Collective Knowledge Aggregator
proof-of-concept
Add/update entry:
[
Back to CK browser
]
Module/class:
(under development) auto/crowd-tune CUDA work size (execution time)
(under development) auto/crowd-tune OpenCL local work size (execution time)
(under development) auto/crowd-tune OpenCL local work size (execution time/FPS vs energy)
(under development) crowdsource OpenCL bug detection
(under development) crowdsource modeling of program behavior
(under development) crowdsource program numerical stability
(under development) crowdsource program scalability
Collaborative Program Optimization using mobile devices
advice
ae
ae.person.table
ai-artifact
algorithm
all
announcements.funding
announcements.job
apk
artifact
auto/crowd-tune GCC compiler flags (custom dimensions)
auto/crowd-tune GCC compiler flags (do not degrade execution time, do not degrade code size)
auto/crowd-tune GCC compiler flags (minimize execution time and code size)
auto/crowd-tune GCC compiler flags (minimize execution time)
auto/crowd-tune GCC compiler flags (minimize execution time, do not degrade code size)
auto/crowd-tune GCC compiler flags (minimize total binary size, do not degrade execution time)
auto/crowd-tune LLVM compiler flags (do not degrade execution time, do not degrade code size)
auto/crowd-tune LLVM compiler flags (minimize execution time)
auto/crowd-tune LLVM compiler flags (minimize execution time, do not degrade code size)
auto/crowd-tune OpenCL-based CLBlast (GFLOPs)
autotune custom pipeline dimensions
award
caffe
caffe2
cbricks
cfg
challenge.vqe
choice
class
clblast
cmdgen
compiler
crowd-benchmark DNN libraries and models
crowd-benchmark DNN libraries and models (Caffe - dev)
crowd-benchmark DNN libraries and models (Caffe2)
crowd-benchmark DNN libraries and models (TensorFlow)
crowd-benchmark DNN libraries and models (dividiti desktop app)
crowd-benchmark DNN libraries and models using mobile devices
crowd-benchmark shared workloads via ARM WA framework
crowd-test OpenCL compilers (beta) - crowdsource bug detection via CK
crowd-test OpenGL compilers (beta)
crowdnode
dashboard
dataset
dataset.features
demo
device (deprecated or not used)
dissemination.announcement
dissemination.book
dissemination.conference
dissemination.event
dissemination.hardware
dissemination.journal
dissemination.keynote
dissemination.lecture
dissemination.patent
dissemination.pitfall
dissemination.poster
dissemination.presentation
dissemination.press-release
dissemination.publication
dissemination.publication.artifact
dissemination.repo
dissemination.soft
dissemination.workshop
docker
env
experiment
experiment.raw
experiment.scenario.android
experiment.user
experiment.view
explore DNN batch size
explore GCC compiler flags
explore LLVM compiler flags
explore OpenBLAS number of threads
explore OpenMP number of threads
explore compiler flags
fuzz GCC compiler flags (search for bugs)
fuzz LLVM compiler flags (search for bugs)
gemmbench.crowdtuning
graph
graph.dot
hackathon.20180615
hackathon.20181006
hackathon.20190127
hackathon.20190315
index
jnotebook
kernel
log
machine
math.conditions
math.frontier
math.variation
me
milepost
misc
mlperf
mlperf.inference
mlperf.mobilenets
model
model.image.classification
model.r
model.sklearn
model.species
model.tensorflowapi
model.tf
module
nntest
open ReQuEST @ ASPLOS'18 tournament (Pareto-efficient image classification)
organization
os
package
person
photo
pipeline
pipeline.cmd
platform
platform.cpu
platform.dsp
platform.gpgpu
platform.gpu
platform.init
platform.nn
platform.npu
platform.os
proceedings.acm
program
program.behavior
program.dynamic.features
program.experiment.speedup
program.optimization
program.output
program.species
program.static.features
qml
qr-code
repo
report
research.topic
result
scc-workflow
script
slide
soft
solution
sut
table
tensorflow
test
tmp
user
video
vqe
wa
wa-device
wa-params
wa-result
wa-scenario
wa-tool
web
wfe
xml
Repository:
CK (machine learning based) multi-objective autotuning
CK analytics
CK crowdtuning (crowdsourcing autotuning)
CK dissemination modules
CK repository to crowdsource optimization of benchmarks, kernels and realistic workloads across Raspberry Pi devices provided by volunteers (starting from compiler flag autotuning)
CK web
Large and shared artifacts (HOG experiments) to reproduce CK paper
Reproducible and interactive papers with all shared artifacts for our CK papers
Reproducing PAMELA project (medium data set (20 frames) for slambench) via CK
Reproducing PAMELA project (slambench analysis and crowd-tuning) via CK
Tool clsmith converted to CK format
cTuning datasets (min)
cTuning programs
cbricks
ck-ai
ck-artifact-evaluation
ck-assets
ck-caffe
ck-caffe2
ck-cntk
ck-crowd-scenarios
ck-crowdsource-dnn-optimization
ck-crowdtuning-platforms
ck-dev-compilers
ck-dissemination
ck-docker
ck-env
ck-experiments
ck-graph-analytics
ck-math
ck-mlperf
ck-mlperf-sysml-demo-20190402
ck-mxnet
ck-nntest
ck-nntest-20181001
ck-qiskit
ck-quantum
ck-quantum-challenge-vqe
ck-quantum-hackathon-20180615
ck-quantum-hackathon-20181006
ck-quantum-hackathon-20190127
ck-quantum-hackathon-20190315
ck-quantum-hackathons
ck-request
ck-request-asplos18-caffe-intel
ck-request-asplos18-iot-farm
ck-request-asplos18-mobilenets-armcl-opencl
ck-request-asplos18-mobilenets-tvm-arm
ck-request-asplos18-resnet-tvm-fpga
ck-request-asplos18-results
ck-request-asplos18-results-caffe-intel
ck-request-asplos18-results-iot-farm
ck-request-asplos18-results-mobilenets-armcl-opencl
ck-request-asplos18-results-mobilenets-tvm-arm
ck-request-asplos18-results-resnet-tvm-fpga
ck-rigetti
ck-rpi-optimization-results
ck-scc
ck-scc18
ck-tensorflow
ck-tensorrt
ck-tvm
ck-wa
ck-wa-extra
ck-wa-workloads
ck-website
ctuning-datasets
default
gemmbench
local
mlperf-mobilenets
reproduce-carp-project
reproduce-milepost-project
shader-compiler-bugs
upload
Alias:
(UID):
User-friendly name:
Tags:
Author:
Author email:
Author web-page:
Entry copyright:
Entry license:
Meta-description in JSON:
{ "all_raw_results": [ { "behavior_uid": "e4136a0aa91d22ee", "cpu_freqs_after": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 } ], "cpu_freqs_before": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 } ], "image_height": 720, "image_width": 1031, "prediction": "0.2295 - \"n06359193 web site, website, internet site, site\"\n0.1506 - \"n03857828 oscilloscope, scope, cathode-ray oscilloscope, CRO\"\n0.0909 - \"n04149813 scoreboard\"\n0.0833 - \"n02666196 abacus\"\n0.0451 - \"n07565083 menu\"\n", "time": [ 3197, 3091, 5074 ], "user": "", "xopenme": { "execution_time": [ 2.370535, 2.389205, 2.371069 ], "execution_time_kernel_0": [ 2.370535, 2.389205, 2.371069 ], "execution_time_kernel_1": [ 0.015489, 0.015752, 0.015581 ], "execution_time_kernel_2": [ 0.740883, 0.629972, 2.483599 ] } }, { "behavior_uid": "fd6cb057fb947ada", "cpu_freqs_after": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 } ], "cpu_freqs_before": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 } ], "image_height": 2856, "image_width": 2448, "prediction": "0.1732 - \"n02808304 bath towel\"\n0.0876 - \"n04235860 sleeping bag\"\n0.0870 - \"n03630383 lab coat, laboratory coat\"\n0.0809 - \"n03188531 diaper, nappy, napkin\"\n0.0465 - \"n04370456 sweatshirt\"\n", "time": [ 3994, 4889, 4559, 3462, 3676, 4098, 4879, 3526, 3500, 5419, 3528, 3274 ], "user": "", "xopenme": { "execution_time": [ 2.856326, 3.395122, 3.3951, 2.363699, 2.361683, 3.039435, 3.44142, 2.51401, 2.516692, 4.492601, 2.708018, 2.419645 ], "execution_time_kernel_0": [ 2.856326, 3.395122, 3.3951, 2.363699, 2.361683, 3.039435, 3.44142, 2.51401, 2.516692, 4.492601, 2.708018, 2.419645 ], "execution_time_kernel_1": [ 0.131997, 0.209319, 0.209777, 0.132144, 0.131823, 0.210296, 0.150863, 0.14982, 0.150663, 0.133959, 0.132559, 0.132471 ], "execution_time_kernel_2": [ 0.921187, 1.210813, 0.880054, 0.895365, 1.123882, 0.781044, 1.191374, 0.801206, 0.773456, 0.652151, 0.616133, 0.659917 ] } }, { "behavior_uid": "4a8e831d6917c137", "cpu_freqs_after": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 } ], "cpu_freqs_before": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 } ], "image_height": 3024, "image_width": 4032, "prediction": "0.9835 - \"n03793489 mouse, computer mouse\"\n0.0042 - \"n04548280 wall clock\"\n0.0015 - \"n03532672 hook, claw\"\n0.0013 - \"n02988304 CD player\"\n0.0013 - \"n04317175 stethoscope\"\n", "time": [ 5841, 5381, 4767, 5013, 5049, 4771, 4019, 4406, 4079, 4671, 5389, 3419, 4183, 3513, 3960 ], "user": "", "xopenme": { "execution_time": [ 4.298176, 3.746584, 3.402585, 3.482758, 3.635114, 3.467433, 2.918061, 2.959902, 2.92156, 2.578194, 2.700335, 2.463633, 3.129364, 2.586669, 2.543357 ], "execution_time_kernel_0": [ 4.298176, 3.746584, 3.402585, 3.482758, 3.635114, 3.467433, 2.918061, 2.959902, 2.92156, 2.578194, 2.700335, 2.463633, 3.129364, 2.586669, 2.543357 ], "execution_time_kernel_1": [ 0.315406, 0.329286, 0.325045, 0.443302, 0.447294, 0.445785, 0.28758, 0.445246, 0.275197, 0.287397, 0.27949, 0.283241, 0.308893, 0.303802, 0.30216 ], "execution_time_kernel_2": [ 1.123049, 1.213841, 0.931547, 0.960588, 0.885555, 0.781059, 0.6497, 0.912508, 0.813779, 1.635176, 2.341378, 0.602804, 0.66635, 0.549481, 1.047216 ] } }, { "behavior_uid": "140e1879f9394727", "cpu_freqs_after": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 } ], "cpu_freqs_before": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 } ], "image_height": 3472, "image_width": 2976, "prediction": "0.0734 - \"n04542943 waffle iron\"\n0.0574 - \"n07693725 bagel, beigel\"\n0.0386 - \"n02776631 bakery, bakeshop, bakehouse\"\n0.0384 - \"n02815834 beaker\"\n0.0349 - \"n04270147 spatula\"\n", "time": [ 6373, 4886, 6323, 5886, 4662, 3922, 4240, 4066, 3950, 5016, 4111, 3700, 4960, 3797, 3598, 4772, 4041, 3499, 5723, 3463, 3452 ], "user": "", "xopenme": { "execution_time": [ 3.81097, 3.436485, 3.290744, 4.407627, 3.482479, 2.553107, 3.012432, 3.039991, 2.624477, 3.868566, 2.980616, 2.759005, 3.746045, 2.533974, 2.550011, 3.597929, 2.537979, 2.522675, 4.655035, 2.509806, 2.518743 ], "execution_time_kernel_0": [ 3.81097, 3.436485, 3.290744, 4.407627, 3.482479, 2.553107, 3.012432, 3.039991, 2.624477, 3.868566, 2.980616, 2.759005, 3.746045, 2.533974, 2.550011, 3.597929, 2.537979, 2.522675, 4.655035, 2.509806, 2.518743 ], "execution_time_kernel_1": [ 0.21784, 0.219274, 0.234893, 0.214258, 0.210778, 0.209431, 0.232448, 0.228862, 0.230029, 0.204051, 0.206359, 0.204666, 0.206583, 0.206488, 0.20619, 0.223626, 0.224509, 0.22609, 0.219231, 0.212608, 0.212451 ], "execution_time_kernel_2": [ 2.249928, 1.157266, 2.720966, 1.138658, 0.889199, 1.095291, 0.897987, 0.726939, 1.024283, 0.86937, 0.851999, 0.658564, 0.909619, 0.995532, 0.781055, 0.880757, 1.215316, 0.678622, 0.764465, 0.67073, 0.657779 ] } }, { "behavior_uid": "cc4e848a2cf5225a", "cpu_freqs_after": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 } ], "cpu_freqs_before": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 } ], "image_height": 419, "image_width": 529, "prediction": "0.1668 - \"n02883205 bow tie, bow-tie, bowtie\"\n0.0698 - \"n03942813 ping-pong ball\"\n0.0647 - \"n03838899 oboe, hautboy, hautbois\"\n0.0633 - \"n04591157 Windsor tie\"\n0.0545 - \"n09835506 ballplayer, baseball player\"\n", "time": [ 3598, 3504, 3541 ], "user": "", "xopenme": { "execution_time": [ 2.801135, 2.54288, 2.531403 ], "execution_time_kernel_0": [ 2.801135, 2.54288, 2.531403 ], "execution_time_kernel_1": [ 0.004973, 0.004971, 0.004968 ], "execution_time_kernel_2": [ 0.711234, 0.899789, 0.946032 ] } }, { "behavior_uid": "89f3cfc0f04c7d9a", "cpu_freqs_after": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 } ], "cpu_freqs_before": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 } ], "image_height": 3224, "image_width": 2976, "prediction": "0.1860 - \"n03983396 pop bottle, soda bottle\"\n0.1614 - \"n04443257 tobacco shop, tobacconist shop, tobacconist\"\n0.1276 - \"n03494278 harmonica, mouth organ, harp, mouth harp\"\n0.0872 - \"n03871628 packet\"\n0.0549 - \"n04200800 shoe shop, shoe-shop, shoe store\"\n", "time": [ 5025, 4093, 3463 ], "user": "", "xopenme": { "execution_time": [ 3.574659, 3.130856, 2.523878 ], "execution_time_kernel_0": [ 3.574659, 3.130856, 2.523878 ], "execution_time_kernel_1": [ 0.200163, 0.194541, 0.193768 ], "execution_time_kernel_2": [ 1.166046, 0.685134, 0.676492 ] } }, { "behavior_uid": "51a5b26ebe449769", "cpu_freqs_after": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 } ], "cpu_freqs_before": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 } ], "image_height": 3248, "image_width": 2336, "prediction": "0.6590 - \"n07920052 espresso\"\n0.0887 - \"n03063599 coffee mug\"\n0.0667 - \"n07930864 cup\"\n0.0430 - \"n04263257 soup bowl\"\n0.0383 - \"n07584110 consomme\"\n", "time": [ 4629, 3434, 3738 ], "user": "", "xopenme": { "execution_time": [ 3.185155, 2.51104, 2.536072 ], "execution_time_kernel_0": [ 3.185155, 2.51104, 2.536072 ], "execution_time_kernel_1": [ 0.165862, 0.165238, 0.166663 ], "execution_time_kernel_2": [ 1.208359, 0.690212, 0.974787 ] } }, { "behavior_uid": "e19d8044f977bd1d", "cpu_freqs_after": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 } ], "cpu_freqs_before": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2304, "5": 2304, "6": 2304, "7": 2304 } ], "image_height": 320, "image_width": 240, "mispredictions": [ { "correct_answer": "scissor", "mispredicted_image": "misprediction-image-4714cc982cb94cd6.jpg", "misprediction_results": "0.0553 - \"n03627232 knot\"\n0.0472 - \"n03793489 mouse, computer mouse\"\n0.0421 - \"n04317175 stethoscope\"\n0.0290 - \"n04251144 snorkel\"\n0.0239 - \"n03814906 necklace\"\n" }, { "correct_answer": "scissor", "mispredicted_image": "misprediction-image-c34b8ea31a1d7808.jpg", "misprediction_results": "0.1142 - \"n04004767 printer\"\n0.0562 - \"n04009552 projector\"\n0.0558 - \"n03924679 photocopier\"\n0.0551 - \"n03337140 file, file cabinet, filing cabinet\"\n0.0333 - \"n04554684 washer, automatic washer, washing machine\"\n" } ], "prediction": "0.5469 - \"n02099601 golden retriever\"\n0.1132 - \"n02094114 Norfolk terrier\"\n0.1004 - \"n02102480 Sussex spaniel\"\n0.0937 - \"n02112137 chow, chow chow\"\n0.0402 - \"n02100877 Irish setter, red setter\"\n", "time": [ 4201, 4393, 4446, 5222, 4234, 4018, 4908, 4572, 4218, 3447, 4521, 4459, 3886, 4222, 4295, 3602, 4525, 5419, 4121, 3913, 3289 ], "user": "", "xopenme": { "execution_time": [ 3.178418, 3.435119, 3.466447, 3.749694, 3.418425, 3.309826, 3.802271, 3.419378, 3.408112, 2.564685, 3.406163, 3.471729, 2.380042, 3.154663, 3.436712, 2.555702, 2.550697, 2.845123, 3.333063, 3.051354, 2.529779 ], "execution_time_kernel_0": [ 3.178418, 3.435119, 3.466447, 3.749694, 3.418425, 3.309826, 3.802271, 3.419378, 3.408112, 2.564685, 3.406163, 3.471729, 2.380042, 3.154663, 3.436712, 2.555702, 2.550697, 2.845123, 3.333063, 3.051354, 2.529779 ], "execution_time_kernel_1": [ 0.002127, 0.002827, 0.002854, 0.002505, 0.002585, 0.001778, 0.002586, 0.002614, 0.002573, 0.00254, 0.002577, 0.002519, 0.001645, 0.002982, 0.00266, 0.002117, 0.001886, 0.002163, 0.004037, 0.00189, 0.001866 ], "execution_time_kernel_2": [ 0.918079, 0.883651, 0.904739, 1.38018, 0.740948, 0.638451, 1.003993, 1.080398, 0.73698, 0.809962, 1.032701, 0.915251, 1.442002, 0.989409, 0.786549, 0.962002, 1.907934, 2.504142, 0.709907, 0.792132, 0.69181 ] } }, { "behavior_uid": "44f4ae5afacd66a9", "cpu_freqs_after": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 } ], "cpu_freqs_before": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 } ], "image_height": 3640, "image_width": 3120, "mispredictions": [ { "correct_answer": "scissor", "mispredicted_image": "misprediction-image-7d78e90693164a02.jpg", "misprediction_results": "0.4216 - \"n04317175 stethoscope\"\n0.1712 - \"n03627232 knot\"\n0.0891 - \"n03532672 hook, claw\"\n0.0872 - \"n04579432 whistle\"\n0.0652 - \"n02999410 chain\"\n" }, { "correct_answer": "scissor", "mispredicted_image": "misprediction-image-b55c9fca34fbf96e.jpg", "misprediction_results": "0.2579 - \"n03658185 letter opener, paper knife, paperknife\"\n0.1586 - \"n02783161 ballpoint, ballpoint pen, ballpen, Biro\"\n0.1106 - \"n04154565 screwdriver\"\n0.0924 - \"n04376876 syringe\"\n0.0504 - \"n04033901 quill, quill pen\"\n" } ], "prediction": "0.4216 - \"n04317175 stethoscope\"\n0.1712 - \"n03627232 knot\"\n0.0891 - \"n03532672 hook, claw\"\n0.0872 - \"n04579432 whistle\"\n0.0652 - \"n02999410 chain\"\n", "time": [ 4985, 4552, 4995, 5458, 4770, 4656, 4964, 4558, 5013, 5556, 4135, 4229 ], "user": "", "xopenme": { "execution_time": [ 3.698515, 3.409056, 3.38763, 3.749305, 3.421635, 3.406023, 3.461593, 3.37969, 3.42091, 3.084225, 2.912797, 2.758978 ], "execution_time_kernel_0": [ 3.698515, 3.409056, 3.38763, 3.749305, 3.421635, 3.406023, 3.461593, 3.37969, 3.42091, 3.084225, 2.912797, 2.758978 ], "execution_time_kernel_1": [ 0.320505, 0.313483, 0.31327, 0.314943, 0.31442, 0.318033, 0.314362, 0.315888, 0.317856, 0.271524, 0.220042, 0.208597 ], "execution_time_kernel_2": [ 0.851924, 0.74954, 1.219858, 1.305187, 0.957124, 0.858304, 1.095826, 0.786037, 1.201166, 2.011104, 0.917958, 1.189133 ] } }, { "behavior_uid": "6944785c8e240089", "cpu_freqs_after": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 } ], "cpu_freqs_before": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 } ], "image_height": 415, "image_width": 331, "prediction": "0.7291 - \"n02892767 brassiere, bra, bandeau\"\n0.1514 - \"n02837789 bikini, two-piece\"\n0.0246 - \"n03710637 maillot\"\n0.0122 - \"n03595614 jersey, T-shirt, tee shirt\"\n0.0119 - \"n03450230 gown\"\n", "time": [ 3578, 3360, 3101 ], "user": "", "xopenme": { "execution_time": [ 2.479149, 2.454354, 2.398326 ], "execution_time_kernel_0": [ 2.479149, 2.454354, 2.398326 ], "execution_time_kernel_1": [ 0.002901, 0.002943, 0.002946 ], "execution_time_kernel_2": [ 0.973442, 0.845683, 0.634431 ] } }, { "behavior_uid": "7f14a48889fd0a6a", "cpu_freqs_after": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 } ], "cpu_freqs_before": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 } ], "image_height": 826, "image_width": 720, "prediction": "0.3777 - \"n02892767 brassiere, bra, bandeau\"\n0.1200 - \"n03770439 miniskirt, mini\"\n0.1131 - \"n02837789 bikini, two-piece\"\n0.0405 - \"n04371430 swimming trunks, bathing trunks\"\n0.0397 - \"n03710637 maillot\"\n", "time": [ 4178, 4827, 4332 ], "user": "", "xopenme": { "execution_time": [ 2.892844, 3.00351, 2.777455 ], "execution_time_kernel_0": [ 2.892844, 3.00351, 2.777455 ], "execution_time_kernel_1": [ 0.016185, 0.014805, 0.013142 ], "execution_time_kernel_2": [ 1.187527, 1.729601, 1.475241 ] } }, { "behavior_uid": "44b18b65a29ef614", "cpu_freqs_after": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 } ], "cpu_freqs_before": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 }, { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 } ], "image_height": 2000, "image_width": 1440, "prediction": "0.1875 - \"n04285008 sports car, sport car\"\n0.1863 - \"n04037443 racer, race car, racing car\"\n0.1513 - \"n03459775 grille, radiator grille\"\n0.0441 - \"n02814533 beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon\"\n0.0341 - \"n03100240 convertible\"\n", "time": [ 4588, 4040, 3878, 3197, 3532, 3417, 5933, 4754, 4277, 4223, 3607, 3205 ], "user": "", "xopenme": { "execution_time": [ 3.808245, 3.253069, 2.779475, 2.414676, 2.426759, 2.401077, 4.443706, 3.316387, 2.811499, 3.066574, 2.84431, 2.400789 ], "execution_time_kernel_0": [ 3.808245, 3.253069, 2.779475, 2.414676, 2.426759, 2.401077, 4.443706, 3.316387, 2.811499, 3.066574, 2.84431, 2.400789 ], "execution_time_kernel_1": [ 0.055719, 0.051845, 0.052209, 0.057356, 0.057183, 0.057392, 0.067411, 0.061143, 0.06103, 0.059937, 0.060254, 0.060066 ], "execution_time_kernel_2": [ 0.612422, 0.649813, 0.970685, 0.651149, 0.989936, 0.901568, 1.20948, 1.308718, 1.345706, 1.003528, 0.635131, 0.67632 ] } }, { "behavior_uid": "e87ed43f74d87859", "cpu_freqs_after": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 } ], "cpu_freqs_before": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 } ], "image_height": 512, "image_width": 385, "prediction": "0.2448 - \"n03692522 loupe, jeweler's loupe\"\n0.1153 - \"n04086273 revolver, six-gun, six-shooter\"\n0.0591 - \"n03976467 Polaroid camera, Polaroid Land camera\"\n0.0580 - \"n02841315 binoculars, field glasses, opera glasses\"\n0.0436 - \"n03602883 joystick\"\n", "time": [ 3541, 3384, 4690 ], "user": "", "xopenme": { "execution_time": [ 2.760129, 2.39871, 2.388161 ], "execution_time_kernel_0": [ 2.760129, 2.39871, 2.388161 ], "execution_time_kernel_1": [ 0.0041, 0.004127, 0.004169 ], "execution_time_kernel_2": [ 0.691773, 0.925972, 2.234375 ] } }, { "behavior_uid": "760ae00349024221", "cpu_freqs_after": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 } ], "cpu_freqs_before": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 } ], "image_height": 761, "image_width": 600, "prediction": "0.4392 - \"n02892767 brassiere, bra, bandeau\"\n0.1876 - \"n03710637 maillot\"\n0.1299 - \"n03770439 miniskirt, mini\"\n0.1299 - \"n04136333 sarong\"\n0.0536 - \"n02837789 bikini, two-piece\"\n", "time": [ 4198, 3864, 4110 ], "user": "", "xopenme": { "execution_time": [ 2.798854, 2.566034, 2.424079 ], "execution_time_kernel_0": [ 2.798854, 2.566034, 2.424079 ], "execution_time_kernel_1": [ 0.013409, 0.008821, 0.008868 ], "execution_time_kernel_2": [ 1.214722, 1.214748, 1.620088 ] } }, { "behavior_uid": "530b440baa5a6277", "cpu_freqs_after": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 } ], "cpu_freqs_before": [ { "0": 1805, "1": 1805, "2": 1805, "3": 1805, "4": 2516, "5": 2516, "6": 2516, "7": 2516 } ], "image_height": 373, "image_width": 331, "prediction": "0.8670 - \"n02892767 brassiere, bra, bandeau\"\n0.0794 - \"n02837789 bikini, two-piece\"\n0.0092 - \"n03710637 maillot\"\n0.0059 - \"n03450230 gown\"\n0.0049 - \"n03595614 jersey, T-shirt, tee shirt\"\n", "time": [ 6213, 3435, 4114 ], "user": "", "xopenme": { "execution_time": [ 4.559832, 2.68619, 2.576711 ], "execution_time_kernel_0": [ 4.559832, 2.68619, 2.576711 ], "execution_time_kernel_1": [ 0.006327, 0.003817, 0.005054 ], "execution_time_kernel_2": [ 1.547466, 0.670665, 1.467648 ] } } ], "meta": { "cpu_abi": "arm64-v8a", "cpu_name": "AArch64 Processor rev 4 (aarch64)", "cpu_uid": "961465bb3cc347c2", "crowd_uid": "a7340ffbefcb5923", "engine": "Caffe CPU", "gpgpu_name": "", "gpgpu_uid": "", "gpu_name": "ARM Mali-T880", "gpu_uid": "49d08a05c0436cb8", "model": "BVLC AlexNet", "os_name": "Android 7.0", "os_uid": "de98569847a92092", "plat_name": "UNKNOWN GENERIC_A15", "platform_uid": "fd90149f38ddfbc3" } }
Upload zip file:
Overwrite existing files:
Developed by
Grigori Fursin
Implemented as a
CK workflow
Hosted at