
Collective Knowledge:
towards R&D sustainability

Grigori Fursin
cTuning foundation (France) / dividiti (UK)

E-mail: Grigori.Fursin@cTuning.org

Anton Lokhmotov
dividiti (UK)

E-mail: anton@dividiti.com

Ed Plowman
ARM (UK)

E-mail: Ed.Plowman@arm.com

Abstract—Research funding bodies strongly encourage re-
search projects to disseminate discovered knowledge and trans-
fer developed technology to industry. Unfortunately, capturing,
sharing, reproducing and building upon experimental results has
become close to impossible in computer systems’ R&D. The main
challenges include the ever changing hardware and software
technologies, lack of standard experimental methodology and
lack of robust knowledge exchange mechanisms apart from
publications where reproducibility is still rarely considered.

Supported by the EU FP7 TETRACOM Coordination Action,
we have developed Collective Knowledge (CK), an open-source
framework and methodology that involves the R&D community
to solve the above problems collaboratively. CK helps researchers
gradually convert their code and data into reusable components
and share them via repositories such as GitHub, design and evolve
over time experimental scenarios, replay experiments under
the same or similar conditions, apply state-of-the-art statistical
techniques, crowdsource experiments across different platforms,
and enable interactive publications. Importantly, CK encourages
the continuity and sustainability of R&D efforts: researchers
and engineers can build upon the work of others and make
their own work available for others to build upon. We believe
that R&D sustainability will lead to better research and faster
commercialization, thus increasing return-on-investment.

I. INTRODUCTION

Research funding bodies, including the European Commis-
sion, base their policies to maximize in the long term return
on investment of public money. Calls for proposals are replete
with requests for evaluating potential impact, disseminating
results and facilitating technology transfer [1], [2]. Yet, more
often than not, even promising results are not shared in a way
that others (including members of the same consortium) can
easily review, reuse and build upon. This leads to the problem
of R&D sustainability that can be formulated as follows: how
to ensure that valuable (mostly human) resources are used
responsibly towards creating reliable and reusable knowledge?

Several practical tools have emerged to address R&D sus-
tainability, most notably, Virtual Machines [3] and Docker [4].
These tools have quickly gained popularity in computational
science to make snapshots of the whole software environment
of an experiment, capturing all code and data used during
its execution. Unfortunately, such monolithic snapshots are of
limited use in computer systems’ R&D, where researchers
need to validate and build upon previous work using the
latest available hardware, software, tools and workloads. Im-
portantly, software snapshots do not capture well run-time state
information critical for this domain [5], [6].

Supported by a grant from the EU FP7 609491 TETRA-
COM Coordination Action,1 we have developed Collective
Knowledge (CK), an open framework and methodology to
address the needs of computer systems’ R&D. To ensure
its wide adoption, we have released CK under a permissive
license and provided extensive documentation.2

We describe how CK has already enabled several re-
search projects to share their research artifacts as repro-
ducible and reusable components via our live repository at
http://cknowledge.org/repo. We humbly hope that CK will
contribute to R&D sustainability, which will in turn lead to
better research and faster commercialization.

II. COLLECTIVE KNOWLEDGE: A FRAMEWORK FOR
REPRODUCIBLE AND COLLABORATIVE R&D

Collective Knowledge is a simple, portable and extensible
framework for reproducible and collaborative R&D. Using
CK, researchers can create and share entire experimental work-
flows involving components such as programs (e.g. bench-
marks), data sets, tools (e.g. compilers and libraries), exper-
imental results, predictive models, articles, etc.. In addition,
CK components can abstract away access to hardware, monitor
run-time state, apply predictive analytics, etc.

As shown in Fig. 1a, each CK component has a class.
Classes are implemented as Python modules, with a JSON3

meta description, JSON-based API, and unified command line
interface. New classes can be defined as needed.

Each CK component has a DOI-style unique identifier
(UID). CK components can be referenced and searched
through via their UIDs using Hadoop-based Elasticsearch.4

CK components can be flexibly combined into experimental
workflows, similar to playing with LEGO R© bricks.

Researchers can share CK workflows complete with all
their components via repositories such as GitHub. Other
researchers can reproduce an experiment under the same or
similar conditions using a single CK command. Importantly,
if the other researchers are unable to reproduce an experiment
due to uncaptured dependencies (e.g. on run-time state), they
can “debug” the workflow and share the “fixed” workflow back
(possibly with new extensions, experiments, models, etc.).

1http://tetracom.eu
2https://github.com/ctuning/ck, https://github.com/ctuning/ck/wiki
3JavaScript Object Notation: http://json.org
4Open-source distributed real-time search and analytics: http://elastic.co

Grigori.Fursin@cTuning.org
anton@dividiti.com
Ed.Plowman@arm.com
http://cknowledge.org/repo
http://tetracom.eu
https://github.com/ctuning/ck
https://github.com/ctuning/ck/wiki
http://json.org
http://elastic.co

Reproducing results
is challenging

Tr
an

sp
ar

e
n

tl
y

in
d

ex
e

d
 v

ia
 H

ad
o

o
p

-b
as

e
d

 E
la

st
ic

 S
e

ar
ch

program

pipeline

package

platform.cpu

dataset

math.model

experiment

algorithm

CK module Module actions

common*, transform

common*, install

common*, detect, set_freq

common*, import_all_files

common*, build, predict, fit,
detect_representative_points

common*, add, reproduce,
stat_analysis, html_viewer

common*, show, set,resolve env(ironment)

common*, compile, run

common*, setup,run,autotune

All data

…

…

…

…

…

…

…

…

…

* add, list, view, copy, move, search

Meta-description

…

…

…

…

…

…

…

…

…

 / module UOA (UID or Alias) / data UOA / .cm / data.json

C
o

lle
ct

iv
e

K
n

o
w

le
d

ge
 R

e
p

o
si

to
ry

 D
ir

e
ct

o
ry

 S
tr

u
ct

u
re

Project results

Ever changing software and hardware, no unified interfaces, stochastic behavior

GCC 4.1.x

ICC 2015

LLVM 2.8

OpenMP MPI OpenGL

perf
ATLAS

function-level autotuning and adaptation

hardware
counters

pass
reordering

frequency
GCC 5.x

ARM64

CUDA 7.x
GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x
ICC 2015

ICC 12.0

LLVM 2.6

LLVM 3.7

MVS 2015 IBM XLC

OpenCL

PAPI

Scalasca predictive
scheduling

MKL

polyhedral
transformations KNN

bandwidth

memory size

execution time

SSE4

SimpleScalar

LTO

cache size

threads

algorithm accuracy

Open64

Linaro Linux

TAU

OpenACC

Windows 10

Android 5.x deep neural networks

communication costs

contentions

energy
storage

Support artifact evaluation for
conferences and journals

http://cTuning.org/ae

Convert to Collective Knowledge Format

Implement and share common
experimental workflows:

multi-objective autotuning;
predictive scheduling;

design space exploration;
crowdsourced optimization

Enable interactive articles
with experiment replay

http://cknowledge.org/repo

Docker Virtual
Machines

(a)

CK-based experimental workflow
for computer systems research

b = B(c , f , s)
… … … …

Formalized function (model)
of a component behavior

Flattened JSON vectors
(either string categories
or integer/float values)

CK repositories
 and buildbots

CK web front-end,
unified web services Interdisciplinary

crowd

Universal,
multi-dimensional,

multi-objective,
ML-based
autotuner

Profile;
collect

hardware
counters

Analyze
behavior

histogram –
detect states

Apply Pareto
frontier filter

Shared artifacts and workflows

…

CK CMD
front-end

Compile
and run
program

(b)

Fig. 1. (a) Tackling the reproducibility and reusability challenges in computer systems’ R&D with the Collective Knowledge framework; (b) assembling
experimental workflows from shared components similar to playing with LEGO R© bricks.

The community is thus able to gradually expose in a unified
way multi-dimensional design and optimization choices c
of all components, their features f, dependencies on other
components, run-time state s and observed behavior b, as
shown in Fig. 1b and described in detail in [6], [7].

This, in turn, allows the community to address the most
essential question of computer systems’ R&D: how to opti-
mize any given computation in terms of performance, power
consumption, resource usage, accuracy, resiliency and cost;
in other words, how to learn and optimize the behavior
function B:

b = B(c, f , s)

We believe our approach can help change researchers’ men-
tality making them think about how to make their workflows
reusable and extensible by the community. For example, the
reviewers can validate presented techniques at submission
time; the authors can fix problems at rebuttal time; the
wider community can reuse and maintain research artifacts
after publication. Eventually, our approach should also enable
open computer systems’ research, similar to the open source
software movement [7], [8], [9].

III. PRACTICAL USE CASES

We demonstrate the Collective Knowledge approach using
two realistic programs: HOG from the Realeyes image pro-
cessing benchmark [10] developed in the EU CARP project5

and KFusion from the SLAMBench 3D scene understanding

5http://carpproject.eu

benchmark [11] developed in the UK PAMELA project.6 Our
approach formalizes and supports many techniques commonly
used in computer systems’ R&D such as systematic experi-
mentation (§III-A), run-time adaptation (§III-B), and design
space exploration (§III-C). See [12] for a live report with
further information, shared artifacts and interactive graphs.

A. Systematic experimentation

Performance evaluation (colloquially called “benchmark-
ing”) is one of the most important activities in computer
engineering. Getting it right, however, is hard. For example, on
mobile devices, unexpected performance variation can often be
attributed to dynamic voltage and frequency scaling (DVFS).
Mobile devices have power and temperature limits to prevent
device damage; in addition, when a workload’s computational
requirements can still be met at a lower frequency, lowering
the frequency conserves energy. Further complications arise
when benchmarking on heterogeneous multicore systems such
as ARM big.LITTLE: in a short time, a workload can migrate
between cores having different microarchitectures, as well as
running at different frequencies. Controlling for such factors
(or at least accounting for them with elementary statistics) is
key to meaningful performance evaluation on mobile devices.

Fig. 2 shows a performance surface plot for the HOG
program (4× 4 cells; 64× 64 blocks; one image) on a Sam-
sung Chromebook 2 with DVFS disabled and the processors’
frequencies controlled for. The X and Y axis show the CPU

6http://apt.cs.manchester.ac.uk/projects/PAMELA

http://carpproject.eu
http://apt.cs.manchester.ac.uk/projects/PAMELA

and the GPU frequencies; the Z axis shows the GPU kernel
execution time. As expected, the execution time is roughly
inversely proportional to the GPU frequency, but does not
depend on the CPU frequency.

Fig. 3 is similar but the Z axis shows the total GPU
execution time calculated as the sum of the kernel execution
time and the overhead of transferring the data to the GPU
and back. At higher CPU frequencies (roughly greater than
800 MHz), this plot looks just like a raised version of the
plot in Fig. 2. At lower CPU frequencies, however, the data
copy overhead becomes more pronounced than at higher CPU
frequencies. In other words, raising the CPU frequency up to
800 MHz improves the performance, but raising it higher than
800 MHz results in no further performance improvement.

An often voiced objection that on a real platform DVFS
would be enabled does not invalidate the need for reproducible
systematic experimentation. When software developers are
aware of their program’s performance profile, they can make
right optimization decisions such as optimizing for typical
conditions (e.g. when the frequencies are set at half of the
peak) or the worst case.

B. Run-time adaptation with active learning

Systematically collecting performance data that can be
trusted is essential but does not by itself produce insights.
Collective Knowledge enables applying state-of-the-art sta-
tistical techniques to “raw data” to deliver “useful insights”.
For example, by amassing performance data on executing the
HOG program with different images, we can confirm or reject
with the desired confidence the hypothesis that its performance
does not depend significantly on the image size. Perhaps we
can even conclude that the performance does not depend on
the image shape (dimensions). But what does the performance
depend on (apart from the processors’ frequencies)? Moreover,
can we quantify the dependence? Sometimes, we will not
have enough data to confidently answer certain questions.
Sometimes, we will have just the opposite problem: how to
find answers in the “big data” enthusiastically collected when
experimentation is cheap.

Consider optimizing the execution time of a parallel work-
load running on a heterogeneous platform comprised of a CPU
and a GPU. Running the workload on the GPU as a data
parallel kernel is typically faster than on the CPU. The total
GPU execution time, however, sometimes exceeds the CPU
execution time. In fact, we have just described the behaviour
of the HOG program. Fig. 4 shows on the Z axis the CPU
execution time divided by the total GPU execution time. When
this ratio is greater than 1 (the light pink to bright red areas),
using the GPU is faster than using the CPU, despite the data
copy overhead. A sensible scheduling decision, therefore, is
to schedule the workload on the GPU.

While this plot suggests when the GPU should be used for
this particular experiment, will it still be possible to make
sensible scheduling decisions if the performance also depends
on factors other than the processors’ frequencies?

CPU frequency (MHz)

200.0 400.0 600.0 800.01000.01200.01400.01600.01800.02000.0
GPU fre

quency (M
Hz)

100.0

200.0

300.0

400.0

500.0

600.0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

G
P

U
 ti

m
e

w
ith

 m
em

. t
ra

ns
fe

r

Fig. 2. Z axis: GPU [kernel only] execution time (seconds).

CPU frequency (MHz)

200.0 400.0 600.0 800.01000.01200.01400.01600.01800.02000.0
GPU fre

quency (M
Hz)

100.0

200.0

300.0

400.0

500.0

600.0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.018

0.024

0.030

0.036

0.042

0.048

0.054

0.060

0.066

G
P

U
 ti

m
e

w
ith

 m
em

. t
ra

ns
fe

r

Fig. 3. Z axis: GPU [kernel + data copy] execution time (seconds).

CPU frequency (MHz)

200.0 400.0 600.0 800.01000.01200.01400.01600.01800.02000.0
GPU fre

quency (M
Hz)

100.0

200.0

300.0

400.0

500.0

600.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

C
P

U
 ti

m
e

/ G
P

U
 ti

m
e

w
ith

 m
em

. t
ra

ns
fe

r
Fig. 4. Z axis: CPU execution time divided by GPU [kernel + data copy]
execution time (×).

To answer this question, we conducted multiple experiments
with HOG (1 × 1 cells) on a Samsung Chromebook 1 (dual-
core ARM Cortex-A15 CPU, quad-core ARM Mali-T604
GPU).7 The experiments covered the Cartesian product of:
2 CPU frequencies (800 MHz, 1600 MHz); 2 GPU frequencies
(266 MHz, 533 MHz); 3 block sizes (16, 64, 128); 23 images
(in different shapes and sizes); in total, 276 experiments (with
5 repetitions each).

7See [12] for experiments on a Samsung Chromebook 2.

To analyze the collected experimental data, we use decision
trees, a popular supervised learning method for classification
and regression.8 We build decision trees using a Collective
Knowledge interface to the Python scikit-learn pack-
age.9 We thus obtain a predictive model that tells us if it
is faster to execute HOG on the GPU than on the CPU by
looking at several features of a sample (experiment). In other
words, the model assigns to a sample one of the two labels:
“YES” means the GPU should be used; “NO” means the CPU
should be used. We train the model on the experimental data,
by labeling a sample with “YES” if the CPU execution time
exceeds the GPU execution time by at least 7% (to account
for variability), and with “NO” otherwise.

if X[0] (worksize) <= 40.0000
samples = 276

L1
samples = 92

NO (90) / YES (2)

NO

yes

L2
samples = 184

NO (4) / YES (180)

YES

no

Fig. 5. Question: Is the GPU [kernel + data copy] faster than the CPU?
Model: feature set: 1; depth: 1.

Fig. 5 shows a decision tree of depth 1 built using a single
feature: the algorithm block size (designated as ‘worksize’),
which, informally, determines the computational intensity of
HOG. The root node divides the training set of 276 samples
into two subsets. For 92 samples in the first subset, represented
by the left leaf node (“L1”), the worksize is less than or
equal to 40 (i.e. 16). For 184 samples in the second subset,
represented by the right leaf node (“L2”), the worksize is
greater than 40 (i.e. 64 and 128).

In the first subset, 90 samples are labeled with “NO” and
2 samples are labeled with “YES”. Since the majority of the
samples are labeled with “NO”, the tree predicts that the work-
load for which the worksize is less than or equal to 40 should
be executed on the CPU. Similarly, the workload for which
the worksize is greater than 40 should be executed on the
GPU. Intuitively, this makes sense: the workload with a higher
computational intensity (a higher worksize value) should be
executed on the GPU, despite the data copy overhead.

For 6 samples out of 276, the model in Fig. 5 mispredicts
the correct scheduling decision. (We say that the rate of correct
predictions is 270/276 or 97.8%.) For example, for the 2
samples out of 92 in the subset for which the worksize is
16 (“L1”), the GPU was still faster than the CPU. Yet, based
on labeling of the majority of the samples in this subset, the
model mispredicts that the workload should be executed on
the CPU.

8https://en.wikipedia.org/wiki/Decision tree learning
9http://scikit-learn.org

if X[0] (worksize) <= 40.0000
samples = 276

L1
samples = 92

NO (90) / YES (2)

NO

yes

if X[0] (worksize) <= 96.0000
samples = 184

no

L2
samples = 92

NO (4) / YES (88)

YES

yes

L3
samples = 92

NO (0) / YES (92)

YES

no

Fig. 6. Question: Is the GPU [kernel + data copy] faster than the CPU?
Model: feature set: 1; depth: 2.

Fig. 6 shows a decision tree of depth 2 using the same
worksize feature. The right child of the root now has two
children of its own. All the samples in the rightmost leaf
(“L3”) for which the worksize is greater than 96 (i.e. 128)
are labeled with “YES”. This means that at the highest
computational intensity, the GPU was always faster than the
CPU, thus confirming our intuition. However, the model in
Fig. 6 still makes 6 mispredictions. To improve the prediction
rate, we build models using more features, as well as having
more levels. We consider 2 more sets of features as in Fig. 7.

Id Features
FS1 worksize [block size]
FS2 all features from FS1,

CPU frequency, GPU frequency,
image rows (m), image columns (n),
image size (m× n),
(GWS0, GWS1, GWS2) [OpenCL global work size]

FS3 all features from FS2,
image size / CPU frequency,
image size / GPU frequency,
CPU frequency / GPU frequency

Fig. 7. Feature sets: simple (FS1); natural (FS2); designed (FS3).

The “natural” set is constructed from the features that we
expected would impact the scheduling. Fig. 8 shows a decision
tree of depth 4 built using this set. This model uses 4 additional
features (the GPU frequency, the CPU frequency, the number
of image columns, the number of image rows) and has 8 leaf
nodes. This model makes the same decision on the worksize
at the top level, but better fits the training data at lower
levels. Still, it results in 2 mispredictions (“L7”), achieving
the prediction rate of 99.3%. However, this model is more
difficult to grasp intuitively and may not fit new data well.

The “designed” set can be used to build models achieving
the 100.0% prediction rate. A decision tree of depth 5 (not
shown) uses all the new features from the designed set. With
12 leaf nodes, however, this model is even less intuitive and
exhibits even more overfitting than the one in Fig. 8.

https://en.wikipedia.org/wiki/Decision_tree_learning
http://scikit-learn.org

if X[0] (worksize) <= 40.0000
samples = 276

if X[7] (image rows) <= 620.5000
samples = 92

yes

if X[6] (image columns) <= 3037.0000
samples = 184

no

if X[5] (GPU frequency) <= 399.5000
samples = 8

yes

L4
samples = 84

NO (84) / YES (0)

NO

no

L1
samples = 4

NO (4) / YES (0)

NO

yes

if X[4] (CPU frequency) <= 1200.0000
samples = 4

no

L2
samples = 2

NO (0) / YES (2)

YES

yes

L3
samples = 2

NO (2) / YES (0)

NO

no

L5
samples = 160

NO (0) / YES (160)

YES

yes

if X[0] (worksize) <= 96.0000
samples = 24

no

if X[4] (CPU frequency) <= 1200.0000
samples = 12

yes

L8
samples = 12

NO (0) / YES (12)

YES

no

L6
samples = 6

NO (0) / YES (6)

YES

yes

L7
samples = 6

NO (4) / YES (2)

NO

no

Fig. 8. Question: Is the GPU [kernel + data copy] faster than the CPU?
Model: feature set: 2; depth: 4.

C. Design space exploration

The architecture of CK with unified JSON interfaces makes
it easy not only to replay shared workflows, but also to
augment the workflows during replay. This enables performing
automatic design space exploration (autotuning) of exposed
optimization choices.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ATE (average trajectory error)

0

10

20

30

40

50

60

FP
S

 (f
ra

m
es

 p
er

 s
ec

on
d)

Powered by Collective Knowledge

Fig. 9. SLAMbench design space exploration on an Odroid XU3
platform (see [12] for an interactive graph).

Fig. 9 shows results of such design space exploration via
random sampling for the KFusion program. The Y axis shows
the performance in frames per second (with error bars); the X
axis shows the average trajectory error (tracking accuracy) in
meters. The green dot represents the default configuration. The
red dots represent a Pareto frontier. Configurations to the left
of the dashed line have better accuracy than the default. One
configuration is both roughly 10 times faster and more accurate
than the default configuration.

We have similarly used CK to tune parameterized OpenCL
programs across multiple devices and also found order-of-
magnitude improvements over reasonable defaults. We thus
believe using CK can improve performance portability of
OpenCL programs and enable fair comparisons between de-
vices.

IV. CONCLUSION AND OUTLOOK

We have presented Collective Knowledge, the first to our
knowledge open framework that involves the community to
gradually grow a common methodology for reproducible com-
puter systems’ R&D. Our approach allows to crowdsource
experimentation across multiple platforms, programs, datasets,
etc. Moreover, it opens up opportunities to grow community
knowledge in forms of predictive models where mispredictions
can be detected and addressed by the experts as more data
becomes available. We outline our vision for community-based
R&D in several areas.

A. Community-sourced benchmarks

Two issues often affect validity and conclusions of perfor-
mance analysis [13]:

1) Evaluation is not conducted in a rigorous way.
2) Workloads selected for evaluation are not representative.
Our approach aims to address the first issue by using

feedback and contributions from the expert community to
avoid common pitfalls.

The second issue is more insidious. Several companies
devise and license benchmark suites based on their guesses
of what representative workloads might be in the near future.
Since benchmarking is their primary business, their programs,
datasets and methodology often go unchallenged, with the
benchmarking scores driving the purchasing decisions both of
OEMs (e.g. phone manufacturers) and consumers (e.g. phone
users). When stakes are that high, the vendors have no choice
but to optimize their products for the commercial benchmarks.
When those turn out to have no close resemblance to real
workloads, the products underperform.

We believe we can collectively tackle the second issue as
well as the first one. The community will both provide repre-
sentative workloads and rank them according to established
quality criteria. From time to time (say, every 6 months),
a selection of workloads (say, the top 20) can be further
ranked by a panel of recognized experts to provide a valuable
complement to today’s commercial benchmark suites.

The success will depend on establishing the right incentives
for the community. Leading academics have long recognized
the need for representative workloads to drive research in
hardware design and software tools. For example, the UK
PAMELA project promotes 3D scene understanding as a
key use case.10 With funding agencies increasingly requiring
academics to demonstrate impact of their research and to share
their code and data, the time is ripe for excellent individual
research to make a wide community impact.

Incentives to share representative workloads may be some-
what different for industry. As the example of Realeyes shows,
even when commercial sensitivity prevents a company from
releasing their full application under an open-source license, it
may still be possible to distill a performance-sensitive portion
of it into a standalone benchmark. The community can help the
company to optimize their benchmark (for free or for fee), thus

10Google agrees: https://www.google.com/atap/project-tango

https://www.google.com/atap/project-tango

improving the overall performance of their full application.11

Some researchers and software developers will just want to see
their benchmark appear in the ranked selection of workloads,
highlighting their skill and expertise (similar to “kudos” for
open-source contributions).

B. Community-sourced performance data

We see the potential of creating open performance data
even from completely closed-source software. For example, a
software company wishing to improve performance of their
product may turn to services of a specialized autotuning
provider. A successful provider would perform astounding
numbers of performance experiments every day. Rather than
throwing the experimental data away, a responsible autotuning
provider would include retention of anonymized data in the
terms and conditions of their service. A similar case can be
made for providers of device farms such as Amazon Device
Farm and Xamarin Test Cloud.12 An even more intriguing case
can be made for hardware vendors to share their performance
data from internal benchmarking. The objection we hear most
often from hardware vendors is that performance data is highly
sensitive. Give too much information, the sceptics argue, and
you will expose your weaknesses to competitors, customers,
press and even patent trolls. (Give too little, we argue, and
software developers will be unable to use your hardware
effectively.)

The CK approach can support a variety of mechanisms and
models for knowledge sharing. Each party will decide for
themselves how much, if anything, they share. Some vendors
will only share data about publicly available devices. (This
kind of data the community could actually gather without
vendors.) Some vendors will share data about their products in
development but only under an NDA to selected parties. Some
vendors will not share raw data but will be happy for software
developers to have access to performance models built from
such data. Some test farms providers will license raw data or
data-mined insights to software developers, tool developers or
even back to hardware vendors. We envision that eventually
the pros and cons of “open performance” will be understood
and accepted as they are understood and accepted today for
“open software”.

C. Community-grown programming tools

Developing programming tools is challenging but not par-
ticularly profitable. For example, independent compiler com-
panies often struggle to make the ends meet, change owners
or completely disappear. Lack of funding also means that even
when academic research is close to industry needs, it rarely
gets successfully transferred.

The community can encourage better research and spur
technology transfer of programming tools. First, having access
to community-sourced realistic workloads will be a boon

11The original HOG paper [14] has over 12500 citations. Just imagine all
this community combining their efforts to squeeze out every gram of HOG
performance across different configurations, data sets, platforms, etc.

12https://aws.amazon.com/device-farm, https://xamarin.com/test-cloud

to programming tool developers. Second, rigorous evaluation
using the CK approach can help the community to separate
leaders from also-rans. Third, the community can provide
valuable feedback on programming tools, making sure that
promising tools receive the attention and funding they deserve.
All of this will lead to more innovation in tools and conse-
quently greatly benefit the software development ecosystem.

D. Exciting opportunities on the horizon!

We view Collective Knowledge as a catalyst for stimu-
lating flows of reproducible insights across largely divided
hardware/software and industry/academia communities. Better
flows will lead to breakthroughs in energy efficiency, perfor-
mance and reliability of computer systems. Effective knowl-
edge sharing and open innovation will enable new exciting
applications in consumer electronics, robotics, automotive and
healthcare—at better quality, lower cost and faster time-to-
market.

ACKNOWLEDGEMENTS

We thank the EU FP7 TETRACOM Coordination Action and the
CK community for their feedback, discussions and contributions.

REFERENCES

[1] “Scientific data: open access to research results will boost Europe’s inno-
vation capacity.” http://europa.eu/rapid/press-release IP-12-790 en.htm.

[2] “EU Open Science and Open Access Policies.” http://ec.europa.eu/
research/swafs/index.cfm?pg=policy&lib=science.

[3] J. E. Smith and R. Nair, “The architecture of virtual machines,”
Computer, vol. 38, pp. 32–38, May 2005.

[4] D. Merkel, “Docker: Lightweight Linux containers for consistent devel-
opment and deployment,” Linux J., vol. 2014, Mar. 2014.

[5] J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “Contention aware
execution: online contention detection and response,” in Proceedings
of the CGO 2010, The 8th International Symposium on Code Gener-
ation and Optimization, Toronto, Ontario, Canada, April 24-28, 2010,
pp. 257–265, 2010.

[6] G. Fursin, R. Miceli, A. Lokhmotov, M. Gerndt, M. Baboulin, D. Mal-
ony, Allen, Z. Chamski, D. Novillo, and D. D. Vento, “Collective Mind:
Towards practical and collaborative auto-tuning,” Scientific Program-
ming, vol. 22, pp. 309–329, July 2014.

[7] G. Fursin, A. Memon, C. Guillon, and A. Lokhmotov, “Collective Mind,
Part II: Towards performance- and cost-aware software engineering as
a natural science,” in 18th International Workshop on Compilers for
Parallel Computing (CPC’15), January 2015.

[8] G. Fursin and C. Dubach, “Experience report: community-driven review-
ing and validation of publications,” in Proceedings of the 1st Workshop
on Reproducible Research Methodologies and New Publication Models
in Computer Engineering (ACM SIGPLAN TRUST’14), ACM, 2014.

[9] “Community-driven Artifact Evaluation Initiative for PPoPP and CGO
conferences.” http://cTuning.org/ae.

[10] E. Hajiyev, R. Dávid, L. Marák, and R. Baghdadi, “Realeyes image pro-
cessing benchmark.” https://github.com/Realeyes/pencil-benchmarks-
imageproc, 2011–2015.

[11] L. Nardi, B. Bodin, M. Z. Zia, J. Mawer, A. Nisbet, P. H. J. Kelly,
A. J. Davison, M. Luján, M. F. P. O’Boyle, G. Riley, N. Topham,
and S. Furber, “Introducing SLAMBench, a performance and accuracy
benchmarking methodology for SLAM,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), May 2015. arXiv:1410.2167.

[12] G. Fursin and A. Lokhmotov, “Live report with shared artifacts and
interactive graphs.” http://cknowledge.org/repo/web.php?wcid=report:
b0779e2a64c22907.

[13] R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling.
Wiley, May 1991.

[14] N. Dalal and T. Bill, “Histograms of oriented gradients for human
detection,” 2005.

https://aws.amazon.com/device-farm
https://xamarin.com/test-cloud
http://europa.eu/rapid/press-release_IP-12-790_en.htm
http://ec.europa.eu/research/swafs/index.cfm?pg=policy&lib=science
http://ec.europa.eu/research/swafs/index.cfm?pg=policy&lib=science
http://cTuning.org/ae
https://github.com/Realeyes/pencil-benchmarks-imageproc
https://github.com/Realeyes/pencil-benchmarks-imageproc
http://cknowledge.org/repo/web.php?wcid=report:b0779e2a64c22907
http://cknowledge.org/repo/web.php?wcid=report:b0779e2a64c22907

