
Rapidly Selecting Good Compiler Optimizations
using Performance Counters

John Cavazos1 Grigori Fursin2 Felix Agakov1 Edwin Bonilla1

Michael F.P. O’Boyle1 Olivier Temam2

Members of HiPEAC
1Institute for Computing Systems Architecture (ICSA)

School of Informatics, University of Edinburgh, UK
2ALCHEMY Group, INRIA Futurs and LRI, Paris-Sud University,France

Abstract

Applying the right compiler optimizations to a particu-
lar program can have a significant impact on program per-
formance. Due to the non-linear interaction of compiler
optimizations, however, determining the best setting is non-
trivial. There have been several proposed techniques that
search the space of compiler options to find good solutions;
however such approaches can be expensive. This paper pro-
poses a different approach using performance counters as a
means of determining good compiler optimization settings.
This is achieved by learning a model off-line which can then
be used to determine good settings for any new program.
We show that such an approach outperforms the state-of-
the-art and is two orders of magnitude faster on average.
Furthermore, we show that our performance counter based
approach outperforms techniques based on static code fea-
tures. Finally, we show that such improvements are sta-
ble across varying input data sets. Using our technique we
achieve a 10% improvement over the highest optimization
setting of the commercial PathScale EKOPath 2.3.1 opti-
mizing compiler on the SPEC benchmark suite on a recent
AMD Athlon 64 3700+ platform in just three evaluations.

1 Introduction

Automatically selecting the best set of compiler op-
timizations for a particular program is a difficult task
and there has been much previous work on automatically
searching for the best optimization settings [13, 21, 22, 28].
This work is based on iteratively enabling certain optimiza-
tion phases, running the compiled program and, based on
its performance, deciding a new setting. In [21], a new

algorithm calledcombined elimination(CE) was shown to
outperform all previous search based techniques in finding
good settings with considerably fewer evaluations than prior
techniques.

However, these pure search or “orchestration” ap-
proaches do not use prior knowledge of the hardware, com-
piler, or program and instead try to obtain this knowledge
online. Thus every time a new program is optimized, the
system starts with no prior knowledge. In our experiments
this means on average over 600 evaluations (compile + run)
to tune an application. In contrast, the technique presented
in this paper uses knowledge about a program’s behavior
to automatically select the best optimizations with as little
as 3 program evaluations. Specifically, we use the perfor-
mance counters collected from a few runs of the program as
input to an automatically constructed model which outputs
a probability distribution of good compiler optimizationsto
use. Using this dynamic knowledge of how a particular pro-
gram runs on a particular platform, on a set of benchmark
suites we are able to achieve the same performance or bet-
ter as combined elimination, two orders of magnitude faster
on average. Thus, obtaining knowledge a-priori (involving
a one-off-costat the factory), we can significantly speedup
the searching of good optimization sequences for any new
program. In contrast, ”pure search” techniques always ob-
tain knowledge online and must do so for any new program
they optimize.

Performance counters have been extensively used for
performance analysis in explaining program behavior [9, 3].
One of the first papers to investigate how they could be used
systematically to select optimizations [23] showed impres-
sive performance gains. However, the heuristic used was
manually developed over a 12 month period using detailed
simulations. Furthermore, the optimizations selected were

1

also implemented by hand. A small change in the archi-
tecture would potentially require the entire process to be
repeated. In contrast, our scheme is entirely automatic. It
uses machine learning to automatically build a model which
maps performance counters to good optimization options
without human intervention and is thus portable.

The use of learned models to guide the selection of op-
timizations has also received recent attention [1, 5, 26].
Stephensonet al. [26], for instance, use a genetic program-
ming approach to automatically learn individual compiler
optimizations, such as the register allocation spill heuristic,
within the Trimaran compiler. In this paper, however, we
consider the problem of determining the best settings for a
large number of optimizations within a highly-tuned com-
mercial compiler, PathScale EKOPAth 2.3.1 [24] whose
performance is as good as or better than Intel 9.0. We show
significant performance improvements over the highest op-
timization level for this compiler.

In our previous work [1], we used static code features
to obtain good optimizations for new programs being com-
piled. The static features were used to find the most similar
program from a set of previously explored programs. This
was used for estimating a distribution of good sequences for
the matching program, from which optimizations to apply
for the new program were drawn. The idea is that optimiza-
tions which performed well on a “similar” (previously ex-
plored) program will work well for the new program being
compiled. This approach works well on multimedia kernels
on embedded processors, but as we show in Section 5.3 it
performs poorly on general purpose applications. In fact,
there is little or no performance improvement over the high-
est optimization level provided by the PathScale compiler.
The main reason is that static code features, which essen-
tially characterize local code constructs such as loops, pro-
vide a poor global characterization once aggregated over
many such code sections. Furthermore, code features are a
poor mechanism to describe the dynamic behavior of large
control-flow intensive programs. We show that a perfor-
mance counter based scheme overcomes these challenges.

Using performance counters to select good optimizations
is attractive as it exploits knowledge of the program’s be-
havior without requiring knowledge of the programming
language syntax. However, a potential difficulty with a per-
formance counters based characterization is that they are
based on a specific input data set. In Section 5.4, we show
that the selected optimizations are robust across varying
data sets. In other words, the performance counters gener-
ated for one run with a particular data set are sufficient for
our model to predict a set of optimizations that work well
over a large range of different data inputs.

This paper is organized as follows. The next section
provides a motivating example showing that performance
counters can be used to select good optimizations. Sec-

Compiler Evaluations Execution time Speedup
-O0 1 40.2 1

-Ofast 1 32.3 1.24
CE 240 18.0 2.23

PC Model 3 17.2 2.33

Figure 3. The execution time and speedup
over -O0 for the best compiler setting ob-
tained using different schemes on 181.mcf.
The column labelled Evaluations shows the
number of times the code must be run to
achieve this level of performance by each
scheme.

tion 3 describes the performance counters used in this pa-
per and how they can characterize program behavior. This
section also includes a brief description of how we use a
simple modelling technique,logistic regression[4], to au-
tomatically learn a global optimizing heuristic. Section 4
describes the experimental setup and is followed in Section
5 by the experimental results and their analysis. This in-
cludes a comparison between our scheme and both com-
bined elimination and random selection. We also compare
against a static feature based modelling approach and eval-
uate the impact of data sets. This is followed by a summary
of related work and concluding remarks.

2 Motivation

The information obtained from performance counters is
a compact summary of a program’s dynamic behavior. In
particular, they summarize important aspects of a program’s
performance, e.g., cache misses or floating point unit uti-
lization. Our approach uses this information to automati-
cally select compiler optimization settings likely to improve
program performance.

This section looks at just one of the programs evaluated
in this paper to illustrate how such performance counters
can be used to select good compiler optimizations. As the
performance counter values are related to actual program
performance, they can be used by a modelling technique
(described in the next section) to select good optimization
settings. Our model examines performance counter values
of a new program and, using prior knowledge from previ-
ously examined programs, determines the optimization set-
ting most likely to result in a speedup and improved perfor-
mance counter values.

Performance Counters Figure 1 illustrates the use of
performance counters. This graph shows the performance
counter values for the181.mcf benchmark from the SPEC

2

 0

 5

 10

 15

 20

 25

 30

 35

 40

L2
_T

C
A

L1
_T

C
H

L1
_T

C
M

F
P

_O
P

S
F

A
D

_I
N

S
F

M
L_

IN
S

L1
_T

C
A

L2
_T

C
H

L1
_I

C
R

L2
_I

C
A

L1
_I

C
A

L2
_I

C
H

L1
_I

C
H

L2
_D

C
W

L2
_D

C
R

L2
_D

C
A

L1
_D

C
A

L2
_D

C
H

L1
_D

C
H

T
O

T
_C

Y
C

R
E

S
_S

T
L

V
E

C
_I

N
S

B
R

_I
N

S
F

P
_I

N
S

B
R

_M
S

P
B

R
_T

K
N

H
W

_I
N

T
S

T
L_

IC
Y

L2
_S

T
M

L2
_L

D
M

L1
_S

T
M

L1
_L

D
M

T
LB

_T
L

T
LB

_I
M

T
LB

_D
M

F
P

U
_I

D
L

L2
_T

C
M

L2
_I

C
M

L2
_D

C
M

L1
_I

C
M

L1
_D

C
M

R
el

at
iv

e
to

 A
ve

ra
ge

 P
er

f C
nt

rs

181.mcf

Figure 1. Performance counter values for
181.mcf compiled with -O0 relative to the aver-
age values for the entire set of benchmark suite
(SPECFP,SPECINT, MiBench, Polyhedron).

FAST
PC Model

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

L2
_T

C
A

L1
_T

C
H

L1
_T

C
M

F
P

_O
P

S
F

A
D

_I
N

S
F

M
L_

IN
S

L1
_T

C
A

L2
_T

C
H

L1
_I

C
R

L2
_I

C
A

L1
_I

C
A

L2
_I

C
H

L1
_I

C
H

L2
_D

C
W

L2
_D

C
R

L2
_D

C
A

L1
_D

C
A

L2
_D

C
H

L1
_D

C
H

T
O

T
_C

Y
C

R
E

S
_S

T
L

V
E

C
_I

N
S

B
R

_I
N

S
F

P
_I

N
S

T
O

T
_I

N
S

B
R

_M
S

P
B

R
_T

K
N

H
W

_I
N

T
S

T
L_

IC
Y

L2
_S

T
M

L2
_L

D
M

L1
_S

T
M

L1
_L

D
M

T
LB

_T
L

T
LB

_I
M

T
LB

_D
M

F
P

U
_I

D
L

L2
_T

C
M

L2
_I

C
M

L2
_D

C
M

L1
_I

C
M

L1
_D

C
M

R
el

at
iv

e
to

 −
o0

 P
er

f C
nt

rs

181.mcf

Figure 2. Performance counter values of -Ofast
(FAST) and our scheme (PCModel) relative to -
O0 for each performance counter for 181.mcf.

benchmark suite on the AMD processor using the commer-
cially available PathScale optimizing compiler. What is im-
mediately apparent is that181.mcf is an unusual program
- having a much greater number of memory access per in-
struction than average - up to 38 times more in the case of
L2 store misses (L2STM). A learned model should iden-
tify this and enable transformations that reduce the impact
of cache accesses.

Figure 2 shows the performance counter values after
applying two optimization schemes, -Ofast (FAST), the
highest optimization setting available with PathScale and
the setting found by our performance counter model (PC-
Model). PCModel is able to significantly improve the use
of the L1 and L2 cache. This is shown in the rightmost
three bars of Figure 2 in the columns labelled L1TCM (L1
total cache miss), L1TCA (L1 total cache accesses) and
L2 TCA (L2 total cache accesses). For instance, the model
is able to reduce the number of L1 cache misses by 20%
which has the effect of reducing the number of L2 accesses
by 20%. -Ofast, on the other hand, has no effect on these
values.

Performance Figure 3 shows the speedups obtained by -
Ofast, CE, and PCModel over -O0. -Ofast is able to achieve
a 1.24 speedup over -O0 while PCModel gives a speedup
of 2.33, i.e., a speedup of 1.88 over -Ofast. It achieves this
performance improvement with just 3 evaluations using a
learned model trained offline. If we compare this to the per-
formance of combined elimination (CE) [21], our scheme
gives a slightly greater improvement. Furthermore, com-
bined elimination requires 240 evaluations on this bench-
mark. Using our trained model, we are able to achieve
greater performance improvement over the state-of-the-art,
approaching two orders of magnitude fewer evaluations.

Transformations Examining the transformations se-
lected by PCModel, it is apparent that locality enhancing
loop optimizations have been enabled. In effect, the auto-
matically generated model has learned that181.mcf has
a problem with its memory usage and has selected trans-
formations to overcome this. If, however, we examine the
transformations selected by -Ofast and PCModel we see
that theyboth enable the loop optimizer -LNO which is
aimed at exploiting locality. On closer inspection, the major
difference is that our model decides to turn on the -m32 flag,
i.e., generate 32-bit code rather than the default 64-bit for
the AMD. It does this because the number of data cache ac-
cesses and branch instructions are high. Figure 1 shows that
the data cache accesses are relatively high (L1DCM and
L2 DCM) for this benchmark. Also, looking at the number
of branch instructions (BRINS) we see it is more than 2.5
times the average.

According to the AMD compiler manual [2] the -m32
option “can improve performance if your program has lots
of variables of the type long and/or pointers. As these data-
types are 32-bit in x86, this switch will reduce the memory
footprint of your program.” We note that -m32 is only use-
ful for a few programs, and our model decides based on
the characteristics (performance counters) of each program
when it should be applied. Many manufacturers include the
-m32 option in the SPEC ”peak” flags for some codes when
using PathScale. By examining the code of181.mcf we
see it accesses its main data structure through pointers in
a loop. Also, it has a large number of branches executed
proportional to the number of total instructions due to small
tight loops. Reducing the pointer size, by using -m32, re-
duces the number of I-cache data misses dramatically for
181.mcf as can be seen in Figure 2.

Thus, our model has learned that data cache misses and
branch instructions (via the performance counter data) are
the critical characteristics of this program and suggests the

3

Performance Counter Name Meaning Average Values

HW INT Hardware interrupts 0.000
RESSTL Cycles stalled on any resource 0.660
STL ICY Cycles with no instruction issue 0.035
TOT CYC Total cycles 1.099
TOT INS Instructions completed 1.000
VEC INS Vector/SIMD instructions 0.017

Floating Point Instruction Statistics

FAD INS, FML INS, FPINS, FPOPS, FPUIDL Floating point: Adds, Multiplies, Total Insns, Total
Ops, Cycles Idle

0.030, 0.036, 0.066, 0.066, 0.473

Branch Instruction Statistics

BR INS, BR MSP, BRTKN Branch instructions, Cond. Branches Mispredicted,
Cond. Branches Taken

0.047, 0.002, 0.035

Level 1 Cache Statistics

DCA, DCH, DCM Data Cache: Accesses, Hits, Misses 0.475, 0.472, 0.004
ICA, ICH, ICM, ICR Instruction Cache: Accesses, Hits, Misses, Reads 0.316, 0.315, 0.0006, 0.315
LDM, STM Load Misses, Store Misses 0.0015, 0.0016
TCA, TCH, TCM Total Cache: Accesses, Hits, Misses 0.789, 0.790, 0.004

Level 2 Cache Statistics

DCA, DCH, DCM, DCR, DCW Data Cache: Accesses, Hits, Misses, Reads, Writes0.003, 0.003, 0.0005, 0.0015, 0.0016
ICA, ICH, ICM Instruction Cache: Accesses, Hits, Misses 0.0006, 0.0006, 0.000002
LDM, STM Load Misses, Store Misses 0.0004, 0.00008
TCA, TCH, TCM Total Cache: Accesses, Hits, Misses 0.004, 0.003686, 0.0005

TLB Statistics

TLB DM Data translation lookaside buffer misses 0.0002
TLB IM Instruction translation lookaside buffer misses 0.000001
TLB TL Total translation lookaside buffer misses 0.0002

Figure 4. Performance counters used. This table describes a ll the performance counters used in
our study. The first column lists the performance counter acr onyms, the second column gives a
description, and the third column gives the average counter values normalized by total instructions
executed across the entire set of benchmark suites.

compiler convert pointers from 64-bit to 32-bit, because 64-
bit pointers are reducing the effective cache capacity and
memory bandwidth. This demonstrates the strength of au-
tomatic model construction. It has no a priori human bias
about what are important program characteristics or trans-
formations – it learns solely based on empirical evidence.

This example show that performance counters can be
used by a model to select optimizations that improve per-
formance by examining the values of the counters. Further-
more, it can find good sequences rapidly. The next sec-
tions describe the performance counters used in this paper
in greater detail and explains the technique used to automat-
ically build an automatic optimizing heuristic.

3 Optimization selection based on perfor-
mance counters

This section first looks at the performance counters used
in this paper and illustrates that they can be used to char-
acterize well-known properties of SPEC FP and MiBench.
This is followed by a description of the modelling technique
we use which is based on logistic regression. This is a stan-
dard machine learning technique which can learn whether
an optimization is good or bad for a certain set of perfor-

mance counter values and associates a probability with this
decision.

3.1 Dynamic characterization of program
behavior using performance counters

Modern processors are often equipped with a special set
of registers that allow for measuring performance counter
events with no disruption to the running program. These
events can describe several characteristics of the running
program, such as, cache hits and misses and branch pre-
diction statistics. On the AMD Athlon, there are 4 regis-
ters for measuring performance counter events, but up to
60 different events can be measured. It is possible to col-
lect anywhere between 4 and 60 types of events per run by
multiplexing the use of the special registers. Since we aim
at broadly characterizing the program behavior rather than
studying a particular performance phenomenon, we have
collected all 60 events. The performance counters used in
this study are shown in Table 4. In order to use the collected
statistics as inputs to our model, we normalized the value of
each performance counter by TOTINS, the total number of
instructions executed. Normalizing the performance coun-
ters is important since it allows us to generalize across dif-
ferent benchmarks regardless of how long each benchmark

4

 0

 0.5

 1

 1.5

 2

 2.5

L2
_T

C
A

L1
_T

C
H

L1
_T

C
M

F
P

_O
P

S
F

A
D

_I
N

S
F

M
L_

IN
S

L1
_T

C
A

L2
_T

C
H

L1
_I

C
R

L2
_I

C
A

L1
_I

C
A

L2
_I

C
H

L1
_I

C
H

L2
_D

C
W

L2
_D

C
R

L2
_D

C
A

L1
_D

C
A

L2
_D

C
H

L1
_D

C
H

T
O

T
_C

Y
C

R
E

S
_S

T
L

V
E

C
_I

N
S

B
R

_I
N

S
F

P
_I

N
S

B
R

_M
S

P
B

R
_T

K
N

H
W

_I
N

T
S

T
L_

IC
Y

L2
_S

T
M

L2
_L

D
M

L1
_S

T
M

L1
_L

D
M

T
LB

_T
L

T
LB

_I
M

T
LB

_D
M

F
P

U
_I

D
L

L2
_T

C
M

L2
_I

C
M

L2
_D

C
M

L1
_I

C
M

L1
_D

C
M

R
el

at
iv

e
to

 A
ve

ra
ge

 P
er

f C
nt

rs

SPEC FP

Figure 5. Performance counter values for SPEC
FP average values for the entire benchmark
suite compiled with -O0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

L2
_T

C
A

L1
_T

C
H

L1
_T

C
M

F
P

_O
P

S
F

A
D

_I
N

S
F

M
L_

IN
S

L1
_T

C
A

L2
_T

C
H

L1
_I

C
R

L2
_I

C
A

L1
_I

C
A

L2
_I

C
H

L1
_I

C
H

L2
_D

C
W

L2
_D

C
R

L2
_D

C
A

L1
_D

C
A

L2
_D

C
H

L1
_D

C
H

T
O

T
_C

Y
C

R
E

S
_S

T
L

V
E

C
_I

N
S

B
R

_I
N

S
F

P
_I

N
S

B
R

_M
S

P
B

R
_T

K
N

H
W

_I
N

T
S

T
L_

IC
Y

L2
_S

T
M

L2
_L

D
M

L1
_S

T
M

L1
_L

D
M

T
LB

_T
L

T
LB

_I
M

T
LB

_D
M

F
P

U
_I

D
L

L2
_T

C
M

L2
_I

C
M

L2
_D

C
M

L1
_I

C
M

L1
_D

C
M

R
el

at
iv

e
to

 A
ve

ra
ge

 P
er

f C
nt

rs

MiBench

Figure 6. Performance counter values for
MiBench average values for the entire bench-
mark suite compiled with -O0.

executes.

Table 4 also presents the average values for each counter
across our benchmark suites. As can be seen, some counter
events are relatively common, such as L1 data cache misses
(L1 DCA) while others are relatively rare, such as instruc-
tion TLB misses (TLBIM).

To see how the performance counters can character-
ize program behavior, we have examined two benchmark
suites, SPEC FP and MiBench, out of the four benchmark
suites we evaluated (SPEC INT, SPEC FP, MiBench, Poly-
hedron). We plotted the performance counter values for
each of these suites relative to the average values for the
entire collection of benchmarks. These values are shown in
Figures 5 and 6 where the values are collected when com-
piled with -O0. It is interesting to see that MiBench exer-
cises the cache hierarchy much less than SPEC FP which
can be seen by the much larger number of L2 cache misses
(L2 TCA) for SPEC FP. Also, MiBench has a relatively
large number of branches compare to SPEC FP, almost
twice as many, and many of the branches in MiBench are
mispredicted, while more branches for SPEC FP codes are
easier to predict (BRMSP).

These results are not surprising and have been discussed
in prior work. However, these graphs show that there are
important aspects of program behavior that can be captured
using performance counters. Furthermore, this information
can serve as an input to a model that selects compiler op-
timizations. Using these statistics our model can learn to
apply optimizations that will reduce the impact of cache
misses for SPEC FP or branch misses for MiBench. The
next section shows how we can use this information to se-
lect good optimizations automatically using machine learn-
ing.

3.2 Automatically learning a good model

The goal of model construction is to learn a mapping
x→ t between a set of performance counters featuresx, and
a set of good optimizationst. Herex is a vector of the 60
normalized performance counters values, andt is a vector
mask indicating which transformations are used in the se-
quence (i.e., each vector entry corresponds to a transforma-
tion, andt corresponds to a sequence of 0/1, 1 meaning the
transformation is used). The goal of the model is to pre-
dict the best possiblet for a program described by features
x. We emphasize this is not the phase-ordering problem.
That is, our models do not find the best order in which to
apply transformations. While this is an interesting problem,
most compilers do not allow changing arbitrarily the order
optimizations are applied.

In the following paragraphs, we first describe how the
training set required for offline training is collected which
is then used to construct a model. We then describe how this
model is used and how sensitive its decisions are to different
data inputs.

Training set

At first, a large number (500) of transformation sequences
t are randomly sampled and the speedup for each of these
sequences is recorded. Also, we require three additional
runs of the program to collect the performance counter val-
ues x. The runs where the speedup, relative to -Ofast,
is smaller than 1 are filtered out, and the remaining data
forms the training set. Then we use the standardLeave One
Out Cross-Validationprocedure for evaluating our models;
therefore, the models are trained onN−1 benchmarks and
tested on theNth benchmark that has been left out. In
our experiments,N = 57 and our models were trained with
56x500= 28000 training data points. The cost of obtaining

5

28000 training points is expensive, however it is one-off-
cost incurred offline at the factory.

Model construction

The model is now built using the training set. The predic-
tive modelling process is summarized in Figure 7. We use
a probabilistic approach for predictive modelling, where we
determine for each optimizationti the probabilitypi that it
should be evaluated. The technique used islogistic regres-
sion [4]. Intuitively, it attempts to find the set of perfor-
mance counter values for which enabling the transforma-
tion ti leads to improved performance in the training set and
also determines when disabling a transformation is prefer-
able. In effect, it tries to draw a hyperplane in the multi-
dimensional hardware counter space between those occa-
sions when the transformation is best enabled and those
occasions when it is best disabled. Borderline cases near
the hyperplane have a probability,p, around 0.5 associ-
ated with them. Those which should be definitely enabled
have p >> 0.5 and those which should be definitely dis-
abled havep << 0.5. This is a standard machine learning
technique and is computationally inexpensive - see [4] for a
more detailed description. Note that gathering training data
and construction of the model is an offline process, that is,
it would take place “at the factor” before the compiler is
shipped to the costumer.

Using the model

Given a new target benchmark, we first extract the perfor-
mance counter featuresx by running the benchmark. This
requires 3 runs of the benchmark. This features vector is
then fed as input to our trained models which then outputs
a probabilitypi for each transformationti showing whether
each transformation should be applied or not. We then sam-
ple from this probability distribution to generate a suitable
compiler optimization setting. The program is then opti-
mized based on the transformations selected and the new
speedup is measured as shown in Figure 7. An advantage
of this technique is that we can sample as many times as
we wish to generate different settings. We later show in
Section 5.1 that very few samples are required to achieve
good performance. Furthermore, increasing the number of
samples which are evaluated increases the performance ob-
tained.

Data set sensitivity.

Predicting the best possiblet for a program with features
x is, in fact, not practical, since a program is usually run
once on each data set. Therefore, whent is applied, the
data set may in fact correspond to a features vectorx

′ which
is different fromx. However, in Section 5.4 we show that

performance counter statistics are stable enough across data
sets, i.e., transformation sequencet predicted using the fea-
ture vectorsx of previous runs also performs well for new
runs of the same program with different data sets.

4 Experimental Setup

This section briefly describes the experimental setup.
First, the hardware platform, OS, and optimizing compiler
are described. Second, we describe the benchmarks and the
optimizations available for selection.

4.1 Platform

We perform all experiments on AMD Athlon 64 3700+
at 2.4GHz, with an L1 cache of 64KB and an L2 cache
of 1MB, and 3GB of memory; the O/S is Mandriva Linux
2006. We use the latest PAPI 3.2.1 hardware counter li-
brary [20] and PAPIEx 0.99rc2 tool to collect hardware per-
formance counters for the benchmarks. Table 4 has a brief
description of all the counters we use. PAPIEx works in the
multiplexing mode allowing us to collect a large number
of counters in one run. We collect performance counters
using level -O0 so that characteristics of a benchmark are
not masked by higher optimization levels (e.g., -Ofast). We
use the latest open-source commercial PathScale EKOPath
Compiler 2.3.1 [24] with the -Ofast flag, which we refer to
as ourbaseline. This compiler is tuned to AMD processors
and on average performs similarly or better than the Intel
9.0 compilers on the same platform.

In order to evaluate the stability of our measurements,
we have executed multiple runs of each benchmark using
-Ofast and have found there to be very little variance in
the execution time, on average less than 0.3%.

4.2 Benchmarks

We evaluate our approach on widely-used benchmark
suites written in C, C++, Fortran and Fortran 90. These are
SPEC 95 FP (ref dataset), SPEC 2000 FP and INT (train
dataset), Polyhedron 2005 [17], and MiBench [12]. We
used train inputs for the SPEC 2000 benchmarks due to
the large number of experiments we ran, on average over
1000 for each benchmark. SPEC and Polyhedron bench-
marks are relatively large programs used for performance
evaluation of servers and for comparison of performance of
various compilers on these servers. These benchmarks are
used by PathScale to tune their compiler suite. MiBench is
a free, commercially representative embedded benchmark
suite consisting of a large number of applications and ker-
nels. We believe that all these programs cover a large va-
riety of different dynamic behaviors. In the experimental

6

N
ew

 p
ro

g
ra

m

predicted set of best
transformations

Architecture

 (t A
1 t A

2 … t A
M)

 (t
B
1 t B

2 … t B
M)

TB (baseline option) X

performance
counter features
for the baseline

PCModel

(b) Inference using a predictive model. Given a new benchmark, we first extract performance
counter features. These features are then fed into our trained models which then output a set of
transformation sequences to apply to the new benchmark.

…

best
speedups

…

sA

sB

P
ro

g
ra

m
s

(t
ra

in
in

g
 s

et
)

 bes t set of transformations
(option sequences)

Architecture (t

1 t 1

2 … t 1
M)

 (t 2
1 t 2

2 … t 2
M)

…

 (t
N
1 t N

2 … t N
M)

…

TB (baseline option)

s1

s2

sN

Speedups

…

X

 performance
counter features
for the baseline

PCModel

(a) Summary of the predictive modelling procedure. We use the features x, the transformations
t, and (implicitly) the speed-ups {s} for constructing the training data < x , t >. We then
evaluate the mapping from the performance counters to the transformation sequences x

�
 t by

fitting a probabilistic model to the training set.

Figure 7. Training and using the models.

section, we partition the benchmarks into SPEC, which in-
cludes allSPECbenchmarks andOthers, which includes
MiBench and Polyhedron.

4.3 Transformations

The PathScale EKOPath compiler suite includes a
PathOpt tool that randomly selects from a variety of global
compiler settings. PathOpt iterates for a user-specified
amount of evaluations and is used to iteratively find the best
performance on a targeted platform and program. We se-
lect 121 flags that are known to influence performance and
use PathOpt to apply 500 random settings of these flags on
all benchmarks. We also allow our model to generate se-
quences with optimizations that are mutually exclusive, e.g,
different unroll factors. When this happens, the compiler
simply ignores all but the last option. We could have eas-
ily adapted our models to handle this directly (e.g., using a
soft-max approach where the optimization with the highest
probability is choosen), however this would make it harder
to compare with combined elimination and random. The
speedups for each setting were used along with performance

hardware counters as training data for our logistic regres-
sion model.

5 Experimental results

In this section we evaluate our proposed technique in a
number of ways. Initially, we report the performance im-
provement achieved by our technique compared to com-
bined elimination and the number of evaluations each
scheme needs to achieve such a level of performance. Since
we use a probabilistic model we have generated our results
for multiple trials. 1 This is then followed by a compar-
ison of the performance of a number of different schemes
with respect to the number of evaluations available. Here,
we compare combined elimination (CE), our models (PC-
Model), and a random selection (RAND) approach which
generates random transformation sequences. RAND is
implemented using a pseudo-random number generator to
choose which optimizations to apply in the sequence. Each
optimization has a .5 probability of being used in each se-

1For random selection we have also generated our results for multiple
trials.

7

CE
PC Model

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

av
er

ag
e

30
1.

ap
si

30
0.

tw
ol

f
25

6.
bz

ip
2

19
7.

pa
rs

er
19

1.
fm

a3
d

18
9.

lu
ca

s
18

8.
am

m
p

18
6.

cr
af

ty
18

3.
eq

ua
ke

18
1.

m
cf

17
9.

ar
t

17
8.

ga
lg

el
17

7.
m

es
a

17
5.

vp
r

17
3.

ap
pl

u
17

2.
m

gr
id

17
1.

sw
im

16
8.

w
up

w
is

e
16

4.
gz

ip
14

6.
w

av
e5

14
1.

ap
si

12
5.

tu
rb

3d
11

0.
ap

pl
u

10
7.

m
gr

id
10

4.
hy

dr
o2

d
10

3.
su

2c
or

10
2.

sw
im

10
1.

to
m

ca
tv

R
el

at
iv

e
to

 −
of

as
t

Combined Elimination (CE) and PC Model

Figure 8. The speedup of Combined Elimina-
tion (CE) versus our model (PCModel) for the
SPEC benchmarks relative to the performance
of -Ofast. The number of evaluations used by
PCModel is limited to 25 while CE uses on aver-
age 609.

CE
PC Model

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

av
er

ag
e

tff
t

te
st

_f
pu

gs
m

C
R

C
32

ad
pc

m
_c

sh
a

rij
nd

ae
l

rn
flo

w
pr

ot
ei

n
pi

x
st

rin
gs

ea
rc

h
pa

tr
ic

ia
di

jk
st

ra
m

db
x

lin
pk

ga
s_

dy
n

fa
tig

ue
dr

ag
do

du
c

la
m

e
jp

eg
_d

jp
eg

_c
ch

an
ne

l
su

sa
n_

s
su

sa
n_

e
su

sa
n_

c
bi

tc
ou

ntai
r

ac

R
el

at
iv

e
to

 −
of

as
t

Combined Elimination (CE) versus PC Model

Figure 9. The speedup of Combined Elimination
(CE) versus our model (PCModel) for the Other
(non-SPEC) benchmarks relative to the perfor-
mance of -Ofast. The number of evaluations
used by PCModel is limited to 25 while CE uses
on average 609.

quence. We then provide a study examining the use of static
code features as a means of selecting compiler optimiza-
tions. Also, we examine how the optimizations selected by
our model perform across different input data sets. Finally,
we perform some analysis to evaluate the most important
performance counter features. All results in this section,
unless otherwise stated, are relative to -Ofast, the highest
optimization level available in PathScale. Note, all of our
techniques (CE,PCModel,Random) start with the -Ofast as
their initial sample, so none of our techniques can perform
worse than -Ofast. We emphasize that our models are built
using leave-one-out cross validation, so the models are not
trained using any information of the programs it is optimiz-
ing.

5.1 Speedup and number of evaluations
for PCModel and CE

Figure 4.3 shows the speedups of our model and com-
bined elimination relative to -Ofast on the SPEC bench-
marks. PCModel achieves a speedup of 1.17 on average
compared to 1.09 by CE. In this example, we have set the
number of evaluations selected by our model to 25 evalu-
ations. However, CE needs on average 609 evaluations of
the program to achieve this. We note that both PCModel and
CE can find significant improvements for several programs.
For instance, PCModel finds improvements of 10% or more
over -Ofast for half (14 of 28) of the SPEC benchmarks.
We describe the best optimizations found for each program
in a later section. Thus we are able to achieve better per-
formance than CE with considerable fewer evaluations. In
fact, our model achieves the same performance as CE on the
SPEC benchmarks in only 3 iterations. Figure 4.3 shows a
similar comparison for the other benchmarks. In this case

both schemes give approximately the same performance im-
provement of 1.17. Figure 5 however, shows that CE needs
a large number of evaluations to achieve this performance
level, ranging form 240 evaluations up to 1550 with an av-
erage of 609 needed.

It is not suprising that the CE algorithm requires a large
number of evaluations. The CE algorithm first evaluates
the effect of each of the optimizations by turning them off
one at a time. This is 121 evaluations for the entire set of
optimizations we explored. Then it “combines” the knowl-
edge gathered by these initial evaluations to choose opti-
mizations that lead to better improvement when turned off.
After several iterations of turning off single optimizations it
converges to a setting where no additional flags turned off
improve performance. We refer the reader to the combined
elimination paper [21] for further details of the algorithm.

5.2 Performance versus number of evalu-
ations for different schemes

To give a different view of how our model performs we
considered the performance it achieves as a function of the
number of evaluations we select from it. Figure 5.3 shows
the performance achieved averaged across all the bench-
marks versus the number of evaluations allowed. We also
compare our approach relative to combined elimination and
random selection. For each technique, the more evaluations
allowed the better the performance achieved. Our model
achieves the same performance after 60 evaluations as ran-
dom does after 200 evaluations. Surprisingly, random se-
lection does quite well!2

2Other papers [14, 1] have reported on the excellent performance of
pure random search.

8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

P
C

M
od

el
--

--
--

--
--

-
av

er
ag

etff
t

te
st

_f
pu

gs
m

C
R

C
32

ad
pc

m
_csh
a

rij
nd

ae
l

rn
flo

w
pr

ot
ei

n
pi

x
st

rin
gs

ea
rc

h
pa

tr
ic

ia
di

jk
st

ra
m

db
x

lin
pk

ga
s_

dy
n

fa
tig

ue
dr

ag
do

du
c

la
m

e
jp

eg
_d

jp
eg

_c
ch

an
ne

l
su

sa
n_

s
su

sa
n_

e
su

sa
n_

c
bi

tc
ou

ntai
r

ac
30

1.
ap

si
30

0.
tw

ol
f

25
6.

bz
ip

2
19

7.
pa

rs
er

19
1.

fm
a3

d
18

9.
lu

ca
s

18
8.

am
m

p
18

6.
cr

af
ty

18
3.

eq
ua

ke
18

1.
m

cf
17

9.
ar

t
17

8.
ga

lg
el

17
7.

m
es

a
17

5.
vp

r
17

3.
ap

pl
u

17
2.

m
gr

id
17

1.
sw

im
16

8.
w

up
w

is
e

16
4.

gz
ip

14
6.

w
av

e5
14

1.
ap

si
12

5.
tu

rb
3d

11
0.

ap
pl

u
10

7.
m

gr
id

10
4.

hy
dr

o2
d

10
3.

su
2c

or
10

2.
sw

im
10

1.
to

m
ca

tv

Ite
ra

tio
n

C
ou

nt

Combined Elimination and PC Model Iterations

Figure 10. The number of evaluations of the CE algorithm per b enchmark. The mininum evaluations
is 240 (181.mcf), maximum is 1562 (fatigue), and the average is 609. We compared CE to PCModel
with an evaluation count 25 (far right).

CE’s initial iteration involves turning off each optimiza-
tion in turn which gives a small speedup of 1.04 across the
first 121 evaluations. Only after all 121 options have been
evaluated does it improve its behavior by “combining” its
results. However, after 200 evaluations it only achieves the
same performance as that achieved by our model after 2
evaluations. Random selection achieves this in just 10 eval-
uations. RAND and CE both found an improvement of 17%
over -Ofast using 200 and 60 iterations, respectively. CE
finds less improvement at 12%. We note that for these ex-
periments the CE algorithm was run to completion. On the
other hand, given the nature of the RAND and PCModel
algorithms, we could continue to construct sequences with
these algorithms until we are satisfied with the optimizied
performance of our application. Both, RAND and PCModel
whould reach the same maximum available speedup in the
limit, however PCModel should reach that speedup sooner.

We believe RAND and PCModel perform well in our ex-
periments because the search space has many good points.
However, in certain scenarios CE could outperform RAND
(and models trained with RAND data). CE’s main goal is to
eliminateoptimizations that degrade performance. If we en-
couter an optimization space with many optimizations that
degrade performance of a benchmark, it would take a large
number of iterations for RAND to construct a sequence with
none (or few) of these degrading optimizations.

5.3 Static versus dynamic features

As mentioned in the introduction, a recent model-based
approach [1] attempted to characterize programs using
static code features. In this section, we quantitatively com-
pare the merit of static (code) versus dynamic (performance
counter) features using the same number of evaluations.
Agakov et al. [1] applied their approach to the UTDSP,
which are small embedded kernels containing often a sin-
gle loop nest with affine array accesses. In order to ex-
tract the static features we also constructed features anal-
ogous to those used by Agakovet al. We extracted code
features for several of the SPEC INT benchmarks, which
are large control-flow intensive programs. We also used
a K-nearest neighbor approach and build IID distributions
similar to what was used by Agakovet al. to be as fair as
possible. We choose neighbors using either code features
or performance counter features and drew samples from the
neighbor’s IID distribution to apply to a new program.

The list of benchmarks used for the comparison is indi-
cated in Figure 5.3. The static based approach finds some
improvement in 4 of the 7 programs achieving an aver-
age speedups of just 1.01 when compared to -Ofast. Our
performance counter model significantly improves over the
static feature-based approach giving a speedup average of
1.08 over -Ofast and is therefore significantly better for
characterizing programs with complex control flow, e.g.,

9

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1 10 100 1000

S
pe

ed
up

Number of Evaluations

Performance versus Number of Evaluations (PC Model, CE, RAND)

PC Model
RAND

CE

Figure 11. The speedup of Combined Elimina-
tion (CE), PCModel, and random selection aver-
aged across all benchmarks versus the number
of program evaluations used.

STATIC
DYNAMIC

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

av
er

ag
e

30
0.

tw
ol

f

25
6.

bz
ip

2

19
7.

pa
rs

er

18
6.

cr
af

ty

18
1.

m
cf

17
5.

vp
r

16
4.

gz
ip

R
el

at
iv

e
to

 −
of

as
t

Static vs Dynamic Features

Figure 12. Performance of SPEC INT 2000
Benchmarks using static code features and dy-
namic features.

automotivesusanc 1.03± 0.01 network dijkstra 1.66± 0.01
automotivesusane 1.13± 0.04 network patricia 1.00± 0.00
automotivesusans 1.08± 0.00 securityrijndael 1.01± 0.05
consumerjpeg c 1.07± 0.01 securitysha 1.18± 0.01
consumerjpeg d 1.16± 0.07 telecomadpcmc 1.06± 0.04
consumerlame 1.00± 0.00 telecomCRC32 1.66± 0.04

Table 1. Average performance speed-ups (and one standard de viation) for the performance of the
best sequence of our models (PCModel) across different inpu ts.

181.mcf and186.crafty.

5.4 Data set sensitivity

In order to further explore the practical application of our
approach under real conditions, we have evaluated its sensi-
tivity to data set. In certain contexts, such as embedded pro-
cessing, it is possible to execute/train a program many times
on the same data set at design time because the data set will
not vary much. The same goes for some scientific applica-
tions where matrix dimensions are the most critical data set
parameters performance-wise but do not always vary, unlike
the content of the matrices itself.

Still, in many other contexts, a program uses different
data sets during each of its runs. Therefore, for a subset
of our benchmarks (several MiBench applications), we col-
lected 20 data sets per benchmark, and we evaluated a sce-
nario where the best sequence predicted from our model
(PCModel) using performance counters collected from one
data set is used to compile a program which is then run with
a variety different data sets. This scenario helps analyze
whether the performance counter features vector is suffi-
ciently stable across data sets. Table 5.3 compares the per-
formance of the best sequence predicted with our model on
one data set applied to several datasets. As can be seen, the
predictions from our model are quite stable across different
datasets and always lead to a performance over -Ofast. We
used MiBench benchmarks for these experiments given the

readily available data sets for these benchmarks. In future
work, we will investigate whether these conclusions hold
for more complex programs such as SPEC INT.

5.5 Analysis of the importance of the per-
formance counters

The goal of this analysis is to understand which perfor-
mance counters are most important for predicting good opti-
mization sequences. The fundamental objective in this con-
text is mutual informationbetween asubsetof the perfor-
mance counters and good optimization sequences (for defi-
nition of mutual information, see e.g. [18]). Our goal was to
maximize the mutual information for subsets of the retained
features.

In general, it is intractable to compute the mutual infor-
mation exactly, therefore approximations need to be consid-
ered. For our analysis we applied a novel subset-selection
approach which greedily maximizes the Gaussian approx-
imation of the mutual information. For training data con-
taining one good optimization sequence per benchmark, we
found that over 95% of the total information (if all features
are retained) was typically contained in just 15 performance
counters. In contrast, conventional approximations disre-
garding interactions between the inputs (e.g. [27]) would
typically require twice as many features to retain the same
amount of information, which in our case is not much bet-
ter than random selection (see Figure 13left). Interestingly,

10

while the choice of the informative features generally de-
pends on the training data, we found that there was a lot of
overlap between the performance counters found for various
good transformation sequences (typically with one or two
unique features per training set). Figure 13right shows in-
formative performance counters for training sequences con-
structed with the CE algorithm.

6 Related Work

Parelloet al. [23] presents a systematic, but manual it-
erative approach for program optimization using dynamic
features. At each iteration, performance counters are used
to identify a performance anomaly of a program and a set
of program transformations is suggested to solve this prob-
lem. Then the transformed program is run again to detect
further performance anomalies. The process is manual and
can take several weeks per benchmark. Moreover, it cannot
tackle more than one anomaly in one step and it does not
provide a learning mechanism to correlate the dynamic be-
havior of the program with the performance of transforma-
tions across applications. Our technique is fully automated
and can generate heuristics to predict good optimizations in
seconds.

In the area of predictive modelling, Zhaoet al. use man-
ually constructed cost/benefit models to predict whether to
apply PRE or LICM[33]. They achieve 1% to 2% improve-
ment over always applying an optimization, but at a cost of
greatly increasing compilation time (by up to 68%). Their
models appear to be quite complicated and have to be manu-
ally constructed. Our models, on the other hand, are simple
and automatically constructed using machine learning.

During the past several years, the benefits of iterative
compilation have been widely reported [14, 7, 8, 10, 13].
Iterative compilation is able to find optimization sequences
that out-perform the highest optimization settings in com-
mercial compilers and when applied to library subroutines
they find solutions that compare favorably with highly-
optimized hand-tuned vendor libraries [30, 11, 25, 29].
However, iterative compilation requires searching a com-
binatorially large space defined by the optimizations of in-
terest. This search can take several days to weeks depend-
ing on the running time of the program, speed of the com-
piler and target architecture, and thoroughness of the search.
There have been a number of papers focusing on reducing
the cost of iterative optimization.

Kulkarni et al. [15] introduce the VISTA system, an
interactive compilation system which concentrates on re-
ducing compilation time. This system uses a variety of
techniques to reduce the number of different compilation
sequences evaluated. Their system stores a representation
of each program compiled then detects when identical or
equivalent code has been generated and only executes code

that has not been previously generated. They also prohibit
specific optimizations and optimization sequences from be-
ing performed if it is unlikely that these optimizations will
not change the code. Clearly these techniques are only ef-
fective when programs are extremely small, such as those
used in embedded domains.

Kulkarni et al. [16] also introduce techniques to allow
exhaustive enumeration of all distinct function instances
that would be produced from the different phase-orderings
of 15 optimizations. This exhaustive enumeration allowed
them to construct probabilities of enabling/disabling inter-
actions between the different optimization passes. Using
these probabilities, they constructed aprobabilistic batch
compilerthat determined which optimization should be ap-
plied next depending on which one had the highest prob-
ability of being enabled. This method however does not
consider the benefits each optimization can potentially pro-
vide. In contrast, we train our model to based on the impact
of optimizations applied, and therefore our technique learns
which optimizations are beneficial to apply to “unseen” pro-
grams withsimilar characteristics.

Another system to speedup iterative compilation was
recently introduced by Cooperet al. called ACME [6].
ACME utilizes a technique called estimated virtual execu-
tion (EVE) which estimates changes to the execution counts
of basic blocks when an optimization that changes the CFG
is performed. This is done by inserting a pass into the opti-
mization sequence after each invocation of a CFG-changing
optimization and fixes the basic block counts based on the
changes. They can then simply model the benefits and dis-
advantages of applying optimizations by simply multiply-
ing the number of instructions in a block by its dynamic
frequency then summing over all blocks. This technique
can estimate the performance of very simple models, how-
ever this method is vastly inaccurate when estimating the
performance of today’s complex machines, especially out-
of-order issue processors.

Triantafyllis et al. [28] develop an alternative approach
to reduce the total number of evaluations on a new program.
Here the space of compiler options is examined off-line on
a per function basis and the best performing ones classi-
fied into a small tree of compiler options. When compil-
ing a new program, the tree is searched by compiling and
executing the best path in the tree. As long as the best se-
quences can be categorized into a small tree, this proves to
be a highly effective technique.

Pan et al. [21] develop an algorithm calledcombined
eliminationwhich selectively turns off optimizations until
the best performance is found for a new application. This al-
gorithm was compared to other algorithms for tuning com-
piler settings [13, 28] and was shown to achieve the same or
better performance as these algorithms while dramatically
reducing the tuning time. In a recent paper [22], they par-

11

2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

Retained PCs

I(
{x

},
t)

Feature Selection by Information Maximization

Gaussian I({x},t)

Gaussian I(x
i
,t)

Quantized I(x
i
,t)

Uniform

Most Informative Performance Counters

1) L1 TCA 2) L1 DCH 3) TLB DM
4) BR INS 5) RESSTL 6) TOT CYC
7) L2 ICH 8) VEC INS 9) L2 DCH

10) L2 TCA 11) L1 DCA 12) HW INT
13) L2 TCH 14) L1 TCH 15) BR MS

Figure 13. Analysis of the importance of the performance cou nters. The data contains one good opti-
mization sequence per benchmark. Left: Approximate amount of information retained in the selected
features. Top curve: our method; lower curves: simpler heur istics. Conventional approach [27]
which uses binning and ignores input interactions (dash-do tted curve) is comparable with the uni-
form random selection. Right: 15 most informative performance counters sorted in the orde r of the
descending importance.

titioned a program intotuning sectionsand then use com-
bined elimination to find the best combination of optimiza-
tions for each of these tuning section. They are able to re-
duce the time to find good optimization settings from hours
to minutes. However, the techniques of partitioning a pro-
gram and rating methods are orthogonal to the particular
search algorithm used and we concluded we could as well
use our models to find good sequences even faster. Also, the
techniques in this paper could be beneficial during the train-
ing data generation stage of our technique. Specifically, the
technique to test different optimization settings on a tuning
section during a single run of the program would allow us
to increase the number of optimization settings we evaluate.

Yotov et al. [31] describe a model-based approach to
optimize BLAS libraries that can as effective as empirical
evaluation. In the later paper [32] they refine analytical
models based on the results of the empirical search for the
ATLAS library. A local neighborhood search around the
best found points is used to further improve the solutions
and perform comparable to the ATLAS global search strat-
egy. However, the analytical models require manual tuning
and are complicated.

Cooperet al. [7] use genetic algorithms to solve the
compilation phase ordering problem. They were concerned
with finding “good” compiler optimization sequences that
reduced code size. Unfortunately, their technique is
application-specific. That is, a genetic algorithm has tore-
train for each program to decide the best optimization se-
quence for that program. The genetic algorithm builds up
chromosomes pertaining to different sequences of optimiza-
tions and adapts these for each individual program. Mu-
tations can involve adding new optimizations into the se-
quence or removing existing ones from the sequence. Their
technique was successful at reducing code size by as much
as 40%.

Several researchers have also looked at using machine
learning to construct heuristics that control a single opti-
mization. Stephensonet al. [26] used genetic program-
ming (GP) to tune heuristic priority functions for three com-
piler optimizations: hyperblock selection, register alloca-
tion, and data prefetching within the Trimaran’s IMPACT
compiler. For two optimizations, hyperblock selection and
data prefetching, they achieved significant improvements.
However, a closer look at the results indicate that all the im-
provement was obtained simply by producing 400 heuristics
at random (for the initial population) and choosing the best
one. For those cases, there were no further gains obtained
from using GP to evolve the generated heuristics. This in-
dicates that these two pre-existing heuristics were not well
tuned. The authors also admit that turning off data prefetch-
ing completely was preferable and reduced much of their
gains. For the third optimization, register allocation, they
were able to achieve on average only a 2% increase over
the manually tuned heuristic. The results in this paper high-
light the diminishing results obtained when only controlling
a single optimization.

Cavazoset al. [5] describe an idea of using supervised
learning to control whether or not to apply instruction
scheduling. They induced heuristics that used features of a
basic block to predict whether scheduling would benefit that
block or not. Using the induced heuristic, they were able to
reduce scheduling effort by as much as 75% while still re-
taining about 92% effectiveness of scheduling all blocks.

Monsifrot et al. [19] use a classifier based on decision
tree learning to determine which loops to unroll. They
looked at the performance of compiling Fortran programs
from the SPEC benchmark suite using g77 for two different
architectures, an UltraSPARC and an IA64. They showed
an improvement over the hand-tuned heuristic of 3% and
2.7% over g77’s unrolling strategy on the IA64 and Ul-

12

traSPARC, respectively. These results again highlight the
need to control the application of multiple compiler opti-
mizations.

7 Conclusions

In this paper we address the problem of predicting good
compiler optimizations by using performance counters to
automatically generate compiler heuristics. We do this by
using machine learning techniques that predict good code
transformations to apply given a program’s performance
counter features. Our technique automates the tuning pro-
cess and eliminates the need for manual experimentation.
Additionally, the heuristics induced by these techniques can
generalize to programs that have not been seen before. Us-
ing performance counters allows us to apply transforma-
tions that will benefit the program being compiled while
avoiding optimizations that will degrade performance. Us-
ing our models, we can achieve a 10% average speedup over
the highest optimization setting in the PathScale compiler
on SPEC benchmarks on a recent AMD Athlon much fater
than the current state-of-the-art search techniques.

References

[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin,
M. OBoyle, J. Thomson, M. Toussaint, and C. Williams.
Using machine learning to focus iterative optimization. In
CGO, pages 295–305, 2006.

[2] AMD. Compiler usage guidelines for 64-bit operating
systems on amd64 platforms. http://www.amd.com/us-
en/assets/contenttype/whitepapersand techdocs/32035.pdf,
2006.

[3] R. Azimi, M. Stumm, and R. W. Wisniewski. Online
performance analysis by statistical sampling of
microprocessor performance counters. InICS ’05:
Proceedings of the 19th annual international conference on
Supercomputing, pages 101–110, New York, NY, USA,
2005. ACM Press.

[4] C. M. Bishop.Neural Networks for Pattern Recognition.
Oxford University Press, Oxford, UK, 1996.

[5] J. Cavazos and J. E. B. Moss. Inducing heuristics to decide
whether to schedule. InProceedings of the ACM SIGPLAN
’04 Conference on Programming Language Design and
Implementation, pages 183–194, Washington, D.C., June
2004. ACM Press.

[6] K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves,
D. Subramanian, L. Torczon, and T. Waterman. Acme:
adaptive compilation made efficient. InLCTES’05:
Proceedings of the 2005 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools for
embedded systems, pages 69–77, New York, NY, USA,
2005. ACM Press.

[7] K. D. Cooper, P. J. Schielke, and D. Subramanian.
Optimizing for reduced code space using genetic
algorithms. InWorkshop on Languages, Compilers, and
Tools for Embedded Systems, pages 1–9, Atlanta, Georgia,
July 1999. ACM Press.

[8] K. D. Cooper, D. Subramanian, and L. Torczon. Adaptive
optimizing compilers for the 21st century.Journal of
Supercomputing, 23(1):7–22, August 2002.

[9] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and
G. Z. Chrysos. Profileme : Hardware support for
instruction-level profiling on out-of-order processors. In
International Symposium on Microarchitecture, pages
292–302, 1997.

[10] B. Franke, M. O’Boyle, J. Thomson, and G. Fursin.
Probabilistic source-level optimisation of embedded
programs. InLCTES’05: Proceedings of the 2005 ACM
SIGPLAN/SIGBED conference on Languages, compilers,
and tools for embedded systems, pages 78–86, New York,
NY, USA, 2005. ACM Press.

[11] M. Frigo and S. G. Johnson. The design and
implementation of FFTW3.Proceedings of the IEEE,
93(2):216–231, 2005. special issue on ”Program
Generation, Optimization, and Platform Adaptation”.

[12] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. Mibench: A free,
commercially representative embedded benchmark suite. In
IEEE 4th Annual Workshop on Workload Characterization,
Austin, TX, December 2001.

[13] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff.
Automatic selection of compiler options using
non-parametric inferential statistics. InPACT ’05:
Proceedings of the 14th International Conference on
Parallel Architectures and Compilation Techniques
(PACT’05), pages 123–132, Washington, DC, USA, 2005.
IEEE Computer Society.

[14] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle.
Combined selection of tile sizes and unroll factors using
iterative compilation. InPACT ’00: Proceedings of the 2000
International Conference on Parallel Architectures and
Compilation Techniques, page 237, Washington, DC, USA,
2000. IEEE Computer Society.

[15] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and
D. Jones. Fast searches for effective optimization phase
sequences. InPLDI ’04: Proceedings of the ACM
SIGPLAN 2004 conference on Programming language
design and implementation, pages 171–182, New York, NY,
USA, 2004. ACM Press.

[16] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W.
Davidson. Exhaustive optimization phase order space
exploration. InCGO ’06: Proceedings of the International
Symposium on Code Generation and Optimization, pages
306–318, Washington, DC, USA, 2006. IEEE Computer
Society.

[17] P. S. Ltd. http://www.polyhedron.com, 2006.

13

[18] R. J. McEliece.The Theory of Information and Coding.
Addison-Wesley, 1977.

[19] A. Monsifrot, F. Bodin, and R. Quiniou. A machine
learning approach to automatic production of compiler
heuristics. InAIMSA ’02: Proceedings of the 10th
International Conference on Artificial Intelligence:
Methodology, Systems, and Applications, pages 41–50.
Springer-Verlag, 2002.

[20] P. Mucci. Papi – the performance application programming
interface. http://icl.cs.utk.edu/papi/index.html, 2000.

[21] Z. Pan and R. Eigenmann. Fast and effective orchestration
of compiler optimizations for automatic performance
tuning. InCGO, pages 319–332, 2006.

[22] Z. Pan and R. Eigenmann. Fast automatic procedure-level
performance tuning. InIEEE PACT, Seattle, WA,
September 2006. IEEE Computer Society.

[23] D. Parello, O. Temam, A. Cohen, and J.-M. Verdun.
Towards a systematic, pragmatic and architecture-aware
program optimization process for complex processors. In
SC ’04: Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, page 15, Washington, DC, USA, 2004.
IEEE Computer Society.

[24] I. PathScale. http://www.pathscale.com, 2006.

[25] M. Puschel, J. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo. Spiral: Code
generation for dsp transforms.Proceedings of the IEEE,
93(2):232–275, 2005. special issue on ”Program
Generation, Optimization, and Platform Adaptation”.

[26] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M.
O’Reilly. Meta optimization: Improving compiler heuristics
with machine learning. InProceedings of the ACM
SIGPLAN ’03 Conference on Programming Language
Design and Implementation, pages 77–90, San Diego, Ca,
June 2003. ACM Press.

[27] M. Stephenson and S. P. Amarasinghe. Predicting unroll
factors using supervised classification. InCGO, pages
123–134, 2005.

[28] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I.
August. Compiler optimization-space exploration. InCGO
’03: Proceedings of the international symposium on Code
generation and optimization, pages 204–215, Washington,
DC, USA, 2003. IEEE Computer Society.

[29] R. Vuduc, J. W. Demmel, and J. A. Bilmes. Statistical
models for empirical search-based performance tuning.Int.
J. High Perform. Comput. Appl., 18(1):65–94, 2004.

[30] R. C. Whaley and J. J. Dongarra. Automatically tuned
linear algebra software. InSupercomputing ’98:
Proceedings of the 1998 ACM/IEEE conference on
Supercomputing (CDROM), pages 1–27, Washington, DC,
USA, 1998. IEEE Computer Society.

[31] K. Yotov, D. Padua, K. Pingali, P. Stodghill, and P. Wu. A
comparison of empirical and model-driven optimization. In
Proceedings of the ACM SIGPLAN ’03 Conference on

Programming Language Design and Implementation, pages
63–76, San Diego, Ca, June 2003. ACM Press.

[32] K. Yotov, K. Pingali, and P. Stodghill. Think globally,
search locally. InICS ’05: Proceedings of the 19th annual
international conference on Supercomputing, pages
141–150, New York, NY, USA, 2005. ACM Press.

[33] M. Zhao, B. R. Childers, and M. L. Soffa. A model-based
framework: an approach for profit-driven optimization. In
Third Annual IEEE/ACM Interational Conference on Code
Generation and Optimization, pages 317–327, 2005.

14

