through the public repository.
This, in turn, allows our colleagues with interdisciplinary background to help the software engineering community
find best predictive models for these optimization classes together with relevant features from software species,
hardware, data set and environment state either manually or automatically. Such features (including extraction
tool) and predictive models are continuously added to the species using cM wrappers and their meta-data thus
practically enabling self-tuning software automatically adaptable to any hardware and environment.

Importantly, cM continues tracking unexpected behavior (abnormal variation of characteristics of species such
as execution time, or mispredictions from current classification) in a reproducible way in order to allow the com-
munity improve predictive models and find missing features that can explain such behavior. Also, in contrast with
using more and more complex and computationally intensive machine learning techniques to predict optimizations
such as deep neural networks [23, 45, 55], we decided to provide a new manual option useful for compiler and
hardware designers. This option allows the community to combine existing predictive techniques as a cheap way to
quickly analyze large amount of data, with manually crafted human-readable, simple, compact and fast rules-based
models (decision trees) that can explain and predict optimizations for a given computational species. Thus, we
are collaboratively building a giant optimization advice web service that links together all shared software species,
optimizations and hardware configurations while resembling Wikipedia, IBM Watson advice engine [33], Google
knowledge graph [9] and a brain.

We understand, that the success of our approach will depend on the active involvement from the community.
Therefore, we tried to make our approach as simple and transparent to use as possible. For example, our light-weight
cM version for Android mobile systems [3] is a ”one-button approach” allowing anyone to share their computa-
tional resources and tune shared computational species. At the same time, extraction of software pieces from large
applications is still semi-manual and may incur some costs. Therefore we are gradually working on automating
this process using plugin-based capabilities in GCC and LLVM. Furthermore, together with participating com-
panies and volunteers, we already extracted, described and partially shared 285 computational species together
with around 500 input samples 1 from major benchmarks and software projects. We then validated our approach
in STMicroelectronics during 3 months to help our colleagues tune their production GCC compiler and improve
real customer software. During that time, we continuously optimized execution time, code size, compilation time
and power consumption of all shared computational species using at least 5000 random combinations of compiler
optimization flags on spare private cloud servers and mobile phones. We also managed to derive 79 distinct opti-
mization optimization classes covering all shared species (small real applications or hotspot kernels extracted from
large applications with their run-time data set either manually as we did in [37], or using Codelet Finder from CAPS
Entreprise as we did om the MILEPOST project [39], or using semi-manual extraction of OpenCL/CUDA kernels
combined with OpenME plugin interface to extract run-time state [40]) that we correlated with program semantic
and dynamic features using SVM and other predictive analytics techniques. With the help of domain specialists
(compiler engineers), we then analyzed predictive models for end-user software, found meaningless correlations,
manually isolated problems 2, prepared and shared counter-example code sample, found missing program and input
features to fix wrong classifications, and developed adaptive, self-tuning and statically compiled code. Finally, we
managed to substitute ad-hoc benchmark used at the architecture verification department of our industrial part-
ners with the minimal and realistic one based on derived optimization classes that helped to dramatically reduce
development and testing time.

These positive outcomes demonstrate how our approach can help eventually involve the software engineering
community into development and improvement of compilers and hardware. We also show how continuously growing
collective knowledge repository accessible via unified web service can become an integral part of the practical software
and hardware co-design of self-tuning computer systems while decreasing all development costs and time-to-market
for new products. More importantly, the side effect of our approach to share code and data in a reproducible way

0We can not share extracted pieces from proprietary software but we still use them internally for research purposes.
1We currently have more than 15000 input samples collected in our past projects for our shared computational species [36, 11, 27].

However since they require more than 17GB of storage, at the moment we decided to share only representative ones, i.e. which require
distinct compiler optimization.

2In spite of many papers presents some simple automatic optimization predictions, our practical and industrial experience with large
data sets shows that it is currently not possible to fully automate this process. Therefore, manual analysis is still often required similar
to other natural sciences as will be shown later in this paper.
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help support recent international initiatives on reproducible research and sustainable software engineering [2].
Our paper is organized as follows. This section has introduced the problem, related work and our novel

community-driven approach for performance- and cost-aware software engineering. It is followed by Section 2
presenting our personal and real-life motivating software engineering example for neural networks with some of
the encountered optimization issues during past 15 years. Next section 3 briefly introduces our recent open source
Collective Mind infrastructure and repository to enable sharing of computational species and collaborative tracking
and tuning of their performance together with all associated costs across voluntarily provided computer systems.
Section 4 demonstrates how we continuously systematize ”big performance data” collected by cM, classify species,
and predict optimizations while creating a realistic and representative benchmark. It is followed by Section 5 which
demonstrates how to understand machine learning and improve optimization predictions. Section 6 demonstrates
how to find missing features to explain unexpected behavior of computational species and improve optimization
predictions. It also shows how to build adaptive and self-tuning applications assembled from available computa-
tional species as plugins. Finally, we conclude paper and describe future research and development directions in
Section 7.

2 Real-life motivating example

One of the authors original research started more than twenty years ago was to develop and analyze various artificial
neural networks as a part of a possible non-traditional and brain-inspired computer. Such networks can mimic brain
functions and are often used for machine learning and data mining [23]. For example, Figure 2 shows one of the oldest
and well-known one-layer, fully interconnected, recurrent (with feedback connections) Hopfield neural network [46].
It is a popular choice for function modeling, pattern recognition and image filtering tasks including noise reduction.
Implemented as a software, this neural network has a fairly simple and regular code where each neuron receives a
weighted sum of all inputs of an image as well as outputs of all other neurons. This sum is then processed using
some neuron activation function including sigmoid or linear ones to calculate the output value. The small and
simple C kernel presented in above Figure 2 is one of many possible implementations of a threshold filter we used
as a part of a linear activation function, i.e. switching neuron output from 0 to 1 when its input meets a given
threshold.
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 B&W threshold 
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3? 
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Figure 2: Conceptual example of pattern recognition, image filtering and character noise reduction using Hopfield
fully interconnected and recurrent neural network. Simple C kernel is a part of a neuron activation function
processing thresholds for all neurons.

Very simplistically, the quality of a neural network is usually determined by its processing speed as well as
capacity (maximum amount of patterns or information that can be stored in such networks) and recognition accuracy
(correct predictions versus failures). It heavily depends on the total number of neurons, connections and layers [48],
and is primarily limited by the speed and resources of the available hardware including specialized accelerators.
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Hence, neural network software/hardware co-design process always involves careful balancing of performance versus
all associated costs including storage size, memory footprint, energy consumption, development time and hardware
price depending on usage scenarios and required time to market. Indeed, our research on improving neural networks
requires many iterative runs of a slightly evolving modeling software with varying parameters to maximize prediction
accuracy. In this case, our main concern is about minimizing compilation and execution time of each execution
across available hardware. However, when the best found network is found and deployed in a large data center or
cloud service (for example, for big data analysis), end users would like to minimize all additional costs including
energy and storage consumption across all provided computer systems. Finally, when deploying neural networks
in small, autonomic and possibly mass-produced devices such as surveillance cameras and mobile phones or future
robots and Internet of Things objects, more strict requirements are placed on software and hardware size, memory
footprint, real time processing, and the cost of the whole system.

Twenty years ago, our software engineering of neural networks was relatively straightforward. We did not have
a choice but to simply select the latest hardware with the accompanying and highly tuned compiler to achieve
nearly peak performance for our software including for the code shown in Figure 2. Therefore, in order to innovate
and process more neurons and their configurations, we usually had to wait for more than a year until arrival of
a new hardware. This hardware would likely double performance of our software and provide more memory and
permanent storage but often at a cost of higher power consumption and thus dramatically rising electricity bill.

In contrast, we now have an impressive choice of hardware of all flavors which our software can be executed on.
Each year, there are numerous variations of processors appearing on the market with different features (properties)
including frequency, number of cores, cache size, ISA extensions, specialized hardware accelerators (such as GPU
and even revived semiconductor neural networks), power consumption and price. Furthermore, we can now have
an easy access to large-scale parallel resources from home via gaining popularity virtualized cloud services from
Amazon, Google, Microsoft and others. Therefore, the number of experiments we can now run is mainly limited by
the price we can afford to pay for computing services. At the same time, we also enjoy continuous community-driven
improvements of operating systems together with numerous free or proprietary libraries and software development
tools including popular optimizing compilers such as GCC and LLVM. One may expect that with so many advances
in the computer technology, practically any recent compiler would generate the fastest and most energy efficient
code for such an old, simple, small and frequently used software piece shown in Figure 2 across existing hardware.
Nevertheless, since we pay for our experiments, we eventually decided to validate their performance/cost efficiency.

For the sake of accountability and reproducibility, we started gradually collecting at c-mind.org/nnet-tuning-
motivation various information about several computer systems we used including their price, cost, available oper-
ating systems, compilers and optimizations. Figure 3a shows a tiny subset of this multidimensional space of design
and optimization choices. At the same time, whenever running real experiments, we also started recording their
execution time 3 and all associated costs including compilation time, code size, energy usage, software/hardware
price and utility bill. Furthermore, we decided to perform a simple and well-known optimization compiler flag auto-
tuning [1, 39] with at least 100 iterations to see whether there is still room for improvement over the fastest default
compiler optimization level (-O3). Figure 3b shows one of many possible 2D projections of the multidimensional
space of characteristics (which we consider as costs of running our experiments or tasks). We then gradually track
the winning solutions that maximize performance and at the same time minimize all costs using our experience in
physics and electronics, namely by applying Pareto frontier filter [53].

We quickly realized that in contrast to the traditional wisdom, the latest technology is not necessarily the
fastest or most energy efficient and further optimization is always required. For example, when moving from GCC
4.1.1 (released in 2006) to GCC 4.9.1 (released in 2014), we observed a modest 4% improvement 4 in single core
execution time of our neural network and 2% degradation in a code size on Intel E6320 based system (released in
2008). However, 8 years old GCC 4.1.1 can achieve 27% improvement in execution time after autotuning (which
comes at cost of 100 recompilations and executions as well as increasing binary size by 34%)! Interestingly, 8 years
old PathScale 2.3.1 produces faster code than the latest version of GCC 4.9.1 and LLVM 3.4.2! Furthermore, when
using internal parallelization, LLVM 3.4.2 beats GCC 4.9.1 by about 23% but has a sub-linear scaling versus number
of threads. In contrast, 2 years old GCC 4.6.3 achieves the best result and linear scaling versus number of threads
when using both parallelization and autotuning!

When running the same code on cheap, commodity mobile phones with ARM architecture, the execution time

3In this paper, for the sake of simplicity and without loosing generality, when speaking about performance tuning, we mean reducing
execution time. However, on modern out-of-order processors with complex memory hierarchy, the dependency between performance
(speed of execution) and total execution time may be non-linear. Thus, depending on user requirements, these characteristics have to
be tuned separately.

4Similar to physics, we execute optimized code many times, check distribution of characteristics for normality [32], and report
expected value if variation is less than 3%
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Figure 3: (a) A small subset of various hardware, software, development tools and optimizations used in our research
on neural networks in the past 20 years (P - processors, W - processor mode, X - compiler, O - operating system,
S - system, T - total number of processed pixels or neurons, D - software data set, Y - compiler optimization used)
(b) 2D projection of the multidimensional space of characteristics together with winning solutions on the Pareto
frontier (all data and interactive graphs are available at c-mind.org/nnet-tuning-motivation).

increased dramatically by around 5 times! However, the power consumption dropped by about 10 times! When
trying to use specialized hardware (GPUs or our semiconductor neural networks), we could increase execution time
by about tens to hundreds of times, but at a considerable development cost and time to market. Furthermore,
with time, we discovered that the same best found optimization for one class of images can considerably degrade
performance on another class of images (as we explain in Section 6). We also encountered problems with cache
contentions on multi-core systems, sub-linear scaling on many core systems, unexpected frequency scaling, nonde-
terministic IO for large images, and many other problems that had to be addressed by new optimizations. These
issues can not be easily solved by static compilers due to a fundamental problem of a lack of run-time information
at compile time. Therefore, we even tried to move to dynamic and possibly adaptive languages including Java and
Python but were not yet able to achieve similar performance while spending even more energy and storage during
just-in-time compilation.

Sadly and similar to many other scientists and software engineers, we now have to waste considerable amount of
our time on a tedious and ad-hoc navigation through the current technological chaos to find some good hardware,
software and optimization solutions that can speed up our programs and reduce costs instead of innovating as
conceptually summarized in Figure 4. Worse, software engineers are often not even aware of all available design
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Figure 4: Example of gradually and manually crafted advices as decision trees to deliver best performance and
cost for our neural network depending on available resources, usage scenarios (requirements) and data sets.

and optimization choices they have to improve performance of their software and reduce development and usage
costs. Furthermore, costs that has to be minimized depend on usage scenarios: in mobile systems running out of
battery, one may want to fix a power budget and then balance execution time and algorithm accuracy; in embedded
devices, code size and consumed energy may be more important that execution time; JIT may require careful
balancing of compilation and optimization times versus potential performance gains, while users of data centers and
supercomputers may care primarily about both execution time and the price of computation. Therefore, we strongly
believe that current performance- and cost-blind software engineering has be changed to improve productivity and
boost innovation in science and technology.

3 Public and Open Source Collective Mind Infrastructure and Repos-
itory

Eventually, we started searching for a possible solution that could liberate software developers from the tedious and
not necessarily relevant job of continuous optimization and accounting while gradually making existing software
performance- and cost-aware. At first, we tried to create a simple database of optimizations and connect it to
some existing benchmarking and autotuning tools to keep track of all optimizations [35, 39]. However, when
trying to implement it within production environments of our industrial partners, we faced several severe problems
including difficulty to expose all design and optimization choices from continuously evolving software, and difficulty
to reproduce performance numbers collected from different machines. This eventually pushed us to develop a full-
fledged repository of knowledge with unified web services (Collective Mind or cM for short) similar to ones that
helped successfully systematize research and experimentation in biology, genomics and other natural sciences. Such
repository should be able to keep the whole autotuning setups with all dependencies including optimized software,
data sets and autotuning tools. This, in turn, should allow us to distribute the whole autotuning setups among many
users to crowdsource software optimization (or any other experimentation) in a reproducible way while considerably
reducing usage costs.

Briefly 5, cM helps decompose software into standalone pieces interconnected through cM wrappers. Such

5Though we provide minimal information about Collective Mind framework in this paper, it should be enough to understand proposed
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Figure 5: Collective Mind Framework and Repository (cM) help to decompose any complex software into pieces
with light-weight wrappers that expose design and optimization choices, measured characteristics, features and en-
vironment state in a unified and mathematical way. It was developed to unify and systematize software autotuning,
make it practical and reproducible, and distribute it among numerous computing resources such as mobile phones
and data centers shared by volunteers [40, 4].

light-weight wrappers currently support major languages including C, C++, Fortran, Python, PHP and Java, and
allow the community to gradually expose various design and optimization choices c, features f, dependencies on
other software and hardware, monitored characteristics (costs) b and environment state s in a unified way through
extensible JSON format [12]. This allowed us to formalize almost all existing autotuning techniques as finding
a function of a behavior of a given software piece B running on a given computer system with a given data set,
selected hardware design and software optimization choices c, and a system state s ([40]):

b = B(c, s)

Furthermore, software pieces can be extracted and then shared together with their wrappers and data sets samples
in the Hadoop-enabled [7] cM repository. For example, with the help of our colleagues and supporters, we already
gradually and semi-automatically extracted and shared 285 software pieces together with several thousand data set
pairs from several real software projects as well as 8 popular benchmark suits including NAS, MiBench, SPEC2000,
SPEC2006, Powerstone, UTDSP and SNU-RT. This can liberate software engineers from developing their own ad-
hoc and complex tuning setups in favor of implementing common autotuning pipelines consisting of shared software
pieces, data sets, tools and optimization space exploration modules. Such pipelines can then be easily shared and
distributed across a large number of diverse computer systems either using open source cM buildbot or a small
cM node that can deploy experiments on Android-based devices [3]. cM will then continuously ”crawl” for better
optimizations for all shared software pieces, data sets and compilers, while recording experiments in a reproducible
way in the public cM repository c-mind.org/repo.

As requested by our industrial partners, we first used cM to implement compiler optimization flag autotuning
pipeline. Though this pipeline continues growing and now supports other optimizations including polyhedral source-
to-source transformations, MPI/OpenMP tuning and fine-grain compiler transformations as can be seen at c-
mind.org/ctuning-pipeline, compiler flag optimization problem remains critical for new hardware and unsolved
for several decades due to growing optimization spaces. Indeed, latest GCC, LLVM and Intel compilers feature
hundreds of optimizations which have to be carefully orchestrated for all existing software and hardware. At
the same time, it should be simple enough to demonstrate the concepts of our approach which follows top-down
optimization methodology. Therefore, we start from coarse-grain optimizations and gradually move to finer-grain
levels motivated by our experience in physics when gradually moving from three Newton laws to quantum mechanics.

concepts. However, in case of further interest, more details can be found in [40, 4]
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-O3 -fif-conversion -fno-ALL
-O3 –param max-inline-insns-auto=88 -finline-functions -fno-ALL
-O3 -fregmove -ftree-vrp -fno-ALL
-O3 -fomit-frame-pointer -fpeel-loops -ftree-fre -fno-ALL
-O3 -falign-functions -fomit-frame-pointer -ftree-ch -fno-ALL
-O3 -ftree-dominator-opts -ftree-loop-optimize -funswitch-loops -fno-ALL
-O3 -ftree-ccp -ftree-forwprop -ftree-fre -ftree-loop-optimize -fno-ALL
-O3 -finline-functions -fivopts -fprefetch-loop-arrays -ftree-loop-optimize -ftree-vrp -fno-ALL
-O3 -fdce -fgcse -fomit-frame-pointer -freorder-blocks-and-partition -ftree-reassoc -funroll-all-loops -fno-ALL
-O3 -fivopts -fprefetch-loop-arrays -fsched-last-insn-heuristic -fschedule-insns2 -ftree-loop-optimize -ftree-
reassoc -ftree-ter -fno-ALL
-O3 -fforward-propagate -fguess-branch-probability -fivopts -fmove-loop-invariants -freorder-blocks -ftree-
ccp -ftree-ch -ftree-dominator-opts -ftree-loop-optimize -ftree-reassoc -ftree-ter -ftree-vrp -funroll-all-loops -
funswitch-loops -fweb -fno-ALL

Table 1: Example of a few top ranked optimization classes for GCC 4.6.3 across Intel E5520 based computer systems
from the French GRID5000 public data center [42] using cM buildbot with all shared software pieces and data sets.

Our autotuning pipeline randomly selects a software piece from all shared ones, builds it with randomly gen-
erated combinations of compiler optimization flags of format -O3 -f(no-)optimization flag –parameter param =
random number from range, and runs it on a randomly selected spare computer system with a randomly selected
shared data set. Measured characteristics (costs) are then processed using Pareto frontier filter to record or update
the winning solution for a given software piece (optimization versus hardware, compiler and data set) in the cM
repository. For example, table 1 presents some of the winning combinations of flags for GCC 4.6.3 used in the
production environment by one of our industrial partners. Note that meta flag -fno-ALL means that all other
optimization flags have been gradually switched off to leave only the influential ones and thus help compiler design-
ers understand missed optimization opportunities. This allows developers to continuously monitor and reuse best
solutions for shared software pieces through unified cM web services depending on their further intended usage.
For example, the fastest and energy efficient solution is often used for HPC systems, the smallest - for computer
systems with very limited resources such as credit card chips or the future ”Internet of Things” devices, or balanced
for both speed and size when used in phones, tablets and other mobile devices.

4 Classifying computational species

Though cM helped simplify, unify, automate, speed up and preserve a tedious process of hardware benchmarking
and software autotuning, it also encountered a new serious problem. Even with a modest number of 400 volunteers
participated in our project since the beginning of 2014 to crowdsource compiler autotuning using our Android-
based cM node [3], we immediately faced a big data problem - too much collected statistics that our repository and
infrastructure can process. However, we have already faced a similar problem in natural sciences and AI for many
years and managed to effectively tackle it using predictive analytics (statistical analysis, data mining and machine
learning) [23, 45, 55, 44]. For example, we used to classify numerous physical objects or biological species in terms
of behavior and features while leaving only representative classes and thus considerably reducing analysis time and
required storage.

We propose a similar approach for software engineering. Collective Mind Framework, Repository and mathe-
matical formalization allows us to treat all shared software pieces as computational species running across numerous
hardware configurations. Naturally, these species will behave differently depending on their data sets, hardware
used and environment state (which includes the state of the species, Operating System and hardware as well as
interaction with other species). Since our main goal is to help software engineers find better optimizations that im-
prove overall behavior of their software pieces under all usage conditions (reduce execution time and all other costs),
we implemented continuous clustering of all available species that share the same top performing optimizations such
as ones shown in Table 1. Our expectation is that software pieces belonging to the same cluster, i.e. share similar
optimizations, will also share some features describing their semantics, data set and run-time behavior. This, in
turn, would allow us to automatically classify previously unseen computational species from the community and
relate them to existing optimization cluster based on their features thus effecitvely predicting optimizations and
dramatically reducing tuning time and storage size.
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However, the major challenge with such approaches is to assemble a large and diverse enough training set, and
to find meaningful features that can correctly separate optimization clusters. Collective Mind Repository helps
solve the first problem by collecting a large number of real and diverse software pieces from the community. At
the same time, from our practical experience in using machine learning for program optimization and hardware
designs [39, 31], we believe that it is not currently possible to fully automate this process due to a practically
infinite feature space. Instead, we propose to use a collaborative approach similar to ones currently used in many
natural sciences. We expose optimization clusters together with software species and data sets through our public
cM repository in a reproducible way to let the interdisciplinary community find and share meaningful features
and correlations similar to ones shown in Figure 4. This approach contrasts with some existing works on machine
learning for compilation and architecture. They were referenced in the related work section and mainly focus on
showing that machine learning can be used to predict optimizations while using just a few benchmarks, data sets
and ad-hoc features.
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Figure 6: (a) 79 distinct combinations of optimizations (optimization clusters) covering all 285 shared software
species and data set samples on Intel E5520, GCC 4.6.3 and at least 5000 random combinations of optimization
flags together with maximum speedup achieved within each optimization cluster; (b) number of benchmarks with
speedup at least more than 1.1 for a given cluster; (c) number of benchmarks with speedup less than 0.96 (slowdown)
for a given cluster.

Our approach helped our industrial partners tune and cluster all shared software species across several production
compilers and architectures. Next, we present a small subset of our experimental results for GCC 4.6.3 and Intel
E5520. All other results are continuously updated at our public cM repository at c-mind.org/repo. By now, cM
has found a pool of 79 distinct combinations of optimization flags (clusters) for this compiler covering all shared
software pieces and data set samples. Figure 6 shows maximum speedups achieved for each top performing and
representative optimization across all benchmarks together with the number of benchmarks which achieve highest
speedup using this optimization (or at least more than 1.1 ) and the number of benchmarks with speedups less
than 0.96 (slowdown) for the same optimization. For example, distinct combination of optimizations -O3 -fif-
conversion -fno-ALL achieved maximum speedup on 7 benchmarks (including 1.17 speedup on at least one of these
benchmarks) and slowdowns for 11 benchmarks. In case some optimization cluster does not have slowdowns across
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Number of species Prediction accuracy
12 from prior work [39] 87%
285 from current work 56%

Table 2: Prediction accuracy when using optimized SVM with full cross-validation for 12 and 285 software species
together with all available semantic and dynamic features from MILEPOST GCC and hardware counters respec-
tively.

all shared software pieces, it can help automatically substitute a best and often manually crafted default compiler
optimization level such as -O3, thus practically helping to improve existing compilers.

5 Understanding and improving machine learning to predict optimiza-
tions

As the first approximation, we decided to reuse existing machine learning techniques and build a predictive model
(classifier) that can associate any previously unseen species with a unique optimization cluster based on some
software features. We also decided to reuse and validate already available semantic and dynamic features from
our previous work on machine learning based compiler [39]. For this purpose, we generated and shared in the
cM repository a feature vector f for each software species using 56 semantic program features from the MILE-
POST GCC [39] (extracted during compilation at -O1 optimization level after pre pass)). In addition, we col-
lected 29 following dynamic features (hardware counters collected by default using standard performance mon-
itoring tool perf when running unoptimized software piece on a shared computing resource with Linux-based
OS): ”cycles”, ”instructions”, ”cache-references”, ”cache-misses”, ”L1-dcache-loads”, ”L1-dcache-load-misses”, ”L1-dcache-

prefetches”, ”L1-dcache-prefetch-misses”, ”LLC-prefetches”, ”LLC-prefetch-misses”, ”dTLB-stores”, ”dTLB-store-misses”,

”branches”, ”branch-misses”, ”bus-cycles”, ”L1-dcache-stores”, ”L1-dcache-store-misses”, ”L1-icache-loads”, ”L1-icache-

load-misses”, ”LLC-loads”, ”LLC-load-misses”, ”LLC-stores”, ”LLC-store-misses”, ”dTLB-loads”, ”dTLB-load-misses”,

”iTLB-loads”, ”iTLB-load-misses”, ”branch-loads”, ”branch-load-misses” .
We then passed 79 optimization clusters, 86 features and either all 285 shared species or a small subset of 12 ones

used in some of our past works through a standard SVM classifier from R package [23, 16] with full cross-validation
as described in [39, 26].
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Figure 7: Visualization of the predictive model built by SVM to predict optimization cluster ”-O3 -fno-if-conversion
-fno-ALL” using MILEPOST GCC features. We provided several counter examples to show that automatically
found correlation can be totally misleading.
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Results shown in Table 2 demonstrate that we can obtain a relatively high prediction accuracy when using just
a few software species thus supporting findings from similar works on machine learning for autotuning, i.e. that it is
possible to predict optimizations using machine learning. However, with a new opportunity provided by cM to use a
much larger training set of shared software species from the community, prediction accuracy dramatically dropped
exhibiting close to random behavior (50%), i.e. with no meaningful predictions. At the same time, Collective Mind
approach can now help understand such a variation in prediction accuracy by exposing all optimization and modeling
results in a reproducible way to experts. Our colleagues and compiler specialists from STMicroelectronics analyzed
one of the simplest optimization clusters -O3 -fif-conversion -fno-ALL which has a relatively high prediction rate
when using a few or all shared programs, i.e. only 3 mispredictions out of a pool of 17 optimization clusters (7
positive speedups and 10 negative ones) as shown in Figure 6. We then incrementally removed all unrelated features
that did not influence predictions leaving only one semantic feature from MILEPOST GCC (ft29) that counts the
number of basic blocks where the number of phi-nodes is greater than 3. Visualization of the predictive model at
Figure 7 shows that SVM derived a decision ft29 〉 0 to effectively separate two classes with only 3 mispredictions
out of 17.

At this stage, many existing academic works will conclude that relevant feature is found and it is possible to
use machine learning to predict optimization. However, compiler or hardware designers also need to understand
whether this feature makes sense in order to improve their technology. Since our colleagues did not manage to
explain this feature, they decided to try to find a counter example to invalidate this correlation. Therefore, they
selected a simple blocksort function from the shared bzip2 species that has 0 phi-nodes and tried to manually add
phi-nodes by converting source code as following (added lines are highlighted):

volatile int sum, value = 3;
int sumA = 0; int sumB = 0; int sumC = 0;
for (j = ftab[ss 〈〈 8] & ( ((1 〈〈 21))) ; j 〈 copyStart[ss] ; j++) {
k = ptr[j] - 1;
sumA += value; sumB += value; sumC += value;

This manual transformation added 3 PHI nodes to the code changing MILEPOST feature ft29 from 0 to 1,
but without any effect on the speedup. We then performed similar transformation in a few other species that did
not influence the original speedup while changing ft29 to non-zero value and thus invalidating original decision, i.e.
showing that ft29 is not relevant to a given optimization cluster.

When exposing this problem to machine learning specialists, we realized that a high prediction accuracy can be
explained by finding meaningless correlations in a very large and sparse feature space for just a few species that are
invalidated on a very large and diverse training set. Though relatively naive, this example highlights the importance
of creating a common repository of software species together with their features. Furthermore, this example shows
that negative results (mispredictions or unexpected behavior), usually overlooked by our community, are very
important in practice and should also be reported, shared and published to improve machine learning techniques.
For example, our colleagues from STMicroelectronics shared their counter examples as new software species thus
contributing to a public and realistic benchmark.

Finally, cM allows to share various machine learning models thus helping researchers switch from showing that
it is possible to predict some optimizations based on some features to sharing best performing predictive models
and classifiers, and focusing on finding why they are mispredicting together with missing features. It is even possible
to perform continuous competitions between shared models to balance prediction accuracy, size and speed or
reduce complexity depending on usage scenarios. For example, deep neural networks can be very good in terms
of prediction accuracy, but are also very large, costly, and, unlike simpler decision trees, do not necessarily help
software or hardware designers understand and solve their performance problems (i.e. black box approach).

6 Learning data set features to enable adaptive software

Though we demonstrated how our approach and methodology can help automate classification of shared software
species to improve optimization predictions, it still did not solve another fundamental problem of static compila-
tion - lack of run-time information. On the other hand, since cM continuously records unexpected behavior, it
helped to automatically detect that one of the real customer’s software species (image B&W threshold filter from a
surveillance camera application similar to one shown in Figure 2) requires two distinct optimizations with around
20% improvement in execution time on Intel Core i5-2540M across all shared images (data set samples) as shown
in Figure 8.

In order to understand such behavior, we can now reuse the same clustering methodology to classify available
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Dataset Class 

Optimization class 

Class 1 Class 2 

Shared data set sample1 
+21.5% ± 1.5% 

 
improvement in 
execution time 

-8.2% ± 1.5% 
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execution time 

Shared data set sample2 
-11.9% ± 1.5% 

 
degradation in 
execution time 

+17.3% ± 1.5% 
 

improvement in 
execution time 

Figure 8: Detecting missing data set feature ”time of the day” with the help of the community. Such feature enables
adaptive software species that performs well across all inputs.

data sets and detect their features that can explain such behavior and separate optimization classes. Compiler
designers again helped us analyze this software species and gradually identified a suspicious ”sub-species” causing
unusual behavior: (temp1 〉 T) ? 255 : 0. One optimization class included ”if conversion” transformation which
added several predicated statements that may degrade performance if additional branches are rarely taken due to
a few additional useless cycles to check branch condition. At this stage, compiler designers concluded that it is
a well-known run-time dependency which is difficult or even impossible to solve in static compilers. Nevertheless,
one of the volunteers noticed that some images shown in Figure 8 where taken during the day and some during
the night. This helped us find new, simple and relevant feature related to both data set and the environment state
”time of the day” that effectively separated two optimization classes.

This real example demonstrates how our approach can help collaboratively find missing and nontrivial features
that may not be even exist and have to be exposed to improve optimization prediction. Furthermore, our approach
helped substitute the threshold filter in the customer’s real software by a shared cM plugin consisting of two dif-
ferently optimized clones of this filter and a compact decision tree. This decision tree selects an appropriate clone
at run-time based on features of a used data set, hardware and environment state. Therefore, our Collective Mind
approach can also help make statically compiled software easily adaptable to different contexts as conceptually
shown in Figure 9. Moreover, such software will be continuously optimized with the help of the community while
maximizing its performance, minimizing development costs, improving productivity of software engineers and re-
ducing time to market. Interestingly, cM approach can also help solve ”big data problem” that we experienced in
our first public cTuning framework [35, 39]. Rather than collecting and preserving all possible information from
participating users, we can validate incoming data against existing models and save only unexpected behavior.

We believe that presented approach can eventually enable performance- and cost-aware software engineering.
We envision that instead of struggling integrating various ad-hoc optimization heuristics to their software projects
similar to one shown in Figure 4, engineers will simply need to expose various features from data sets, software,
hardware and environment state for their software pieces. These features will be then correlated with the winning
optimizations either automatically or with the help of the community to gradually minimize execution time, power
consumption, code size, compilation time, faults, and other costs.
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Figure 9: Concept of performance- and cost-aware self-tuning software assembled from cM plugins.

7 Conclusions and Future Work

The computer engineering community has been desperately trying to find some practical ways to automatically im-
prove software performance while reducing power consumption and other usage costs across numerous and rapidly
evolving computer systems for several decades [21, 30, 15, 43, 17]. In this paper, we presented a novel and practical
approach inspired by natural sciences and Wikipedia that may help collaboratively solve this problem while improv-
ing productivity of software developers. The biggest challenge in this approach is to connect together, systematize
and make practical various techniques and tools from different interdisciplinary domains often overlooked by our
community into a coherent, extensible and top-down optimization and classification methodology.

The backbone of our approach is a public repository of optimization knowledge at c-mind.org/repo. It allows
the software engineering community to gradually share their most frequently used software pieces (computational
species) together with various possible inputs and features. All shared species are then continuously and randomly
optimized and executed with randomly selected inputs either as standalone pieces or within real software across
numerous mobile phones, laptops and data centers provided by volunteers using our recent Collective Mind frame-
work (cM). In contrast with a very few existing public repositories, notably SPEC and Phoronix benchmarking
platforms [69, 13], cM also continuously classifies best found optimizations while exposing unexpected behavior in
a reproducible way. This, in turn, allows the interdisciplinary community to collaboratively correlate found classes
with gradually exposed features from the software, hardware, data sets and environment state either manually
or using popular big data predictive analytics [23, 44]. Resulting predictive models are then integrated into cM
plugins together with several pre-optimized (specialized) versions of a given species that maximize performance and
minimize costs across as many inputs, hardware and environment states as possible, as described in [57]

Software engineers can now assemble self-tuning applications just like ”LEGO” from the shared cM plugins with
continuously optimized species. Such software not only can adapt to the running hardware and context, but also
continue improving its performance and minimize usage costs when more collective knowledge is available. This
can help change current computer engineering methodology since software engineers do not have to wait anymore
until hardware or compilers become better. Instead, the software engineering community gradually creates a large,
diverse and realistic benchmark together with a public and continuously improving optimization advice system
that helps improve and validate future compilers and hardware. For example, we envision that our approach will
also help simplify compilers and convert them into generic libraries of code analysis, optimization and generation
routines orchestrated by cM-like frameworks.

To avoid the fate of many projects that vanish shortly after publication, we agreed with our partners to share
most of the related code and data at our public optimization repository to continue further community-driven
developments. For example, with the help of our supporters, we already shared around 300 software species and
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collected around 15000 possible data sets. At the same time, we also shared various features as cM meta-data from
our past research on machine learning based optimization including MILEPOST semantic code properties [39], code
patterns and control flow graph extracted by our GCC/LLVM Alchemist plugin [40], image and matrix dimensions
together with data set sizes from [57], OS parameters, system descriptions, hardware performance counters, CPU
frequency and many other.

Public availability of such a repository and open source cM infrastructure allowed us to validate our approach
in several major companies. For example, we demonstrated how our industry colleagues managed to enhance their
in-house benchmarking suites to considerably improve optimization heuristics of their production GCC compiler for
a number of ARM and Intel based processors while detecting several architectural errors during validation of new
hardware configurations. Finally, presented approach helped to convert an important customer statically compiled
image processing application into a self-tuning one that maximizes performance to reach real time constraints and
minimize all other costs including energy, overall development and tuning effort, and time to market.

As a part of the future work, we plan to simplify as much as possible the experience of software engineers
and volunteers wishing to participate in our project. Therefore, we are currently extending our cM framework to
automate identification, extraction and sharing of the frequently used and most time consuming software pieces and
their features in real programs. For this purpose, we plan to use and extend our Interactive Compilation Interface
for GCC and LLVM while connecting cM framework with Eclipse IDE [6] to simplify integration of our cM wrappers
and performance/cost monitoring plugins with real applications, with Docker [5] and CARE [49] to automatically
detect all software dependencies for sharing, and with Phoronix open benchmarking infrastructure [13] to add even
more realistic software pieces to our repository.

At the same time, our top-down methodology originating from physics allows the software engineering com-
munity benefit from all existing optimizations including powerful polyhedral source-to-source code restructuring
and parallelization [24] by gradually adding them to our cM performance tracking and tuning framework [40].
Furthermore, researchers now have an opportunity to immediately validate their novel or existing optimization
techniques across a realistic benchmark and a large number of participating computer systems. Unified ”big data”
repository of optimization knowledge also helped us initiate collaboration with AI and physics departments to grad-
ually characterize complex interactions between shared software pieces inside large applications using agent based
techniques [67]. We are also actively working with the academic and industrial community through the cTuning
foundation to continue adding more coarse-grain and fine-grain species to our repository to gradually cover all pos-
sible and frequently used software. For example, we would like to add algorithmic species from [64] to our system
and continuously optimize and characterize them. We hope, that in a longer term, our approach will help soft-
ware and hardware engineers boost innovation and focus on implementing new ideas and functionality rather than
worrying about performance regressions and costs. It should also help make machine learning for compilation and
architecture practical (including autotuning and run-time adaptation particularly important nowadays for mobile
devices and data centers) while avoiding common pitfalls such as using a small subset of non-representative data
sets and features. Interestingly, our approach may also eventually help make brain inspired computing practical
since we can continuously collect large number of realistic data sets, continuously improve predictive models and
collaboratively find missing features (to some extent enabling large and distributed brain). Finally, we plan to
use our public repository to promote and support initiatives on artifact evaluation as a part of reproducible and
sustainable software engineering [38].
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9 Appendix: Collective Knowledge – a customizable knowledge man-
agement framework for systematic and collaborative experimenta-
tion

User A 

CK repo:  ck-analytics 
 

CK repo:  ck-env 
 

CK repo:  ctuning-datasets-min 
 

CK repo:  ck-autotuning 
 

CK repo:  ctuning-programs 
 

CK repo:  private-experiments 
 

User B 

CK repo:  private-experiments 
 

CK repo:  ctuning-programs 
 

CK repo:  ctuning-datasets-min 
 

CK repo:  ck-analytics 
 

CK repo:  ck-env 
 

CK repo:  ck-autotuning 
 

Private GIT 

Semi-private 
GIT 

Can be used in companies via private 
repos, while supporting common 

experimental methodology  
(reporting performance issues, 

sharing code samples and data sets) 

Enabling open collaboration and code/data sharing 
similar to Wikipedia and as reusable components 

CK web interface  
(with JSON API) 

See cknowledge.org/repo 

All interconnected and reusable 
artifacts (code&data), 

experiments, interactive graphs, 
predictive models, papers, reports, 

… 

Code/Data can be always be found  
via Collective ID (CID, similar to DOI): 
(repo UOA):module UOA : data UOA 

Tiny CK core ~100Kb 
Python + JSON API 

github.com/ctuning/ck 

Public GIT (github; bitbucket) 
See our CK repositories at github.com/ctuning 

Optional JSON-
based ElasticSearch 

indexing 

Figure 10: Collective Knowledge (CK) – a new framework for systematic and collaborative experimentation.

Over the past two years, we have collected considerable feedback from academic and industrial users about
Collective Mind, the third version of the cTuning technology.

Positive feedback highlighted considerable improvements over the previous versions of the cTuning technol-
ogy [35] for sharing experimental artifacts such as programs, data sets, graphs and models within work groups (e.g.
at the same institution) and with a wider community (e.g. alongside publications). Users particularly appreciated
the flexibility and ease of organizing their knowledge using an open JSON-based repository format and API rather
than being forced to use rigid and possibly closed database schemas. Users were also intrigued by the possibili-
ties for crowdsourcing exploration of large multi-dimensional optimization spaces and applying machine-learning
techniques to generate and reuse knowledge across many platforms (phones, tablets, laptops, cloud services and
supercomputers).

On the other hand, users disliked having to download over 20 MB to obtain the framework with all components,
having to use the web service instead of plain command line, slow invocation and slow processing when ElasticSearch
indexing was unavailable.

After carefully considering this feedback and available options, we decided to develop a new version from scratch
while keeping the original open JSON-based repository format and API. Thanks to the 6-months grant from the EU
FP7 609491 TETRACOM project, we have developed Collective Knowledge (or CK for short), the fourth version
of the cTuning technology, publicly available at http://github.com/ctuning/ck under permissive BSD license.
The main focus was to make the core of Collective Knowledge as small, fast, simple and command-line-oriented
as possible, while moving all additional functionality such as predictive analytics, autotuning, statistical analysis
and web services into separate CK plugins shared via GitHub, Bitbucket or similar public services as conceptually
shown in Figure 10.

The Collective Knowledge core works about 10 times faster than Collective Mind, is only around 100 KB in
size, has minimal dependencies (mainly Python and Git), can be installed as a standard Python package and
can be easily integrated with IPython Notebook. Furthermore, users can download only needed packages (while
automatically resolving dependencies on other repositories) using only one shell command ck pull repo:[repo alias]
(–url=[Git url]). It is also possible to update the whole framework and all shared repositories at any time using ck
pull all.

21

http://github.com/ctuning/ck


We believe this has considerably simplified using the cTuning technology and methodology for collaborative
projects, including sharing of experimental artifacts, interactive reports and publications. (Examples are available
at http://cknowledge.org/repo.)

X[2]: GWS1 <= 14.0000
samples = 460

X[4]: CPU frequency <= 1200.0000
samples = 92

X[10]: size / GPU frequency <= 3098.5000
samples = 368

X[10]: size / GPU frequency <= 21853.0000
samples = 46

X[10]: size / GPU frequency <= 1287.5000
samples = 46

X[7]: image rows <= 2625.5000
samples = 34

X[7]: image rows <= 2125.0000
samples = 12

*L1*
samples = 32

True (0) / False (32)

X[12]: size / (CPU frequency / GPU frequency) <= 2257113.0000
samples = 2

*L2*
samples = 1

True (1) / False (0)

*L3*
samples = 1

True (0) / False (1)

*L4*
samples = 9

True (9) / False (0)

X[8]: image size <= 6539545.0000
samples = 3

*L5*
samples = 1

True (0) / False (1)

*L6*
samples = 2

True (2) / False (0)

*L7*
samples = 4

True (0) / False (4)

X[10]: size / GPU frequency <= 2302.0000
samples = 42

X[8]: image size <= 645912.5000
samples = 5

*L10*
samples = 37

True (37) / False (0)

*L8*
samples = 2

True (2) / False (0)

*L9*
samples = 3

True (1) / False (2)

X[11]: CPU frequency / GPU frequency <= 2.2514
samples = 96

*L17*
samples = 272

True (272) / False (0)

X[2]: GWS1 <= 40.0000
samples = 32

X[13]: image size / CPU frequency <= 823.0000
samples = 64

*L11*
samples = 16

True (16) / False (0)

X[1]: GWS0 <= 56.0000
samples = 16

*L12*
samples = 8

True (3) / False (5)

*L13*
samples = 8

True (0) / False (8)

*L14*
samples = 56

True (56) / False (0)

X[1]: GWS0 <= 56.0000
samples = 8

*L15*
samples = 6

True (6) / False (0)

*L16*
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True (1) / False (1)

Figure 11: Example of a decision tree built online for predictive scheduling of an OpenCL-based video processing
kernel (active learning) on Samsung Chromebook 2 with MALI GPU and ARM-based CPU depending on data set
features, CPU/GPU frequency and other parameters.

For example, as a part of our long-term and continuing effort to share all code, data, models and interactive
graphs from our research in a reproducible way [35], we are gradually converting all our past experiments and related
artifacts to the new CK format. Our current focus is to use CK to solve old but still acute problems of hardware
benchmarking, program autotuning, and run-time adaptation using collective knowledge and predictive models.
Some artifacts from this paper are already available in the shared CK repository which can be obtained via ck pull
repo:reproduce-ck-paper. For example, we have reproduced our past work on adaptive CPU/GPU scheduling [50] for
an OpenCL-based video processing kernel on the Samsung Chromebook 2 powered by the ARM Cortex-A15 CPU
and ARM Mali-T628 MP6 GPU. This includes continuous and online exploration and tuning of OpenCL parameters
such as the local work size versus the computational intensity, video frame features, and processor frequencies. At the
same time, we have applied active learning as in [50] to build and gradually refine a decision tree (shown in Figure 11
and shared at http://cknowledge.org/repo/web.php?wcid=84e27ad9dd12e734:f4b5b8fded3ce933) that could
effectively predict whether to schedule the main kernel on the GPU (true) or the CPU (false) to minimize the overall
execution time (improve the number of frames per second).

We believe that CK will improve support for our long-term vision towards collaborative, systematic, and repro-
ducible computer engineering combined with statistical (“machine learning”) techniques from physics [35, 40] and
powerful predictive analytics frameworks such as SciPy, R, IBM Watson, Google Brain or similar. Furthermore,
we envision that our approach will allow engineers to focus on quick prototyping of ideas, knowledge discovery and
innovation, while helping them to get right complex, time-consuming and error-prone issues of experimental design.

To some extent our approach is similar to Wikipedia allowing users to share and continuously improve knowl-
edge and experience while collaboratively extending meta-data, stabilizing API, fixing errors, improving predictive
models, finding missing features and many more. In fact, all CK entries can be referenced by a unique collective
identifier CID similar to DOI (repository UID or alias:module UID or alias:data UID or alias), and already include
a dedicated wiki page (thus allowing researchers to collect feedback about their shared artifacts and engage in
discussions with the community).

Finally, we promote CK to enable Artifact Evaluation initiatives at leading academic conferences and community-
driven reviewing [38], along with other useful tools such as Docker.

Further information about CK is available at http://github.com/ctuning/ck/wiki and http://github.com/

ctuning/ck.
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