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Abstract

Developing efficient software and hardware has never
been harder whether it is for a tiny IoT device or
an Exascale supercomputer. Apart from the ever
growing design and optimization complexity, there
exist even more fundamental problems such as lack
of interdisciplinary knowledge required for effective
software/hardware co-design, and a growing technology
transfer gap between academia and industry.

We introduce our new educational initiative to tackle
these problems by developing Collective Knowledge
(CK), a unified experimental framework for computer
systems research and development. We use CK to teach
the community how to make their research artifacts
and experimental workflows portable, reproducible,
customizable and reusable while enabling sustainable
R&D and facilitating technology transfer. We
also demonstrate how to redesign multi-objective
autotuning and machine learning as a portable and
extensible CK workflow. Such workflows enable
researchers to experiment with different applications,
data sets and tools; crowdsource experimentation
across diverse platforms; share experimental results,
models, visualizations; gradually expose more design
and optimization choices using a simple JSON API; and
ultimately build upon each other’s findings.

As the first practical step, we have implemented
customizable compiler autotuning, crowdsourced
optimization of diverse workloads across Raspberry Pi
3 devices, reduced the execution time and code size by
up to 40%, and applied machine learning to predict
optimizations. We hope such approach will help teach
students how to build upon each others’ work to enable
efficient and self-optimizing software/hardware/model
stack for emerging workloads.
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Live CK repository:
github.com/ctuning/ck-rpi-optimization-results (0.9GB)

Interactive report:
cKnowledge.org/rpi-crowd-tuning

Archives of CK repositories at FigShare:
doi.org/10.6084/m9.figshare.5789007.v2

1 Introduction

Many recent international roadmaps for computer
systems research appeal to reinvent computing [29, 52,
9]. Indeed, developing, benchmarking, optimizing and
co-designing hardware and software has never been
harder, no matter if it is for embedded and IoT
devices, or data centers and Exascale supercomputers.
This is caused by both physical limitations of existing
technologies and an unmanageable complexity of
continuously changing computer systems which already
have too many design and optimization choices and
objectives to consider at all software and hardware
levels [65], as conceptually shown in Figure 1. That
is why most of these roadmaps now agree with our
vision that such problems should be solved in a
close collaboration between industry, academia and
end-users [58, 64].

However, after we initiated artifact evaluation
(AE) [20, 48] at several premier ACM and IEEE
conferences to reproduce and validate experimental
results from published papers, we noticed an even more
fundamental problem: a growing technology transfer gap
between academic research and industrial development.
After evaluating more than 100 artifacts from the
leading computer systems conferences in the past 4
years, we noticed that only a small fraction of research
artifacts could be easily customized, ported to other
environments and hardware, reused, and built upon.
We have grown to believe that is this due to a lack
of a common workflow framework that could simplify
implementation and sharing of artifacts and workflows
as portable, customizable and reusable components with
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Figure 1: Too many design and optimization choices at all levels of the continuously changing software and hardware
stack make it extremely challenging and time consuming to design efficient computer systems for realistic workloads.

some common API and meta information vital for open
science [60].

At the same time, companies are always under pressure
and rarely have time to dig into numerous academic
artifacts shared as CSV/Excel files and “black box”
VM and Docker images, or adapt numerous ad-hoc
scripts to realistic and ever changing workloads, software
and hardware. That is why promising techniques
may remain in academia for decades while just being
incrementally improved, put on the shelf when leading
students graduate, and “reinvented” from time to time.

Autotuning is one such example: this very popular
technique has been actively researched since the 1990s
to automatically explore large optimization spaces and
improve efficiency of computer systems [113, 89, 49,
112, 66, 50, 78, 105, 84, 80, 96, 104, 44, 72, 61, 110,
30, 100, 69, 70, 76, 39, 111, 34]. Every year, dozens
of autotuning papers get published to optimize some
components of computer systems, improve and speed up
exploration and co-design strategies, and enable run-time
adaptation. Yet, when trying to make autotuning
practical (in particular, by applying machine learning)
we faced numerous challenges with integrating such
published techniques into real, complex and continuously
evolving software and hardware stack [58, 65, 64, 60].

Eventually, these problems motivated us to develop
a common experimental framework and methodology
similar to physics and other natural sciences to
collaboratively improve autotuning and other techniques.

As part of this educational initiative, we implemented an
extensible, portable and technology-agnostic workflow
for autotuning using the open-source Collective
Knowledge framework (CK) [25, 62]. Such workflows
help researchers to reuse already shared applications,
kernels, data sets and tools, or add their own ones
using a common JSON API and meta-description [6].
Moreover, such workflows can automatically adapt
compilation and execution to a given environment on
a given device using integrated cross-platform package
manager.

Our approach takes advantage of a powerful and
holistic top-down methodology successfully used in
physics and other sciences when learning complex
systems. The key idea is to let novice researchers first
master simple compiler flag autotuning scenarios while
learning interdisciplinary techniques including machine
learning and statistical analysis. Researchers can then
gradually increase complexity to enable automatic and
collaborative co-design of the whole SW/HW stack by
exposing more design and optimization choices, multiple
optimization objectives (execution time, code size, power
consumption, memory usage, platform cost, accuracy,
etc.), crowdsource autotuning across diverse devices
provided by volunteers similar to SETI@home [37],
continuously exchange and discuss optimization results,
and eventually build upon each other’s results.

We use our approach to optimize diverse kernels and
real workloads such as zlib in terms of speed and code
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size by crowdsourcing compiler flag autotuning across
Raspberry Pi3 devices using the default GCC 4.9.2 and
the latest GCC 7.1.0 compilers. We have been able
to achieve up to 50% reductions in code size and from
15% to 8 times speed ups across different workloads over
the “-O3” baseline. Our CK workflow and all related
artifacts are available at GitHub to allow researchers
to compare and improve various exploration strategies
(particularly based on machine learning algorithms such
as KNN, GA, SVM, deep learning, though further
documentation of APIs is still required) [61, 64]. We
have also shared all experimental results in our open
repository of optimization knowledge [8, 10] to be
validated and reproduced by the community.

We hope that our approach will serve as a practical
foundation for open, reproducible and sustainable
computer systems research by connecting students,
scientists, end-users, hardware designers and software
developers to learn together how to co-design the next
generation of efficient and self-optimizing computer
systems, particularly via reproducible competitions such
as ReQuEST [31].

This technical report is organized as follows.
Section 2 introduces the Collective Knowledge
framework (CK) and the concept of sharing artifacts
as portable, customizable and reusable components.
Section 3 describes how to implement a customizable,
multi-dimensional and multi-objective autotuning as
a CK workflow. Section 4 shows how to optimize
compiler flags using our universal CK autotuner.
Section 5 presents a snapshot of the latest optimization
results from collaborative tuning of GCC flags for
numerous shared workloads across Raspberry Pi3
devices. Section 6 shows optimization results of zlib and
other realistic workloads for GCC 4.9.2 and GCC 7.1.0
across Raspberry Pi3 devices. Section 7 describes how
implement and crowdsource fuzzing of compilers and
systems for various bugs using our customizable CK
autotuning workflow. Section 8 shows how to predict
optimizations via CK for previously unseen programs
using machine learning. Section 9 demonstrates how
to select and autotune models and features to improve
optimization predictions while reducing complexity.
Section 10 shows how to enable efficient, input-aware
and adaptive libraries and programs via CK. Section 11
presents CK as an open platform to support reproducible
and Pareto-efficient co-design competitions of the whole
software/hardware/model stack for emerging workloads
such as deep learning and quantum computing. We
present future work in Section 12. We also included
Artifact Appendix to allow students try our framework,
participate in collaborative autotuning, gradually
document APIs and improve experimental workflows.

2 Converting ad-hoc artifacts
to portable and reusable
components with JSON API

Artifact sharing and reproducible experimentation are
key for our collaborative approach to machine-learning
based optimization and co-design of computer systems,
which was first prototyped during the EU-funded
MILEPOST project [58, 7, 61]. Indeed, it is difficult,
if not impossible, and time consuming to build useful
predictive models without large and diverse training
sets (programs, data sets), and without crowdsourcing
design and optimization space exploration across diverse
hardware [60, 64].

While we have been actively promoting artifact
sharing for the past 10 years since the MILEPOST
project [58, 4], it is still relatively rare in the
community systems community. We have begun to
understand possible reasons for that through our Artifact
Evaluation initiative [20, 48] at PPoPP, CGO, PACT,
SuperComputing and other leading ACM and IEEE
conferences which has attracted over a hundred of
artifacts in the past few years.

Unfortunately, nearly all the artifacts have been
shared simply as zip archives, GitHub/GitLab/Bitbucket
repositories, or VM/Docker images, with many ad-hoc
scripts to prepare, run and visualize experiments, as
shown in Figure 2a. While a good step towards
reproducibility, such ad-hoc artifacts are hard to reuse
and customize as they do not provide a common API
and meta information.

Some popular and useful services such as Zenodo [17]
and FigShare [16] allow researchers to upload individual
artifacts to specific websites while assigning DOI [13]
and providing some meta information. This helps
the community to discover the artifacts, but does not
necessarily make them easy to reuse.

After an ACM workshop on reproducible research
methodologies (TRUST’14) [18] and a Dagstuhl
Perspective workshop on Artifact Evaluation [48], we
concluded that compute systems research lacked a
common experimental framework in contrast with other
sciences [95].

Together with our fellow researchers, we also
assembled the following wish-list for such a framework:

• it should be able to help researchers quickly organize
their local code and data into discoverable and
reusable components with a unique ID, common
API and unified meta information, rather than being
forced to upload them to the web from the start;

• it should be open-source with a permissive license
to simplify technology transfer;

• it should be portable, simple to install and use from
the command line;
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Figure 2: Reorganizing ad-hoc experimental packs into reusable, customizable and discoverable components with
JSON API and meta information using the Collective Knowledge framework.

• it should allow to assemble experimental workflows
by simply plugging in shared components;

• it should support native non-virtualized execution
of such workflows, i.e. not only via Virtual
Machine [106] and Docker [5], critical for empirical
program optimization and hardware co-design
experiments;

• it should be able to adapt to continuously evolving
software environments and support different
versions of tools such as rapidly evolving compilers
and libraries;

• it should include a local web server to simplify
crowdsourcing of experiments and visualization of
results in workgroups.

Since there was no available open-source framework
with all these features, we decided to develop such
a framework, Collective Knowledge (CK) [25, 62],
from scratch with initial support from the EU-funded
TETRACOM project [19]. CK is implemented as a
small and portable Python module with a command
line front-end to assist users in converting their local
objects (code and data) into searchable, reusable and
shareable directory entries with user-friendly aliases and
auto-generated Unique ID, JSON API and JSON meta
information [6], as described in [62, 2] and conceptually
shown in Figure 2b.

The user first creates a new local CK repository as
follows:

$ ck add repo:new-ck-repo

Initially, it is just an empty directory:

$ ck find repo:new-ck-repo

$ ls ‘ck find repo:new-ck-repo‘

Now, the user starts adding research artifacts as CK
components with extensible APIs. For example, after
noticing that we always perform 3 common actions on
all our benchmarks during our experiments, ”compile”,
”run” and ”autotune”, we want to provide a common
API for these actions and benchmarks, rather than
writing ad-hoc scripts. The user can provide such an
API with actions by adding a new CK module to a CK
repository as follows:

$ ck add new-ck-repo:module:program

CK will then create two levels of directories module
and program in the new-ck-repo and will add a
dummy module.py where common object actions can be
implemented later. CK will also create a sub-directory
.cm (collective meta) with an automatically generated
Unique ID of this module and various pre-defined
descriptions in JSON format (date and time of module
creation, author, license, etc) to document provenance of
the CK artifacts.

Users can now create holders (directories) for such
objects sharing common CK module and an API as
follows:

$ ck add new-ck-repo:program:new-benchmark
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CK will again create two levels of directories: the first
one specifying used CK module (program) and the second
one with alias new-benchmark to keep objects. CK will
also create three files in an internal .cm directory:

• meta.json - an empty JSON file which can be
gradually extended to describe a given object (such
as added program in our example);

• info.json - a JSON file with the date and time of
the last modification as well as license, copyright and
author information to keep attribution of all updates
for open research;

• desc.json - an empty JSON file to describe
types of keys in meta.json (useful for automatic
type checking) and their value ranges (useful for
autotuning as we will show later in this report).

Users can then find a path to a newly created
object holder (CK entry) using the ck find
program:new-benchmark command and then copy
all files and sub-directories related to the given object
using standard OS shell commands.

This allows to get rid of ad-hoc scripts by
implementing actions inside reusable CK Python
modules as shown in Figure 3. For example, the user
can add an action to a given module such as compile
program as follows:

$ ck add action module:program --func=compile

CK will create a dummy function body with an input
dictionary i inside module.py in the CK module:program
entry. Whenever this function is invoked via CK using
the following format:

$ ck compile program:some entry --param1=val1

the command line will be converted to i dictionary and
printed to the console to help novice users understand
the CK API. The user can now substitute this dummy
function with a specific action on a specific entry (some
program in our example based on its meta information)
as conceptually shown in Figure 3. The above example
shows how to call CK functions from Python modules
rather than from the command line using the ck.access
function. It also demonstrates how to find a path to
a given program entry, load its meta information and
unique ID. For the reader’s convenience, Figure 4 lists
several important CK commands.

This functionality should be enough to start
implementing unified compilation and execution of
shared programs. For example, the program module can
read instructions about how to compile and run a given
program from the JSON meta data of related entries,
prepare and execute portable sub-scripts, collect various
statistics, and embed them to the output dictionary in
a unified way. This can be also gradually extended

to include extra tools into compilation and execution
workflow such as code instrumentation and profiling.

Here we immediately face another problem common
for computer systems research: how to support multiple
versions of various and continuously evolving tools
and libraries? However, since we no longer hardwire
calls to specific tools directly in scripts but invoke
them from higher-level CK modules, we can detect
all required tools and set up their environment before
execution. To support this concept even better, we have
developed a cross-platform package manager as a ck-env
repository [22] with several CK modules including soft,
env, package, os and platform. These modules allow the
community to describe various operating systems (Linux,
Windows, MacOS, Android); detect platform features
(ck detect platform); detect multiple-versions of already
installed software (ck detect soft:compiler.gcc); prepare
CK entries with their environments for a given OS and
platform using env module (ck show env) thus allowing
easy co-existence of multiple versions of a given tool;
install missing software using package modules; describe
software dependencies using simple tags in a program
meta description (such as compiler,gcc or lib,caffe), and
ask the user to select an appropriate version during
program compilation when multiple software versions are
registered in the CK as shown in Figure 5.

Such approach extends the concept of package
managers including Spack [68] and EasyBuild [74]
by integrating them directly with experimental CK
workflows while using unified CK API, supporting
any OS and platform, and allowing the community
to gradually extend existing detection or installation
procedures via CK Python scripts and CK meta data.

Note that this CK approach encourages reuse of all
such existing CK modules from shared CK repositories
rather then writing numerous ad-hoc scripts. It should
indeed be possible to substitute most of ad-hoc scripts
from public research projects (Figure 2) with just
a few above modules and entries (Figure 6), and
then collaboratively extend them, thus dramatically
improving research productivity. For this reason, we keep
track of all publicly shared modules and their repositories
in this wiki page. The user will just need to add/update
a .ckr.json file in the root directory of a given CK
repository to describe a dependency on other existing
CK repositories with required modules or entries. Since
it is possible to uniquely reference any CK entry by two
Unique IDs (module UID:object UID), we also plan to
develop a simple web service to automatically index and
discover all modules similar to DOI.

The open, file-based format of CK repositories allows
researchers to continue editing entries and their meta
directly using their favourite editors. It also simplifies
exchange of these entries using Git repositories, zip
archives, Docker images and any other popular tool. At
the same time, schema-free and human readable Python
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def compile (i):
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# ck – simple command line front-end to manage CK repositories,

#         call CK modules, abstract tools and unify input/output

ck compile program:cbench-automotive-susan --speed --flags=-O3 …

ck run program:cbench-automotive-susan

ck autotune program:cbench-automotive-susan

C
K

 o
u

tp
u

t 
(J

S
O

N
/

Set environment for selected SW& HW 

(including compilers and libs)
AutoTune

def compile (i):

# Process CMD

prog=i.get('data_uoa','')

flags=i.get('flags','')

speed=i.get('speed','')

# Get program path, UID and meta(dict)

r=ck.access({'action':'load',

'module_uoa':'program',

'data_uoa':prog})

if r['return']>0: return r

path=r['path']

uid=r['data_uid']

meta=r['dict']

…

return {'return':0}

Figure 3: Converting ad-hoc scripts, tools and workflows to CK Python modules and standardized directories with
actions, unified JSON API, and JSON meta information.

Create new CK repository: ck add repo:my_new_project

Find CK repository: ck find repo:my_new_project

List all CK repositories: ck list repo

Add new module: ck add my_new_project:module:my_module

Add dummy function to module: ck add_action my_module -- func=my_func

Test dummy function: ck my_func  my_module --param1=var1 --param2 -param3

Add new entry for this module: ck add my_new_project:my_module:my_data @@dict

Enter {“tags”:”cool”,”data”}

Add new entry for this module: ck add my_new_project:my_module:my_data2

List my_module entries: ck list my_module

Find entries by tags: ck search my_module –tags=cool

Find entry path: ck find my_module:my_data

Obtain entry info (UIDs): ck info my_module:my_data

Rename entry: ck ren my_module:my_data2 :my_data3Rename entry: ck ren my_module:my_data2 :my_data3

Delete entry: ck rm my_module:my_data3

Pack (archive) repository: ck zip repo:my_new_project

Import CK zip repository: ck add repo:my_new_project –zip=my_new_project.zip

Pull existing repo from GitHub: ck pull repo:ck-autotuning

Update all installed CK repos: ck pull all

List modules from this repo: ck list ck-autotuning:module:*

Compile program: ck compile program:cbench-automotive-susan --speed

Run program: ck run program:cbench-automotive-susan

Autotune program: ck autotune program:cbench-automotive-susan

Start CK internal web server: ck start web

Start CK web front-end: ck browser

Figure 4: Main CK commands to create new or pull existing repositories, add modules, manage entries, perform
actions, and use a local web server.
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local / env / c0eaf14b359a3cf4 / env.sh 

Tags: compiler,gcc,v7.1.0 

local / env / c0eaf14b359a3cf4 / env.sh 

Tags: compiler,gcc,v7.1.0 

local / env / 20a8624092518682 / env.bat 

Tags: compiler,gcc,v4.9.2 

local / env / 20a8624092518682 / env.bat 

Tags: compiler,gcc,v4.9.2 

Soft entries in CK describe how  
to detect if a given software  

is already installed, how to set up  
all its environment including  
all paths to binaries, libraries, 

include, aux tools, etc,  
and how to detect its version 

$ ck detect soft --tags=compiler,gcc $ ck detect soft --tags=compiler,gcc 

$ ck detect soft:compiler.gcc $ ck detect soft:compiler.gcc 

$ ck detect soft:compiler.llvm $ ck detect soft:compiler.llvm 

$ ck list soft:compiler* $ ck list soft:compiler* 

$ ck detect soft:lib.rtl.milepost.codelet $ ck detect soft:lib.rtl.milepost.codelet 

Env entries are created  
in CK local repo for all found 

software instances together with 
their meta and an auto-generated 

environment script env.sh (on Linux) 
or env.bat (on Windows) 

Package entries describe  
how to install a given software  

if it is not already installed  
(using CK Python plugin together 

with install.sh script on Linux host 
or install.bat on Windows host) 

$ ck install package:lib-rtl-xopenme $ ck install package:lib-rtl-xopenme 

$ ck list package:*rtl* $ ck list package:*rtl* 
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$ ck search soft --tags=rtl,codelet $ ck search soft --tags=rtl,codelet 

$ ck  show env $ ck  show env 

$ ck show env –tags=gcc $ ck show env –tags=gcc 

$ ck rm env:* –tags=gcc $ ck rm env:* –tags=gcc 

$ ck search package –tags=rtl $ ck search package –tags=rtl 

$ ck install package:lib-rtl-milepost-codelets $ ck install package:lib-rtl-milepost-codelets 

$ ck list ck-autotuning:package:* $ ck list ck-autotuning:package:* 

Figure 5: CK modules implementing portable package manager with JSON API to enable cross-platform CK
workflows. The community shares CK entries with Python scripts and JSON meta information via Git repositories
to describe how to detect, build and install any software. This approach also simplify co-existence of multiple
versions of the same tool.

Unified experimental pack in the CK format

.ckr.json - CK repo name, UID and deps on other CK repos

module/ program / module.py – unified CK JSON API 

(functions: compile, run, autotune)

dataset

package

result

jnotebook

.cm/ - UIDs for each CK module

program/ zlib

zlib.cm/meta.json - JSON meta for all CK entries

zlib/ *.c – program sources

classify-image

decode-video-streamdecode-video-stream

.cm - UIDs for each CK entry (similar to DOI)

dataset/ image-jpeg-0001

video-frame-0001

package/ compiler-gcc-7.1.0

compiler-llvm-4.0

plugin-llvm-sw-prefetch-pass

lib-caffe-master-cpu

lib-tensorflow-master-opencl

result/ cgo2017-paper

zlib-autotuning-rpi3

jnotebook/ cgo2017-workflow

cgo2017-graph

rpi3-gcc-autotuning

Figure 6: Typical experiment pack with reusable and
discoverable components shared in the CK format with
two level directory structure (module and data).

dictionaries and JSON files helps users to collaboratively
extend actions, API and meta information while keeping
backward compatibility. Such approach should let the
community to gradually and collaboratively convert and
cross-link all existing ad-hoc code and data into unified
components with extensible API and meta information.
This, in turn, allows users organize their own research
while reusing existing artifacts, building upon them,
improving them and continuously contributing back to
Collective Knowledge similar to Wikipedia.

We also noticed that CK can help students reduce
preparation time for Artifact Evaluation [20] at
conferences while automating preparation and validation
of experiments since all artifacts, workflows and
repositories are immediatelly ready to be shared, ported
and plugged in to research workflows.

For example, the highest ranked artifact from the
CGO’17 article [36] was implemented and shared using
the CK framework [28]. That is why CK is now
used and publicly extended by leading companies [62],
universities [36] and organizations [114] to encourage,
support and simplify technology transfer between
academia and industry.

3 Assembling portable and
customizable autotuning
workflow

Autotuning combined with various run-time adaptation,
genetic and machine learning techniques is a popular
approach in computer systems research to automatically
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explore multi-dimensional design and optimization
spaces [113, 32, 46, 94, 89, 49, 112, 77, 66, 108, 50, 78, 105,
84, 80, 56, 96, 73, 43, 75, 38, 88, 92, 103, 70, 90, 86, 42].

CK allows to unify such techniques by developing
a common, universal, portable, customizable,
multi-dimensional and multi-objective autotuning
workflow as a CK module (pipeline1 from the public
ck-autotuning repository with the autotune function).
This allows us to abstract autotuning by decoupling it
from the autotuned objects such as ”program”. Users
just need to provide a compatible function ”pipeline” in
a CK module which they want to be autotuned with a
specific API including the following keys in both input
and output:

• dependencies to describe software dependencies
via portable package manager from the CK;

• choices to expose various design and optimization
knobs c such as algorithmic parameters, model
topology, source-to-source transformations,
compiler flags, hardware configurations, etc.;

• characteristics to monitor optimized behavior b
such as execution time, code size, compilation time,
energy, memory usage, accuracy, resiliency, costs,
etc.;

• features to expose various object features f such as
semantic program and data set features, hardware
counters, platform properties, etc.;

• state to define run-time system state s such as
hardware frequencies, network status, cache state,
etc.

Autotuning can now be implemented as a universal
and extensible workflow applied to any object with
a matching JSON API by chaining together related
CK modules with various exploration strategies,
program transformation tools, compilers, program
compilation and execution pipeline, architecture
simulators, statistical analysis, Pareto frontier filter and
other components, as conceptually shown in Figure 7.
Researchers can also use unified machine learning
CK modules (wrappers to R and scikit-learn [98])
to model the relationship between c, f, s and the
observed behavior b, increase coverage, speed up (focus)
exploration, and predict efficient optimizations [65, 64].
They can also take advantage of a universal complexity
reduction module which can automatically simplify
found solutions without changing their behavior, reduce
models and features without sacrificing accuracy, localize
performance issues via differential analysis [67], reduce
programs to localize bugs, and so on.

1We use the term pipeline similar to experiments in physics and
electronics where an output of one object is chained to an input of
another one.

Even more importantly, our concept of a universal
autotuning workflow, knowledge sharing and artifact
reuse can help teach students how to apply a
well-established holistic and top-down experimental
methodology from natural sciences to continuously
learn and improve the behavior of complex computer
systems [62, 65]. Researchers can continue exposing
more design and optimization knobs c, behavioral
characteristics b, static and dynamic features f, and
run-time state state to optimize and model behavior
of various interconnected objects from the workflow
depending on their research interests and autotuning
scenarios.

Such scenarios are also implemented as CK modules
and describe which sets of choices to select, how to
autotune them and which multiple characteristics to
trade off. For example, existing scenarios include
”autotuning OpenCL parameters to improve execution
time”, ”autotuning GCC flags to balance execution
time and code size”, ”autotune LLVM flags to reduce
execution time”, ”automatically fuzzing compilers to
detect bugs”, ”exploring CPU and GPU frequency
in terms of execution time and power consumption”,
”autotuning deep learning algorithms in terms of speed,
accuracy, energy, memory usage and costs”, and so on.

You can see some of the autotuning scenarios using
the following commands:

$ ck pull repo:ck-crowdtuning

$ ck search module --tags="program

optimization"

$ ck list program

They can then be invoked from the command line as
follows:

$ ck autotune program:[CK program alias]

--scenario=[above CK scenario alias]

4 Implementing universal
compiler flag autotuning

In this section we would like to show how to customize
our universal autotuning workflow to tackle an old
but yet unsolved problem of finding the most efficient
selection of compiler flag which minimizes program size
and execution time.

Indeed, the raising complexity of ever changing
hardware made development of compilers very
challenging. Popular GCC and LLVM compilers
nowadays include hundreds of optimizations (Figure 8)
and often fail to produce efficient code (execution time
and code size) on realistic workloads within a reasonable
compilation time [113, 32, 40, 71, 65]. Such large
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Figure 7: Chaining together various CK modules with JSON API and JSON meta information to implement
universal, portable, customizable, multi-dimensional and multi-objective autotuner gradually extended by the
community.
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Figure 8: Continuously rising number of boolean
and parametric optimization flags in GCC over years
(obtained by automatically parsing GCC source code and
manual pages, therefore small variation is possible).

design and optimization spaces mean that hardware
and compiler designers can afford to explore only a tiny
fraction of the whole optimization space using just few
ad-hoc benchmarks and data sets on a few architectures
in a tough mission to assemble -O3, -Os and other
optimization levels across all supported architectures
and workloads.

Our idea is to keep compiler as a simple collection of
code analysis and transformation routines and separate
it from optimization heuristics. In such case we can
use CK autotuning workflow to collaboratively optimize

multiple shared benchmarks and realistic workloads
across diverse hardware, exchange optimization results,
and continuously learn and update compiler optimization
heuristics for a given hardware as a compiler plugin. We
will demonstrate this approach by randomly optimizing
compiler flags for susan corners program with aging
GCC 4.9.2, the latest GCC 7.1.0 and compare them
with Clang 3.8.1. We already monitor and optimize
execution time and code size of this popular image
processing application across different compilers and
platforms for many years [61]. That is why we are
interested to see if we can still improve it with the CK
autotuner on the latest Raspberry Pi 3 (Model B) devices
(RPi3) extensively used for educational purposes.

First of all, we added susan program with corners
algorithm to the ctuning-programs repository with the
JSON meta information describing compilation and
execution as shown in Figure 9.

We can then test its compilation and execution by
invoking the program pipeline as following:

$ ck pipeline program:cbench-automotive-susan

CK program pipeline will first attempt to detect
platform features (OS, CPU, GPU) and embed them to
the input dictionary using key features. Note that in case
of cross-compilation for a target platform different from
the host one (Android, remote platform via SSH, etc), it
is possible to specify such platform using CK os entries
and –target os= flag.

9



$ ck pull repo:ctuning-programs
$ ck load program:cbench-automotive-susan --min
{
"dict": {

"compile_deps": {
"compiler": {

"local": "yes", "name": "C compiler",
"sort": 10, "tags": "compiler,lang-c"

},
"xopenme": {

"local": "yes", "name": "xOpenME library",
"sort": 20,  "tags": "lib,xopenme"

}
},
"compiler_env": "CK_CC",
"extra_ld_vars": "$<<CK_EXTRA_LIB_M>>$",
"main_language": "c",
"run_cmds": {

"corners": {"corners": {
"dataset_tags": ["image", "pgm", "dataset"],
"run_time": {

"fine_grain_timer_file": "tmp-ck-timer.json",
"run_cmd_main": "$#BIN_FILE#$

$#dataset_path#$$#dataset_filename#$
tmp-output.tmp -c",

"run_correctness_output_files": [
"tmp-output.tmp", "tmp-output2.tmp"

]
}

}
},
"source_files": ["susan.c"],
"tags": ["cbench","lang-c","susan","automotive",

"benchmark","program","small","crowd-tuning"],
"target_file": "a"

}
}

Figure 9: CK JSON meta information for susan
corners (image processing program) to describe software
dependencies as well as how to compile and run it.

For example, it is possible to compile and run a given
CK program for Android via adb as following:

$ ck ls os

$ ck pipeline program:cbench-automotive-susan

--target os=android21-arm64

Next, CK will try to resolve software dependencies
and prepare environment for compilation by detecting
already installed compilers using CK soft:compiler.*
entries or installing new ones if none was found using
CK package:compiler.*. Each installed compiler for each
target will have an associated CK entry with prepared
environment to let computer systems researchers work
with different versions of different tools:

$ ck show env

$ ck show env --target os=android21-arm64

$ ck show env --tags=compiler

Automatically detected version of a selected compiler
is used by CK to find and preload all available
optimization flags from related compiler:* entries to the
choices key of a pipeline input. An example of such flags
and tags in the CK JSON format for GCC 4.9 is shown
in Figure 10. The community can continue extending
such descriptions for different compilers including GCC,
LLVM, Julia, Open64, PathScale, Java, MVCC, ICC
and PGI using either public ck-autotuning repository or
their own ones.

Finally, CK program pipeline compiles a given
program, runs it on a target platform and fills in
sub-dictionary characteristics with compilation time,
object and binary sizes, MD5 sum of the binary,
execution time, used energy (if supported by a used
platform), and all other obtained measurements in the
common pipeline dictionary.

We are now ready to implement universal compiler
flag autotuning coupled with this program pipeline.
For a proof-of-concept, we implemented GCC compiler
flags exploration strategy which automatically generate
N random combinations of compiler flags, compile a
given program with each combination, runs it and
record all results (inputs and outputs of a pipeline)
in a reproducible form in a local CK repository using
experiment module from the ck-analytics repository:

$ ck pull repo:ck-crowdtuning

$ ck info

module:experiment.tune.compiler.flags.gcc

The JSON meta information of this module describes
which keys to select in the program pipeline, how to tune
them, and which characteristics to monitor and record
as shown in Figure 11. Note that a string starting with
## is used to reference any key in a complex, nested
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$ ck pull repo:ck-autotuning
$ ck ls compiler | sort
$ ck load compiler:gcc-4.9.0-auto --min

{

"desc": {

"all_compiler_flags_desc": {

"##arch-arm-mfpu-neon": {

"can_omit": "yes",

"choice": ["-mfpu=neon",""],

"desc": "compiler flag (ARM specific): -mfpu=neon",

"tags": ["basic","optimization","arm-neon"],

"type": "text"

},

"##base_opt": {

"choice": ["-O3","-O0","-O1","-O2","-Os","-Ofast","-Og"],

"desc": "base compiler flag",

"tags": ["base","basic","optimization"],

"type": "text"

},},

"##param-align-threshold": {

"can_omit": "yes",

"desc": "compiler flag: --param align-threshold= (Select 

fraction of the maximal frequency of executions of 

basic block in function given basic block get alignment)",

"explore_prefix": "--param align-threshold=",

"explore_start": 1,  "explore_step": 1,  "explore_stop": 200,

"tags": ["basic","parametric","optimization"],

"type": "integer"

}

...

}

},

"dict": {

"tags": ["compiler","gcc","v4","v4.9","auto"]

}

}

Figure 10: CK JSON description of compiler flags for
GCC 4.9 to enable universal autotuning.

$ ck pull repo:ck-crowdtuning
$ ck load module:experiment.tune.compiler.flags.gcc –min

{
"desc": "explore GCC compiler flags",
"experiment_1_pipeline_update": {

"choices_order": [   ["##compiler_flags#*"]  ],
"choices_selection": [

{
"type": "random",
"omit_probability": "0.90",
"tags": "basic,optimization",
"notags": ""

}
]

},
"improvements_keys": [

"##characteristics#run#execution_time_kernel_0#$#obj#$_imp",
"##characteristics#compile#obj_size#$#obj#$_imp"

],],
"record_keys": [

"##characteristics#*",  "##features#*", "##choices#*"
], 
"solution_conditions": [

[
"##characteristics#compile#md5_sum$#objective#$",
"_imp",  "==", 0

]
],
"tags": [

"program optimization",  "explore",  "program-features",
"autotuning", "gcc"

]
}

Figure 11: CK JSON description of random autotuning
of compiler flags applied to program pipeline.

JSON or Python dictionary (CK flat key [65]). Such
flat key always starts with # followed by #key if it is a
dictionary key or @position in a list if it is a value in a
list. CK also supports wild cards in such flat keys such
as ”##compiler flags#” and ”##characteristics# to be
able to select multiple sub-keys, dictionaries and lists in
a given dictionary.

We can now invoke this CK experimental scenario from
the command line as following:

$ ck autotune program:cbench-automotive-susan

--iterations=300 --repetitions=3

--scenario=experiment.tune.compiler.flags.gcc

--cmd key=corners

--record uoa=tmp-susan-corners-gcc4-300-rnd

CK will generate 300 random combinations of
compiler flags, compile susan corners program
with each combination, run each produced code 3
times to check variation, and record results in the
experiment:tmp-susan-corners-gcc4-300-rnd. We can
now visualize these autotuning results using the following
command line:

$ ck plot graph:tmp-susan-corners-gcc4-300-rnd

Figure 12 shows a manually annotated graph with the
outcome of GCC 4.9.2 random compiler flags autotuning
applied to susan corners on an RPi3 device in terms
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of execution time with variation and code size. Each
blue point on this graph is related to one combination
of random compiler flags. The red line highlights the
frontier of all autotuning results (not necessarily Pareto
optimal) which trade off execution time and code size
during multi-objective optimization. We also plotted
points when default GCC compilation is used without
any flags or with -O3 and -Os optimization levels.
Finally, we decided to compare optimization results with
Clang 3.8.1 also available on RPi3.

Besides showing that GCC -O3 (optimization choice
A2) and Clang -O3 (optimization choice A8) can
produce a very similar code, these results confirm
well that it is indeed possible to automatically obtain
execution time and binary size of -O3 and -Os levels
in comparison with non-optimized code within tens
to hundreds autotuning iterations (green improvement
vectors with 3.6x execution time speedup and 1.6x
binary size improvement). The graph also shows that
it is possible to improve best optimization level -O3
much further and obtain 1.3x execution time speedup
(optimization solution A6R or obtain 11% binary size
improvement without sacrifying original execution time
(optimization solution A4R). Such automatic squeezing
of a binary size without sacrificing performance can be
very useful for the future IoT devices.

Note that it is possible to browse all results in a
user-friendly way via web browser using the following
command:

$ ck browse

experiment:tmp-susan-corners-gcc4-300-rnd

CK will then start internal CK web server available
in the ck-web repository, will run a default web browser,
and will open a web page with all given experimental
results. Each experiment on this page has an associated
button with a command line to replay it via CK such as:

$ ck replay experiment:7b41a4ac1b3b4f2b

--point=00e81f4e4abb371d

CK will then attempt to reproduce this experiment
using the same input and then report any differences
in the output. This simplifies validation of shared
experimental results (optimizations, models, bugs) by
the community and possibly with a different software
and hardware setup (CK will automatically adapt the
workflow to a user platform).

We also provided support to help researchers visualize
their results as interactive graphs using popular D3.js
library as demonstrated in this link.

Looking at above optimization results one may notice
that one of the original optimization solutions on a
frontier A4 has 40 optimization flags, while A4R
only 7 as shown in Table 1. The natural reason
is that not all randomly selected flags contribute to
improvements. That is why we developed a simple and

universal complexity reduction algorithm. It iteratively
and randomly removes choices from a found solution one
by one if they do not influence monitored characteristics
such as execution time and code size in our example.

Such complexity reduction (pruning) of an existing
solution can be invoked as following (flag –prune md5
tells CK to exclude a given choice without running
code if MD5 of a produced binary didn’t change, thus
considerably speeding up flag pruning):

$ck replay experiment:93974bf451f957eb

--point=74e9c9f14b424ba7 --prune --prune md5

@prune.json

The ’prune.json’ file describes conditions on program
pipeline keys when a given choice should be removed as
shown in Figure 13.

Such universal complexity reduction approach
helps software engineers better understand individual
contribution of each flag to improvements or
degradations of all monitored characteristics such
as execution time and code size as shown in Figure 14.

Asked by compiler developers, we also provided an
extension to our complexity reduction module to turn off
explicitly all available optimization choices one by one if
they do not influence found optimization result. Table 2
demonstrates this approach and shows all compiler
optimizations contributing to the found optimization
solution. It can help improve internal optimization
heuristics, global optimization levels such as -O3,
and improve machine learning based optimization
predictions. This extension can be invoked by adding
flags –prune invert –prune invert do not remove key
when reducing complexity of a given solution such as:

$ ck replay experiment:93974bf451f957eb

--point=74e9c9f14b424ba7 --prune --prune md5

--prune invert --prune invert do not remove key

@prune.json

We have been analyzing already aging GCC 4.9.2
because it is still the default compiler for Jessy Debian
distribution on RPi3. However, we would also like to
check how our universal autotuner works with the latest
GCC 7.1.0.

Since there is no yet a standard Debian GCC 7.1.0
package available for RPi3, we need to build it from
scratch. This is not a straightforward task since we have
to pick up correct configuration flags which will adapt
GCC build to quite outdated RPi3 libraries. However,
once we manage to do it, we can automate this process
using CK package module.

We created a public ck-dev-compilers repository to
automate building and installation of various compilers
including GCC and LLVM via CK. It is therefore possible
to install GCC 7.1.0 on RPi3 as following (see Appendix
or GitHub repository ReadMe file for more details):
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ID Compiler Time (sec.) Size (bytes) Flags
A1 GCC 4.9.2 11.7 ± 0.0 60560
A2 GCC 4.9.2 4.3 ± 0.1 36360 -O3

A3 GCC 4.9.2 6.2 ± 0.1 32184 -Os

A4R GCC 4.9.2 4.2 ± 0.0 32448 -O3 -fno-guess-branch-probability -fno-if-conversion

-fno-ivopts -fno-schedule-insns -fsingle-precision-constant

–param max-unswitch-insns=5

A5R GCC 4.9.2 3.7 ± 0.1 33376 -O3 -fbranch-probabilities -fno-ivopts

-fno-sched-dep-count-heuristic

A6R GCC 4.9.2 3.4 ± 0.0 33804 -O3 -fno-inline-small-functions -fno-ivopts

-fno-tree-partial-pre

A7 CLANG 3.8.1 11.1 ± 0.1 58368
A8 CLANG 3.8.1 4.5 ± 0.1 35552 -O3

Figure 12: Results of GCC 4.9.2 random compiler flag autotuning of susan corners program on Raspberry Pi 3
(Model B) device using CK with a highlighted frontier (trading-off execution time and code size) and best found
combinations of flags on this frontier.
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ID Flags
A4 -O3 -fira-algorithm=priority -fcaller-saves -fno-devirtualize-speculatively -fno-function-cse

-fgcse-sm -fno-guess-branch-probability -fno-if-conversion -fno-inline-functions-called-once

-fipa-reference -fno-ira-loop-pressure -fira-share-save-slots -fno-isolate-erroneous-paths-dereference

-fno-ivopts -floop-nest-optimize -fmath-errno -fmove-loop-invariants -fsched-last-insn-heuristic

-fsched2-use-superblocks -fno-schedule-insns -fno-signed-zeros -fsingle-precision-constant -fno-tree-sink

-fno-unsafe-loop-optimizations –param asan-instrument-reads=1 –param gcse-unrestricted-cost=5

–param l1-cache-size=11 –param large-function-growth=33 –param loop-invariant-max-bbs-in-loop=636

–param max-completely-peel-loop-nest-depth=7 –param max-delay-slot-live-search=163 –param

max-gcse-insertion-ratio=28 –param max-inline-insns-single=282 –param max-inline-recursive-depth-auto=0

–param max-jump-thread-duplication-stmts=6 –param max-last-value-rtl=4062 –param

max-pipeline-region-insns=326 –param max-sched-region-blocks=17 –param max-tail-merge-iterations=2

–param max-unswitch-insns=5 –param max-vartrack-expr-depth=6 –param min-spec-prob=1 –param

omega-eliminate-redundant-constraints=1 –param omega-max-keys=366 –param omega-max-wild-cards=36

–param sms-dfa-history=0

A4R -O3 -fno-guess-branch-probability -fno-if-conversion -fno-ivopts -fno-schedule-insns -fsingle-precision-constant

–param max-unswitch-insns=5

Table 1: One of original optimization solutions found after autotuning with random selection of compiler flags (A4)
and reduced optimization solution (A4R) which results in the same or better execution time and code size.

{
"prune_print_keys":[

"##characteristics#run#execution_time_kernel_0#min",
"##characteristics#compile#binary_size#min",
"##characteristics#compile#md5_sum#min"

],
"prune_conditions": [

["##characteristics#run#execution_time_kernel_0$#objective#$",
"_imp", ">", 0.99], 

["##characteristics#compile#binary_size$#objective#$", 
"_imp", ">=", 1]

]
}

Figure 13: CK JSON description of conditions on choices
in a pipeline input to reduce choices from a found
optimization solution.

Characteristics' changes in brackets:

0 = ##characteristics#run#execution_time_kernel_0#min_imp

1 = ##characteristics#compile#binary_size#min_imp

(                  ) : -O3

(0.962;0.987) : -fno-guess-branch-probability

(0.998;1.000) : -fno-if-conversion

(0.848;0.948) : -fno-ivopts

(1.226;0.972) : -fno-schedule-insns

(0.988;0.998) : -fsingle-precision-constant

(1.002;0.996) : --param max-unswitch-insns=5

Figure 14: Contribution of individual compiler
flags to improvements or degradations of monitored
characteristics during universal complexity reduction.

$ ck pull repo:ck-dev-compilers

$ ck install

package:compiler-gcc-any-src-linux-no-deps

--env.PARALLEL BUILDS=1

--env.GCC COMPILE CFLAGS=-O0

--env.GCC COMPILE CXXFLAGS=-O0

--env.EXTRA CFG GCC=--disable-bootstrap

--env.RPI3=YES --force version=7.1.0

This CK package has an install.sh script which is
customized using environment variables or –env flags to
build GCC for a target platform. The JSON meta data of
this CK package provides optional software dependencies
which CK has to resolve before installation (similar to
CK compilation). If installation succeeded, you should
be able to see two prepared environments for GCC 4.9.2
and GCC 7.1.0 which now co-exist in the system.

$ ck show env --tags=gcc

Whenever we now invoke CK autotuning, CK software
and package manager will detect multiple available
versions of a required software dependency and will let
you choose which compiler version to use.

Let us now autotune the same susan corners
program by generating 300 random combinations of
GCC 7.1.0 compiler flags and record results in the
experiment:tmp-susan-corners-gcc7-300-rnd :

$ ck autotune program:cbench-automotive-susan

--iterations=300 --repetitions=3

--scenario=experiment.tune.compiler.flags.gcc

--cmd key=corners

--record uoa=tmp-susan-corners-gcc7-300-rnd

Figure 15 shows the results of such GCC 7.1.0
compiler flag autotuning (B points) and compares them
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ID Flags
A6R -O3 -fno-inline-small-functions -fno-ivopts -fno-tree-partial-pre

A6RI -O3 -fno-inline-small-functions -fno-ivopts -fno-tree-bit-ccp -fno-tree-partial-pre -fno-tree-pta

-fno-associative-math -fno-auto-inc-dec -fno-branch-probabilities -fno-branch-target-load-optimize

-fno-branch-target-load-optimize2 -fno-caller-saves -fno-check-data-deps -fno-combine-stack-adjustments

-fno-conserve-stack -fno-compare-elim -fcprop-registers -fcrossjumping -fcse-follow-jumps

-fno-cse-skip-blocks -fno-cx-limited-range -fno-data-sections -fdce -fno-delayed-branch -fno-devirtualize

-fno-devirtualize-speculatively -fno-early-inlining -fno-ipa-sra -fno-expensive-optimizations

-fno-fat-lto-objects -fno-fast-math -fno-finite-math-only -fno-float-store -fforward-propagate

-fno-function-sections -fno-gcse-after-reload -fno-gcse-las -fno-gcse-lm -fno-graphite-identity

-fno-gcse-sm -fno-hoist-adjacent-loads -fno-if-conversion -fif-conversion2 -fno-indirect-inlining

-fno-inline-functions -fno-inline-functions-called-once -fno-ipa-cp -fno-ipa-cp-clone -fno-ipa-pta

-fipa-pure-const -fno-ipa-reference -fno-ira-hoist-pressure -fno-ira-loop-pressure -fno-ira-share-save-slots

-fira-share-spill-slots -fisolate-erroneous-paths-dereference -fno-isolate-erroneous-paths-attribute

-fno-keep-inline-functions -fno-keep-static-consts -fno-live-range-shrinkage -fno-loop-block -fno-loop-interchange

-fno-loop-strip-mine -fno-loop-nest-optimize -fno-loop-parallelize-all -fno-lto -fno-merge-all-constants

-fno-merge-constants -fno-modulo-sched -fno-modulo-sched-allow-regmoves -fmove-loop-invariants

-fno-branch-count-reg -fno-defer-pop -fno-function-cse -fguess-branch-probability -finline -fmath-errno

-fno-peephole -fpeephole2 -fno-sched-interblock -fno-sched-spec -fno-signed-zeros -fno-toplevel-reorder

-fno-trapping-math -fno-zero-initialized-in-bss -fomit-frame-pointer -fno-optimize-sibling-calls

-fno-partial-inlining -fno-peel-loops -fno-predictive-commoning -fno-prefetch-loop-arrays -fno-ree

-fno-rename-registers -freorder-blocks -fno-reorder-blocks-and-partition -fno-rerun-cse-after-loop

-fno-reschedule-modulo-scheduled-loops -fno-rounding-math -fno-sched2-use-superblocks

-fsched-pressure -fno-sched-spec-load -fno-sched-spec-load-dangerous -fno-sched-group-heuristic

-fsched-critical-path-heuristic -fno-sched-spec-insn-heuristic -fno-sched-rank-heuristic

-fno-sched-dep-count-heuristic -fschedule-insns -fschedule-insns2 -fno-section-anchors

-fno-selective-scheduling -fno-selective-scheduling2 -fno-sel-sched-pipelining -fno-sel-sched-pipelining-outer-loops

-fno-shrink-wrap -fno-signaling-nans -fno-single-precision-constant -fno-split-ivs-in-unroller -fno-split-wide-types

-fno-strict-aliasing -fstrict-overflow -fno-tracer -fno-tree-builtin-call-dce -fno-tree-ccp -ftree-ch

-fno-tree-coalesce-vars -fno-tree-copy-prop -ftree-copyrename -ftree-dce -ftree-dominator-opts

-fno-tree-dse -ftree-forwprop -fno-tree-fre -fno-tree-loop-if-convert -fno-tree-loop-if-convert-stores

-ftree-loop-im -fno-tree-phiprop -fno-tree-loop-distribution -fno-tree-loop-distribute-patterns

-fno-tree-loop-linear -ftree-loop-optimize -fno-tree-loop-vectorize -fno-tree-pre -ftree-reassoc -fno-tree-sink

-ftree-slsr -ftree-sra -fno-tree-switch-conversion -fno-tree-tail-merge -ftree-ter -fno-tree-vectorize

-ftree-vrp -fno-unit-at-a-time -fno-unroll-all-loops -fno-unroll-loops -fno-unsafe-loop-optimizations

-fno-unsafe-math-optimizations -fno-unswitch-loops -fno-variable-expansion-in-unroller -fno-vect-cost-model

-fno-vpt -fno-web -fno-whole-program -fno-wpa -fexcess-precision=standard -ffp-contract=off

-fira-algorithm=CB -fira-region=all

Table 2: Explicitly switching off all compiler flags one by one if they do not influence the optimization result -
useful to understand all compiler optimizations which contributed to the found solution.
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against GCC 4.9.2 (A points). Note that this graph is
also available in interactive form online.

It is interesting to see considerable improvement in
execution time of susan corners when moving from
GCC 4.9 to GCC 7.1 with the best optimization level
-O3. This graph also shows that new optimization
added during the past 3 years opened up many new
opportunities thus considerably expanding autotuning
frontier (light red dashed line versus dark red dashed
line). Autotuning only managed to achieve a modest
improvement of a few percent over -O3.

On the other hand, GCC -O3 and -Os are still far
from achieving best trade-offs for execution time and
code size. For example, it is still possible to improve
a program binary size by 10% (reduced solution B4R)
without degrading best achieved execution time with the
-O3 level (-O3), or improve execution time of -Os level
by 28% while slightly degrading code size by 5%.

Note that for readers’ convenience we added scripts to
reproduce and validate all results from this section to the
following CK entries:

$ ck pull repo:ck-rpi-optimization-results

$ ck find script:rpi3-susan*

These results confirm that it is difficult to manually
prepare compiler optimization heuristic which can deliver
good trade offs between execution time and code size
in such a large design and optimization spaces. They
also suggest that either susan corners or similar code was
eventually added to the compiler regression testing suite,
or some engineer check it manually and fixed compiler
heuristic. However, there is also no guarantee that future
GCC versions will still perform well on the susan corners
program. Neither these results guarantee that GCC 7.1.0
will perform well on other realistic workloads or devices.

5 Crowdsourcing autotuning

We use our universal CK autotuning workflow to
teach students and end-users how to automatically find
good trade offs between multiple characteristics for any
individual program, data set, compiler, environment and
hardware. At the same time, automatically tuning many
realistic workloads is very costly and can easily take from
days to weeks and months [61].

Common experimental frameworks can help tackle
this problem too by crowdsourcing autotuning across
diverse hardware provided by volunteers and combining
it with online classification, machine learning and
run-time adaptation [58, 75, 64]. However, our previous
frameworks did not cope well with ”big data” problem
(cTuning framework [58, 60] based on MySQL database)
or were too ”heavy” (Collective Mind aka cTuning 3
framework [65]).

Extensible CK workflow framework combined with
our cross-platform package manager, internal web server

and machine learning, helped solve most of the above
issues. For example, we introduced a notion of a remote
repository in the CK - whenever such repository is
accessed CK simply forward all JSON requests to an
appropriate web server.

CK always has a default remote repository remote-ck
connected with a public optimization repository running
CK web serve at cKnowledge.org/repo:

$ ck load repo:remote-ck --min

For example, one can see publicly available
experiments from command line as following:

$ ck list remote-ck:experiment:* | sort

Such organization allows one to crowdsource
autotuning, i.e. distributing autotuning of given
shared workloads in a cloud or across diverse platforms
simply by using remote repositories instead of local ones.
On the other hand, it does not address the problem of
optimizing larger applications with multiple hot spots.
It also does not solve the ”big data” problem when a
large amount of data from multiple participants needed
for reproducibility will be continuously aggregated in a
CK server.

However, we have been already addressing the
first problem by either instrumenting, monitoring and
optimizing hot code regions in large applications using
our small ”XOpenME” library, or even extracting such
code regions from a large application with a run-time
data set and registering them in the CK as standalone
programs (codelets or computational species) as shown
in Figure 16 ( [65]).

In the MILEPOST project [61] we used a proprietary
”codelet extractor” tool from CAPS Entreprise (now
dissolved) to automatically extract such hot spots
with their data sets from several real software
projects and 8 popular benchmark suits including
NAS, MiBench, SPEC2000, SPEC2006, Powerstone,
UTDSP and SNU-RT. We shared those of them
with a permissive license as CK programs in the
ctuning-programs repository to be compatible with
the presented CK autotuning workflow. We continue
adding real, open-source applications and libraries as CK
program entries (GEMM, HOG, SLAM, convolutions) or
manually extracting and sharing interesting code regions
from them with the help of the community. Such a
large collection of diverse and realistic workloads should
help make computer systems research more applied and
practical.

As many other scientists, we also faced a big
data problem when continuously aggregating large
amounts of raw optimization data during crowd-tuning
for further processing including machine learning [60].
We managed to solve this problem in the CK
by using online pre-processing of raw data and
online classification to record only the most efficient
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A4R A2

B3

-O3 from V4.9.2 to V7.1.0

A6R

A5R

B2

B4R

-O3 from V4.9.2 to V7.1.0

Autotuned from 

V4.9.2 to V7.1.0

ID Compiler Time (sec.) Size (bytes) Flags
A2 GCC 4.9.2 4.3 ± 0.1 36360 -O3

A5R GCC 4.9.2 3.7 ± 0.1 33376 -O3 -fbranch-probabilities -fno-ivopts

-fno-sched-dep-count-heuristic

A6R GCC 4.9.2 3.4 ± 0.0 33804 -O3 -fno-inline-small-functions -fno-ivopts

-fno-tree-partial-pre

B1 GCC 7.1.0 11.5 ± 0.0 58008
B2 GCC 7.1.0 3.2 ± 0.0 34432 -O3

B3 GCC 7.1.0 4.4 ± 0.0 29980 -Os

B4 GCC 7.1.0 3.1 ± 0.1 31460 -O3 -fno-cx-fortran-rules -fno-devirtualize

-fno-expensive-optimizations -fno-if-conversion

-fira-share-save-slots -fno-ira-share-spill-slots -fno-ivopts

-fno-loop-strip-mine -finline -fno-math-errno

-frounding-math -fno-sched-rank-heuristic

-fno-sel-sched-pipelining-outer-loops

-fno-semantic-interposition -fsplit-wide-types

-fno-tree-ccp -ftree-dse

B4R GCC 7.1.0 3.1 ± 0.1 31420 -O3 -fno-expensive-optimizations -fno-ivopts

-fno-math-errno

Figure 15: Results of GCC 7.1.0 random compiler flag autotuning of susan corners program on Raspberry Pi 3
(Model B) device using CK with a highlighted frontier (trading-off execution time and code size), best combinations
of flags on this frontier, and comparison with the results from GCC 4.9.2.
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Figure 16: Preparing larger applications such as Firefox
and Chrome for CK-based autotuning: a) instrumenting,
monitoring and optimizing hot code regions using
”XOpenME” library b) extracting code regions from a
large application with a run-time data set and register
them in the CK as standalone programs (codelets)

optimization solutions (on a frontier in case of
multi-objective autotuning) along with unexpected
behavior (bugs and numerical instability) [64]. It is now
possible to invoke crowd-tuning of GCC compiler flags
(improving execution time) in the CK as following:

$ ck crowdtune program --iterations=50

--scenario=8289e0cf24346aa7

or

$ ck crowdsource program.optimization

--iterations=50 --scenario=8289e0cf24346aa7

In contrast with traditional autotuning, CK will
first query remote-ck repository to obtain all most
efficient optimization choices aka solutions (combinations
of random compiler flags in our example) for a
given trade-off scenario (GCC compiler flag tuning to
minimize execution time), compiler version, platform
and OS. CK will then select a random CK program
(computational species), compiler and run it with all
these top optimizations, and then try N extra random
optimizations (random combinations of GCC flags)
to continue increasing design and optimization space
coverage. CK will then send the highest improvements
of monitored characteristics (execution time in our
example) achieved for each optimization solution as well
as worst degradations back to a public server. If a
new optimization solution if also found during random

autotuning, CK will assign it a unique ID (solution uid
and will record it in a public repository. At the
public server side, CK will merge improvements and
degradations for a given program from a participant with
a global statistics while recording how many programs
achieved the highest improvement (best species) or worst
degradation (worst species) for a given optimization as
shown in Figure 17.

This figure shows a snapshot of public optimization
results with top performing combinations of GCC 4.9.2
compiler flags on RPi3 devices which minimize execution
time of shared CK workloads (programs and data sets)
in comparison with -O3 optimization level. It also
shows the highest speedup and the worse degradation
achieved across all CK workloads for a given optimization
solution, as well as a number of workloads where this
solution was the best or the worst (online classification
of all optimization solutions). Naturally this snapshot
automatically generated from the public repository
at the time of publication may slightly differ from
continuously updated live optimization results available
at this link. These results confirm that GCC 4.9.2 misses
many optimization opportunities not covered by -O3
optimization level.

Figure 18 with optimization results for GCC 7.1.0 also
confirms that this version was considerably improved
in comparison with GCC 4.9.2 (latest live results are
available in our public optimization repository at this
link): there are fewer efficient optimization solutions
found during crowd-tuning 14 vs 23 showing the overall
improvement of the -O3 optimization level.

Nevertheless, GCC 7.1.0 still misses many
optimization opportunities simply because our long-term
experience suggests that it is infeasible to prepare one
universal and efficient optimization heuristics with
good multi-objective trade-offs for all continuously
evolving programs, data sets, libraries, optimizations
and platforms. That is why we hope that our
approach of combining a common workflow framework
adaptable to software and hardware changes, public
repository of optimization knowledge, universal and
collaborative autotuning across multiple hardware
platforms (e.g. provided by volunteers or by HPC
providers), and community involvement should help
make optimization and testing of compilers more
automatic and sustainable [64, 62]. Rather than
spending considerable amount of time on writing their
own autotuning and crowd-tuning frameworks, students
and researchers can quickly reuse shared workflows,
reproduce and learn already existing optimizations, try
to improve optimization heuristics, and validate their
results by the community.

Furthermore, besides using -Ox compiler levels,
academic and industrial users can immediately take
advantage of various shared optimizations solutions
automatically found by volunteers for a given compiler
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Solution Pruned flags (complexity reduction) Best
species

Worst
species

1 -O3 -flto 6 3
2 -O3 -fno-inline -flto 1 1
3 -O3 -fno-if-conversion2 -funroll-loops 2 1
4 -O3 -fpeel-loops -ftracer 1 3
5 -O3 -floop-nest-optimize -fno-sched-interblock -fno-tree-copy-prop

-funroll-all-loops
4 1

6 -O3 -funroll-loops 2 3
7 -O3 -floop-strip-mine -funroll-loops 1 1
8 -O3 -fno-inline -fno-merge-all-constants -fno-tree-ccp -funroll-all-loops 2 3
9 -O3 -fno-tree-loop-if-convert -funroll-all-loops 3 2

10 -O3 -fno-section-anchors -fselective-scheduling2 -fno-tree-forwprop
-funroll-all-loops

2 2

11 -O3 -fno-ivopts -funroll-loops 4 1
12 -O3 -fno-tree-ch -funroll-all-loops 1 1
13 -O3 -fno-move-loop-invariants -fno-tree-ch -funroll-loops 1 2
14 -O3 -fira-algorithm=priority -fno-ivopts 1 2
15 -O3 -fno-ivopts 2 4
16 -O3 -fno-sched-spec -fno-tree-ch 1 2
17 -O3 -fno-ivopts -fselective-scheduling -fwhole-program 1 1
18 -O3 -fno-omit-frame-pointer -fno-tree-loop-optimize 1 4
19 -O3 -fno-auto-inc-dec -ffinite-math-only 1 2
20 -O3 -fno-guess-branch-probability -fira-loop-pressure -fno-toplevel-reorder 1 5
21 -O3 -fselective-scheduling2 -fno-tree-pre 2 2
22 -O3 -fgcse-sm -fno-move-loop-invariants -fno-tree-forwprop

-funroll-all-loops -fno-web
1 0

23 -O3 -fno-schedule-insns -fselective-scheduling2 1 2

Figure 17: Snapshot of top performing combinations of GCC 4.9.2 compiler flags together with highest speedups
and worst degradations achieved across all shared CK workloads on RPi3.
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Solution Pruned flags (complexity reduction) Best
species

Worst
species

1 -O3 -fno-delayed-branch -flto -fno-selective-scheduling2 -fno-whole-program 6 0
2 -O3 -flto 4 1
3 -O3 -fno-inline -flto 2 1
4 -O3 -fno-cprop-registers -flto -funroll-all-loops 3 1
5 -O3 -fno-tree-fre -funroll-all-loops 2 1
6 -O3 -fno-predictive-commoning -fno-schedule-insns -funroll-loops 3 3
7 -O3 -funroll-loops 3 0
8 -O3 -fno-tree-ter -funroll-all-loops 3 1
9 -O3 -fno-merge-all-constants -fselective-scheduling2 -funroll-loops 1 0

10 -O3 -fno-devirtualize-at-ltrans -fno-predictive-commoning -fno-tree-pre 1 2
11 -O3 -fcheck-data-deps -fira-loop-pressure -fno-isolate-erroneous-paths-dereference

-fno-sched-dep-count-heuristic -fsection-anchors -fsemantic-interposition
-fno-tree-ch -fno-tree-loop-linear -fno-tree-partial-pre

2 2

12 -O3 -fno-schedule-insns -ftracer 2 3
13 -O3 -fno-auto-inc-dec -fguess-branch-probability -fipa-pure-const

-freorder-blocks -fselective-scheduling2 -ftree-ccp -fno-tree-pre
-ftree-tail-merge

1 1

Figure 18: Snapshot of top performing combinations of GCC 7.1.0 compiler flags together with highest speedups
and worst degradations achieved across all shared CK workloads on RPi3.
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and hardware via CK using solution uid flag. For
example, users can test the most efficient combination
of compiler flags which achieved the highest speedup for
GCC 7.1.0 on RPi3 (see ”Copy CID to clipboard for a
given optimization solution at this link) for their own
programs using CK:

$ ck benchmark program :{new program}
−−s h a r e d s o l u t i o n c i d =27bc42ee449e880e :
79 bca2b76876b5c6−8289 e0cf24346aa7−
f49649288ab0accd

or

$ ck benchmark program :{new program}
−O27bc42ee449e880e :79 bca2b76876b5c6−
8289 e0cf24346aa7−f49649288ab0accd

6 Autotuning and crowd-tuning
real workloads

In this section we would like to show how we can
apply universal autotuning and collaboratively found
optimization solutions to several popular workloads used
by RPi community: zlib decode, zlib encode, 7z encode,
aubio, ccrypt, gzip decode, gzip encode, minigzip decode,
minigzip encode, rhash, sha512sum, unrar. We added
the latest versions of these real programs to the CK
describing how to compile and run them using CK JSON
meta data:

$ ck ls ck-rpi-optimization:program:*

We can now autotune any of these programs via CK
as described in Section 4. For example, the following
command will autotune zlib decode workload with
150 random combinations of compiler flags including
parametric and architecture specific ones, and will record
results in a local repository:

$ ck autotune program:zlib --cmd key=decode

--iterations=150 --repetitions=3

--scenario=experiment.tune.compiler.flags.gcc

--parametric flags --cpu flags --base flags

--record uoa=tmp-rpi3-zlib-decode-gcc4-150bpc-rnd

Figure 19 (link with interactive graph) shows a
manually annotated graph with the outcome of such
autotuning when using GCC 4.9.2 compiler on RPi3
device in terms of execution time with variation and
code size. Each blue point on this graph is related
to one combination of random compiler flags. The
red line highlights the frontier of all autotuning results
to let users trade off execution time and code size
during multi-objective optimization. Similar to graphs
in Section 4, we also plotted points when using several
main GCC and Clang optimization levels.

In contrast with susan corners workload, autotuning
did not improve execution time of zlib decode over
-O3 level most likely because this algorithm is present
in many benchmarking suits. On the other hand,
autotuning impressively improved code size over -O3 by
nearly 2x without sacrificing execution time, and by
1.5x with 11% execution time improvement over -Os
(reduced optimization solution A4R), showing that code
size optimization is still a second class citizen.

Since local autotuning can still be quite costly (150
iterations to achieve above results), we can now first
check 10..20 most efficient combinations of compiler flags
already found and shared by the community for this
compiler and hardware (Figure 17). Note that programs
from this section did not participate in crowd-tuning to
let us have a fair evaluation of the influence of shared
optimizations on these programs similar to leave-one-out
cross-validation in machine learning.

Figure 20 shows ”reactions” of zlib decode to these
optimizations in terms of execution time and code
size (the online interactive graph). We can see that
crowd-tuning solutions indeed cluster in a relatively
small area close to -O3 with one collaborative solution
(C1) close to the best optimization solution found during
lengthy autotuning (A4R) thus providing a good trade
off between autotuning time, execution time and code
size.

Autotuning zlib decode using GCC 7.1.0 revels even
more interesting results in comparison with susan
corners as shown in Figure 21 (the online interactive
graph). While there is practically no execution time
improvements when switching from GCC 4.9.2 to GCC
7.1.0 on -O3 and -Os optimization levels, GCC 7.1.0
-O3 considerably degraded code size by nearly 20%.
Autotuning also shows few opportunities on GCC 7.1.0
in comparison with GCC 4.9.2 where the best found
optimization B4R is worse in terms of a code size than
A4R also by around 20%. These results highlight issues
which both end-users and compiler designers face when
searching for efficient combinations of compiler flags or
preparing the default optimization levels -Ox.

CK crowd-tuning can assist in this case too - Figure 22
shows reactions of zlib decode to the most efficient
combinations of GCC 7.1.0 compiler flags shared by
the community for RPi3 (the online interactive graph).
Shared optimization solution C2 achieved the same
results in terms of execution time and code size
as reduced solution B4R found during 150 random
autotuning iterations. Furthermore, another shared
optimization solution C1 improved code size by 15%
in comparison with GCC 7.1.0 autotuning solution B4R
and is close to the best solution GCC 4.9.2 autotuning
solution A4R. These results suggest that 150 iterations
with random combinations of compiler flags may not be
enough to find an efficient solution for zlib decode. In
turn, crowd-tuning can help considerably accelerate and
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A1

A5

Handtuned from –O0 

Autotuned from –O0 

(100..300 iterations)

A2A6A3
A4R

Autotuned from –O3 

(100..300 iterations)

Handtuned from –O0 

to –O3 over decades

ID Compiler Time (sec.) Size (bytes) Flags
A1 GCC 4.9.2 41.3 ± 0.0 131140
A2 GCC 4.9.2 12.2 ± 0.0 101448 -O3

A3 GCC 4.9.2 13.6 ± 0.0 78116 -Os

A4R GCC 4.9.2 12.1 ± 0.1 54272 -O2 -flto -fno-tree-fre

A5 CLANG 3.8.1 38.5 ± 0.0 132080
A6 CLANG 3.8.1 12.9 ± 0.1 90076 -O3

Figure 19: Results of GCC 4.9.2 random compiler flag autotuning of a zlib decode workload on RPi3 device using
CK with a highlighted frontier (trading-off execution time and code size) and the best found combinations of flags
on this frontier.

A2
A4R

C1

Crowd-tuned (10..30 iterations)

Autotuned from –O3 (100..300 iterations)

Clustering of best optimizations 

from cKnowledge.org/repo

ID Compiler Time (sec.) Size (bytes) Flags
A2 GCC 4.9.2 12.2 ± 0.0 101448 -O3

A4R GCC 4.9.2 12.1 ± 0.1 54272 -O2 -flto -fno-tree-fre

C1 GCC 4.9.2 12.2 ± 0.1 64184 -O3 -fno-inline -flto

Figure 20: Speeding up GCC 4.9.2 autotuning of a zlib decode workload on RPi3 device using 10..20 best performing
combinations of compiler flags already found and shared by the community during crowd-tuning.
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B3

A2A4R

B2B4R

-O3 from V4.9.2 to V7.1.0

Autotuned from 

V4.9.2 to V7.1.0

ID Compiler Time (sec.) Size (bytes) Flags
A2 GCC 4.9.2 12.2 ± 0.0 101448 -O3

A4R GCC 4.9.2 12.1 ± 0.1 54272 -O2 -flto -fno-tree-fre

B1 GCC 7.1.0 41.3 ± 0.0 128376
B2 GCC 7.1.0 11.7 ± 0.1 119084 -O3

B3 GCC 7.1.0 13.7 ± 0.1 74280 -Os

B4R GCC 7.1.0 11.9 ± 0.1 78700 -O2 -fno-early-inlining -fno-tree-fre

Figure 21: Results of GCC 7.1.0 random compiler flag autotuning of zlib decode on RPi3 device with a highlighted
frontier (trading-off execution time and code size), the best combinations of flags on this frontier, and comparison
with the results from GCC 4.9.2.

focus such optimization space exploration.

We performed the same autotuning and crowd-tuning
experiments for zlib encode workload with the results
shown in Figures 23, 24, 25, 26. The results show similar
trend that -O3 optimization level of both GCC 4.7.2
and GCC 7.1.0 perform well in terms of execution time,
while there is the same degradation in the code size when
moving to a new compiler (since we monitor the whole
zlib binary size for both decode and encode functions).
Crowd-tuning also helped improve the code size though
optimizations A4R, B4R and C1 are not the same as
in case of zlib decode. The reason is that algorithms
are different and need different optimizations to keep
execution time intact while improving code size. Such
result provides an extra motivation for function-level
optimizations already available in GCC.

Besides zlib, we applied crowd-tuning with the best
found and shared optimizations to other RPi programs
using GCC 4.9.2 and GCC 7.1.0. Table 3 shows
reactions of these optimizations with the best trade-offs
for execution time and code size. One may notice that
though GCC 7.1.0 -O3 level improves execution time
of most of the programs apart from a few exceptions,
it also considerably degrades code size in comparison
with GCC 4.9.2 -O3 level. These results also confirm
that neither -O3 nor -Os on both GCC 4.9.2 and GCC
7.1.0 achieves the best trade-offs for execution time and

code size thus motivating again our collaborative and
continuous optimization approach.

Indeed, a dozen of shared most efficient optimizations
at cKnowledge.org/repo is enough to either improve
execution time of above programs by up to 1.5x or
code size by up to 1.8x or even improve both size and
speed at the same time. It also helps end-users find the
most efficient optimization no matter which compiler,
environment and hardware are used.

We can also notice that 11 workloads (computational
species) share -O3 -fno-inline -flto combination of flags
to achieve the best trade-off between execution time
and code size. This result supports our original
research to use workload features, hardware properties,
crowd-tuning and machine learning to predict such
optimizations [58, 61, 64]. However, in contrast with
the past work, we are now able to gradually collect a
large, realistic (i.e. not randomly synthesized) set of
diverse workloads with the help of the community to
make machine learning statistically meaningful.

All scripts to reproduce experiments from this section
are available in the following CK entries:

$ ck find script:rpi3-zlib-decode*

$ ck find script:rpi3-zlib-encode*

$ ck find script:rpi3-all-autotune
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B2

B4R
A4R С1

С2

Crowd-tuned from –O3 (10..30 iterations)

Auto-tuned GCC 4.9.2

can be sometimes better 

than auto-tuned GCC 7.1.0

Clustering of best optimizations 

from cKnowledge.org/repo

ID Compiler Time (sec.) Size (bytes) Flags
A4R GCC 4.9.2 12.1 ± 0.1 54272 -O2 -flto -fno-tree-fre

B2 GCC 7.1.0 11.7 ± 0.1 119084 -O3

B4R GCC 7.1.0 11.9 ± 0.1 78700 -O2 -fno-early-inlining -fno-tree-fre

C1 GCC 7.1.0 12.0 ± 0.0 68464 -O3 -fno-inline -flto

C2 GCC 7.1.0 11.6 ± 0.1 81880 -O3 -flto

Figure 22: Testing reactions of zlib decode to top most efficient GCC 7.1.0 optimizations shared by the community
for RPi3 devices vs GCC 4.9.2.

A1

A5

Handtuned from –O0 

Autotuned from –O0 

(100..300 iterations)

A2

A3

A4R

A6

Handtuned from –O0 

to –O3 over decades

Autotuned from –O3 (100..300 iterations)

ID Compiler Time (sec.) Size (bytes) Flags
A1 GCC 4.9.2 39.0 ± 0.1 131140
A2 GCC 4.9.2 14.0 ± 0.1 101448 -O3

A3 GCC 4.9.2 16.7 ± 0.1 78116 -Os

A4R GCC 4.9.2 14.2 ± 0.1 54284 -O2 -flto

A5 CLANG 3.8.1 38.2 ± 0.1 132080
A6 CLANG 3.8.1 14.7 ± 0.1 90076 -O3

Figure 23: Results of GCC 4.9.2 random compiler flag autotuning of a zlib encode workload on RPi3 device using
CK with a highlighted frontier (trading-off execution time and code size) and the best found combinations of flags
on this frontier.
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A2

A4R

C1

Crowd-tuned (10..30 iterations)

Autotuned from –O3 (100..300 iterations)

Clustering of best optimizations 

from cKnowledge.org/repo

ID Compiler Time (sec.) Size (bytes) Flags
A2 GCC 4.9.2 14.0 ± 0.1 101448 -O3

A4R GCC 4.9.2 14.2 ± 0.1 54284 -O2 -flto

C1 GCC 4.9.2 14.2 ± 0.0 64184 -O3 -fno-inline -flto

Figure 24: Accelerating GCC 4.9.2 autotuning of a zlib encode workload on RPi3 device using 10..20 best performing
combinations of compiler flags already found and shared by the community during collaborative optimization.

B3

A2

A4R

B2

B4R

Autotuned

from V4.9.2 

to V7.1.0 -O3 from V4.9.2 to V7.1.0

ID Compiler Time (sec.) Size (bytes) Flags
A2 GCC 4.9.2 14.0 ± 0.1 101448 -O3

A4R GCC 4.9.2 14.2 ± 0.1 54284 -O2 -flto

B1 GCC 7.1.0 38.8 ± 0.0 128376
B2 GCC 7.1.0 13.2 ± 0.1 119084 -O3

B3 GCC 7.1.0 15.9 ± 0.1 74280 -Os

B4R GCC 7.1.0 13.7 ± 0.0 52424 -O2 -fgcse-after-reload -flto -fschedule-fusion

-fno-ssa-phiopt -fno-tree-fre

Figure 25: Results of GCC 7.1.0 random compiler flag autotuning of zlib encode on RPi3 device with a highlighted
frontier (trading-off execution time and code size), the best combinations of flags on this frontier, and comparison
with the results from GCC 4.9.2.
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Workload Compiler Time
improvement
over -O3 (-O3
time in brackets)

Binary size
improvement
over -O3
(-O3 size in
brackets)

Flags

7z encode GCC 4.9.2 1.02 (5.5 ± 0.1) 1.52 (859728) -O3 -fno-inline -flto

7z encode GCC 7.1.0 no (6.0 ± 1.0) no (887464) -O3

ccrypt encrypt GCC 4.9.2 no (7.0 ± 2.0) no (61772) -O3

ccrypt encrypt GCC 7.1.0 1.16 (7.6 ± 0.1) 1.00 (59996) -O3 -fno-auto-inc-dec

-fguess-branch-probability

-fipa-pure-const -freorder-blocks

-fselective-scheduling2 -ftree-ccp

-fno-tree-pre -ftree-tail-merge

gzip decode GCC 4.9.2 1.04 (4.2 ± 0.0) 1.12 (85956) -O3 -fno-inline -flto

gzip decode GCC 7.1.0 1.04 (4.2 ± 0.0) 1.18 (90568) -O3 -fno-inline -flto

gzip decode GCC 7.1.0 1.08 (4.2 ± 0.0) 0.81 (90568) -O3 -fno-cprop-registers -flto

-funroll-all-loops

gzip encode GCC 4.9.2 0.98 (12.3 ± 0.1) 1.10 (85956) -O3 -fno-omit-frame-pointer

-fno-tree-loop-optimize

gzip encode GCC 7.1.0 1.01 (12.3 ± 0.8) 1.18 (90568) -O3 -fno-inline -flto

minigzip decode GCC 4.9.2 1.24 (10.0 ± 4.0) 1.60 (101432) -O3 -fno-inline -flto

minigzip decode GCC 4.9.2 1.32 (10.0 ± 4.0) 1.00 (101432) -O3 -fselective-scheduling2

-fno-tree-pre

minigzip decode GCC 7.1.0 1.14 (8.0 ± 3.0) 1.76 (119088) -O3 -fno-inline -flto

minigzip encode GCC 4.9.2 0.89 (9.9 ± 0.0) 1.60 (101432) -O3 -fno-inline -flto

minigzip encode GCC 7.1.0 1.00 (9.6 ± 0.0) 1.76 (119088) -O3 -fno-inline -flto

rhash sha3 GCC 4.9.2 1.00 (4.8 ± 0.0) 1.12 (14848) -O3 -flto

rhash sha3 GCC 7.1.0 1.35 (5.2 ± 0.0) 1.30 (16396) -O3 -fno-inline -flto

rhash sha3 GCC 7.1.0 1.48 (5.2 ± 0.0) 1.07 (16396) -O3 -fno-schedule-insns -ftracer

sha512sum sha512 GCC 4.9.2 1.12 (7.8 ± 0.0) 1.06 (125372) -O3 -fno-schedule-insns

-fselective-scheduling2

sha512sum sha512 GCC 7.1.0 1.22 (7.3 ± 0.0) 1.07 (121180) -O3 -fno-predictive-commoning

-fno-schedule-insns

-funroll-loops

unrar GCC 4.9.2 0.97 (18.0 ± 4.0) 1.38 (326572) -O3 -fno-inline -flto

unrar GCC 4.9.2 1.13 (18.0 ± 4.0) 0.80 (326572) -O3 -fno-section-anchors

-fselective-scheduling2

-fno-tree-forwprop

-funroll-all-loops

unrar GCC 7.1.0 0.96 (18.0 ± 6.0) 1.38 (326572) -O3 -fno-inline -flto

unrar GCC 7.1.0 1.07 (18.0 ± 6.0) 0.78 (326572) -O3 -fno-tree-ter

-funroll-all-loops

Table 3: The highest found improvements (degradations) in execution time and binary size for several important
RPi3 programs as reactions to top most efficient shared optimizations for GCC 4.9.2 and GCC 7.1.0.
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Crowd-tuned from –O3 (10..30 iterations)

Auto-tuned from –O3 (100..300 iterations)

Clustering of best optimizations 

from cKnowledge.org/repo

ID Compiler Time (sec.) Size (bytes) Flags
A4R GCC 4.9.2 14.2 ± 0.1 54284 -O2 -flto

B2 GCC 7.1.0 13.2 ± 0.1 119084 -O3

B4R GCC 7.1.0 13.7 ± 0.0 52424 -O2 -fgcse-after-reload -flto -fschedule-fusion

-fno-ssa-phiopt -fno-tree-fre

C1 GCC 4.9.2 13.3 ± 0.1 68464 -O3 -fno-inline -flto

Figure 26: Analyzing reactions of zlib encode to top most efficient GCC 7.1.0 optimizations shared by the community
for RPi3 devices vs GCC 4.9.2.

7 Crowd-fuzzing compilers

When distributing compiler autotuning and learning
across diverse environments, compilers and devices [58,
64] we noticed that about 10..15% of randomly generated
combinations of flags can crash a compiler or produce
wrong code with segmentation faults or incorrect
output. Indeed our approach stresses various unexpected
combinations of compiler optimizations across diverse
and possibly untested platforms and workloads thus
helping automatically detect software and hardware
bugs. It complements well-known fuzzing techniques for
automatic software testing [54, 109, 115].

Our CK-based customizable autotuning workflow
can assist in creating, learning and improving such
collaborative fuzzers which can distribute testing across
diverse platforms and workloads provided by volunteers
while sharing and reproducing bugs. We just need to
retarget our autotuning workflow to search for bugs
instead of or together with improvements in performance,
energy, size and other characteristics.

We prepared an example
scenario experiment.tune.compiler.flags.gcc.fuzz to
randomly generate compiler flags for any GCC and
record only cases with failed program pipeline. One
can use it in a same way as any CK autotuning while
selecting above scenario as following:

$ ck autotune program:cbench-automotive-susan

--iterations=150 --repetitions=3

--scenario=experiment.tune.compiler.flags.gcc.fuzz

--cmd key=corners

--record uoa=tmp-susan-corners-gcc7-150-rnd-fuzz

It is then possible to view all results with unexpected
behavior in a web browser and reproduce individual cases
on a local or different machine as following:

$ ck browser

experiment:tmp-susan-corners-gcc7-150-rnd-fuzz

$ ck replay

experiment:tmp-susan-corners-gcc7-150-rnd-fuzz

We performed the same auto-fuzzing experiments for
susan corners program with both GCC 4.9.2 and GCC
7.1.0 as in Section 4. These results are available in the
following CK entries:

$ ck search experiment:rpi3-*fuzz*

It is also possible to browse them online.
Figure 27 shows a simple example of reproducing

a GCC bug using CK together with the original
random combination of flags and the reduced one.
GCC flag -fcheck-data-deps compares several passes
for dependency analysis and report a bug in case of
discrepancy. Such discrepancy was automatically found
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$ ck replay experiment:f14372bd49376cd5 --point=05df924a4f02adc2

(Number of distance vectors differ: Banerjee has 1, Omega has 0.

Banerjee dist vectors:

4

Omega dist vectors:

data dependence relation:

(Data Dep:

#(Data Ref:

#  bb: 5

#  stmt: _59 = *p_57;

#  ref: *p_57;

access_fn_B: {5B(OVF), +, 1}_2

(subscript

iterations_that_access_an_element_twice_in_A: [4 + 1 * x_1]

last_conflict: 2147483637

iterations_that_access_an_element_twice_in_B: [0 + 1 * x_1]

last_conflict: 2147483637

(Subscript distance: 4 ))

inner loop index: 0

loop nest: (2 )

Compiler flags before reduction: -O3 -fno-function-sections -fno-gcse-lm -fcheck-data-deps 

-fno-gcse-sm -fno-ivopts -fzero-initialized-in-bss -fomit-frame-pointer -frename-registers 

-frounding-math -fno-tree-coalesce-vars -fno-tree-forwprop -funsafe-math-optimizations

GCC 4.9.2 on RPi3 crashes:

#  ref: *p_57;

#  base_object: *in_22(D) + ((sizetype) x_size_6(D) + (sizetype) 

pretmp_1219);

#  Access function 0: {1B(OVF), +, 1}_2

#)

#(Data Ref:

#  bb: 5

#  stmt: _90 = *p_82;

#  ref: *p_82;

#  base_object: *in_22(D) + ((sizetype) x_size_6(D) + (sizetype) 

pretmp_1219);

#  Access function 0: {5B(OVF), +, 1}_2

#)

access_fn_A: {1B(OVF), +, 1}_2

loop nest: (2 )

)

)

../susan.c: In function ‘susan_principle’:

../susan.c:495:6: internal compiler error: in 

compute_affine_dependence, at tree-data-ref.c:4253

void susan_principle(uchar* in, int* r, uchar* bp,

^

Please submit a full bug report,

with preprocessed source if appropriate.

See <file:///usr/share/doc/gcc-4.9/README.Bugs> for instructions.

Preprocessed source stored into /tmp/ccW0PUrM.out file, please attach

this to your bugreport.

Compiler flags after reduction: -O3 -fcheck-data-deps

$ ck replay experiment:f14372bd49376cd5 --point=05df924a4f02adc2 –reduce_bug

Figure 27: Basic example of reproducing and reducing GCC bugs after random compiler flag autotuning.

when autotuning susan corners using GCC 4.9.2 on
RPi3.

Since CK automatically adapts to a user environment,
it is also possible to reproduce the same bug using a
different compiler version. Compiling the same program
with the same combination of flags on the same platform
using GCC 7.1.0 showed that this bug has been fixed in
the latest compiler.

We hope that our extensible and portable
benchmarking workflow will help students and engineers
prototype and crowdsource different types of fuzzers.
It may also assist even existing projects [27, 26] to
crowdsource fuzzing across diverse platforms and
workloads. For example, we collaborate with colleagues
from Imperial College London to develop CK-based,
continuous and collaborative OpenGL and OpenCL
compiler fuzzers [82, 79, 23] while aggregating results
from users in public or private repositories ( link to
public OpenCL fuzzing results across diverse desktop
and mobile platforms).

All scripts to reproduce experiments from this section
are available in the following CK entry:

$ ck find script:rpi3-susan-fuzz-bugs

8 Unifying and crowdsourcing
machine learning

Having all optimization statistics continuously
aggregated in a repository in a common format
with JSON meta description makes it relatively
straightforward to apply various machine learning and
predictive analytics techniques including decision trees,
nearest neighbor classifiers, support vector machines
(SVM) and deep learning [45, 102]. These techniques can
help automate detection of regularities and consistent
patterns in program behavior, build models, and
predict efficient optimizations rather than continuously
re-optimizing each new program as we previously
demonstrated in the MILEPOST project [61, 47].
Furthermore, we can now teach students how to
collaboratively model the behavior of all computer
systems, speed up optimization space exploration, and
improve predictions of the most efficient software and
hardware optimizations based on various program, data
set, platform and run-time features [65, 64].

To demonstrate our approach, we converted all
our past research artifacts on machine learning based
optimization and SW/HW co-design to CK modules.
We then assembled them to a universal Collective
Knowledge workflow shown in Figure 28. If you
do not know about machine learning based compiler
optimizations, we suggest that you start from our
MILEPOST GCC paper [61] to make yourself familiar
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Figure 28: Universal and high-level Collective Knowledge workflow to connect various communities for collaborative,
continuous and semi-automatic learning of multi-objective optimizations using shared machine learning modules
(plugins) with the unified CK API.

Model Features Accuracy
(GCC 4.9.2)

Accuracy
(GCC 7.1.0)

milepost nn ft1 .. ft56 0.37 0.30

Table 4: Accuracy of the nearest neighbor classifier with MILEPOST features to predict the most efficient
combinations of compiler flags for GCC 4.9.2 and GCC 7.1.0 flags on RPi3 device.
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with terminology and methodology for machine learning
training and prediction used further. Next, we will
briefly demonstrate the use of this customizable workflow
to continuously classify shared workloads presented in
this report in terms of the most efficient compiler
optimizations while using MILEPOST models and
features.

First, we query the public CK repository [8] to collect
all optimization statistics together with all associated
objects (workloads, data sets, platforms) for a given
optimization scenario. In our compiler flag optimization
scenario, we retrieve all most efficient compiler flags
combinations found and shared by the community when
crowd-tuning GCC 4.9.2 on RPi3 device (Figure 17).

Note that our CK crowd-tuning workflow also
continuously applies such optimization to all shared
workloads. This allows us to analyze ”reaction” of any
given workload to all most efficient optimizations. We
can then group together those workloads which exhibit
similar reactions.

The top graph in Figure 29 shows reactions of all
workloads to the most efficient optimizations as a ratio
of the default execution time (-O3) to the execution time
of applied optimization. It confirms yet again ([64]) that
there is no single ”winning” combination of optimizations
and they can either considerably improve or degrade
execution time on different workloads. It also confirms
that it is indeed possible to group together multiple
workloads which share the most efficient combination of
compiler flags, i.e. which achieve the highest speedup for
a common optimization as shown in the bottom graph in
Figure 29. Figure 30 shows similar trends for GCC 7.1.0
on the same RPi3 device even though the overall number
of the most efficient combinations of compiler flags is
smaller than for GCC 4.9.2 likely due to considerably
improved internal optimization heuristics over the past
years (see Figure 18).

Having such groups of labeled objects (where labels
are the most efficient optimizations and objects are
workloads) allows us to use standard machine learning
classification methodology. One must find such a set of
objects’ features and a model which maximizes correct
labeling of previously unseen objects, or in our cases can
correctly predict the most efficient software optimization
and hardware design for a given workload. As example,
we extracted 56 so-called MILEPOST features described
in [61] (static program properties extracted from GCC’s
intermediate representation) from all shared programs,
stored them in program.static.features, and applied
simple nearest neighbor classifier to above data. We then
evaluated the quality of such model (ability to predict)
using prediction accuracy during standard leave-one-out
cross-validation technique: for each workload we remove
it from the training set, build a model, validate
predictions, sum up all correct predictions and divide
by the total number of workloads.

Table 4 shows this prediction accuracy of our
MILEPOST model for compiler flags from GCC 4.9.2
and GCC 7.1.0 across all shared workloads on RPi3
device. One may notice that it is nearly twice lower
than in the original MILEPOST paper [61]. As we
explain in [64], in the MILEPOST project we could
only use a dozen of similar workloads and just a few
most efficient optimizations to be able to perform all
necessary experiments within a reasonable amount of
time (6 months). After brining the community on hoard,
we could now use a much larger collective training set
with more than 300 shared, diverse and non-synthesized
workloads while analyzing much more optimizations by
crowdsourcing autotuning. This helps obtain a more
realistic limit of the MILEPOST predictor.

Though relatively low, this number can now become a
reference point to be further improved by the community.
It is similar in spirit to the ImageNet Large Scale Visual
Recognition Competition (ILSVRC) [101] which reduced
image classification error rate from 25% in 2011 to
just a few percent with the help of the community.
Furthermore, we can also keep just a few representative
workloads for each representative group as well as
misclassified ones in a public repository thus producing
a minimized, realistic and representative training set for
systems researchers.

We shared all demo scripts which we used to generate
data and graphs in this section in the following CK
entry (however they are not yet user-friendly and we
will continue improving documentation and standardizing
APIs of reusable CK modules with the help of the
community):

$ ck find script:rpi3-crowdmodel

9 Improving and autotuning
models and features

There are many publications demonstrating interesting
machine learning algorithms, features and models to
predict efficient program optimizations and hardware
designs [91, 108, 87, 107, 116, 35, 47, 53, 75, 103,
97, 81, 51, 41]. Though all these techniques can
be potentially useful, the lack of common interfaces
and meta information for artifacts and experimental
workflows makes it extremely challenging to compare,
reuse and build upon them particularly in industrial
projects with tough deadlines.

Even artifact evaluation which we introduced at
systems conferences [21] to partially solve these issues
is not yet enough because our community does not
have a common, portable and customizable workflow
framework. Bridging this gap between machine learning
and systems research served as an additional motivation
to develop Collective Knowledge workflow framework.
Our idea is to help colleagues and students share various
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Figure 29: Top graph: reactions of all workloads to all top performing combinations of optimizations for GCC 4.9.2
on RPi3 device (speedups if value is more than 1.0). Bottom graph: groups of workloads achieving the highest
speedup for a given unique combination of optimizations.
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Figure 30: Top graph: reactions of all workloads to all top performing combinations of optimizations for GCC
7.1.0 on RPi3 device (speedup if value is more than 1.0). Bottom graph: groups of workloads achieving the highest
speedup for a given unique combination of optimizations.
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workloads, data sets, machine learning algorithms,
models and feature extractors as plugins (CK modules)
with a common API and meta description. Plugged to
a common machine learning workflow such modules can
then be applied in parallel to continuously compete for
the most accurate predictions for a given optimization
scenario. Furthermore, the community can continue
improving and autotuning models, analyzing various
combination of features, experimenting with hierarchical
models, and pruning models to reduce their complexity
across shared data sets to trade off prediction accuracy,
speed, size and the ease of interpretation.
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Figure 31: Accuracy of an automatically generated
decision tree to predict compiler flags (GCC 4.9.2 on
the top graph and GCC 7.1.0 on the bottom graph)
on RPi3 when autotuning the tree depth. Round
blue dots show prediction accuracy with cross-validation
while blue crosses show prediction accuracy without
cross-validation.

For a proof-of-concept of such collaborative learning
approach, we shared a number of customizable CK
modules (see ck search module:*model* ) for several
popular classifiers including the nearest neighbor,
decision trees and deep learning. These modules serve
as wrappers with a common CK API for TensorFlow,
scikit-learn, R and other machine learning frameworks.
We also shared several feature extractors (see ck search
module:*features* ) assembling the following groups of
program features which may influence predictions:

• ft1 .. ft56 - original MILEPOST features (see [61]);

• ft57 .. ft65 - additional features designed and
shared by our colleague, Dr. Jeremy Singer [12];

• ft66 .. ft121 - original MILEPOST features
normalized by the total number of instructions

(ft24);

We then attempted to autotune various parameters
of machine learning algorithms exposed via CK API.
Figure 31 shows an example of autotuning the depth of a
decision tree (available as customizable CK plugin) with
all shared groups of features and its impact on prediction
accuracy of compiler flags using MILEPOST features
from the previous section for GCC 4.9.2 and GCC 7.1.0
on RPi3. Blue round dots obtained using leave-one-out
validation suggest that decision trees of depth 8 and 4
are enough to achieve maximum prediction accuracy of
0.4% for GCC 4.9.2 and GCC 7.1.0 respectively. Model
autotuning thus helped improve prediction accuracy in
comparison with the original nearest neighbor classifier
from the MILEPOST project.

Figure 32 shows a few examples of such automatically
generated decision trees with different depths for GCC
7.1.0 using CK. Such trees are easy to interpret and can
therefore help compiler and hardware developers quickly
understand the most influential features and analyze
relationships between different features and the most
efficient optimizations. For example, the above results
suggest that the number of binary integer operations
(ft22) and the number of distinct operators (ft59)
can help predict optimizations which can considerably
improve execution time of a given method over -O3.

Turning off cross-validation can also help developers
understand how well models can perform on all available
workloads (in-sample data) (red dots on Figure 31). In
our case of GCC 7.1.0, the decision tree of depth 15
shown in Figure 32) is enough to capture all compiler
optimizations for 300 available workloads.

To complete our demonstration of CK concepts for
collaborative machine learning and optimization, we
also evaluated a deep learning based classifier from
TensorFlow [33] (see ck help module:model.tf ) with
4 random configurations of hidden layers ([10,20,10],
[21,13,21], [11,30,18,20,13], [17]) and training steps
(300..3000). We also evaluated the nearest neighbor
classifier used in the MILEPOST project but with
different groups of features and aggregated all results
in Table 5. Finally, we automatically reduced the
complexity of the nearest neighbor classifier (1) by
iteratively removing those features one by one which do
not degrade prediction accuracy and (2) by iteratively
adding features one by one to maximize prediction
accuracy. It is interesting to note that our nearest
neighbor classifier achieves a slightly better prediction
accuracy with a reduced feature set than with a full set
of features showing inequality of MILEPOST features
and overfitting.

As expected, deep learning classification achieves
a better prediction accuracy of 0.68% and 0.45%
for GCC 4.9.2 and GCC 7.1.0 respectively for RPi3
among currently shared models, features, workloads and
optimizations. However, since deep learning models
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Model Features Accuracy
(GCC 4.9.2)

Accuracy
(GCC 7.1.0)

decision trees with cross validation; depth 1 ft1 .. ft65 0.26 0.33

decision trees with cross validation; depth 2 ft1 .. ft65 0.26 0.36

decision trees with cross validation; depth 4 ft1 .. ft65 0.27 0.39

decision trees with cross validation; depth 8 ft1 .. ft65 0.40 0.36

decision trees with cross validation; depth 16 ft1 .. ft65 0.36 0.35

decision trees with cross validation; depth 20 ft1 .. ft65 0.37 0.33

decision trees with cross validation; depth 25 ft1 .. ft65 0.37 0.37

decision trees with cross validation; depth 29 ft1 .. ft65 0.35 0.37

decision trees without cross validation; depth 1 ft1 .. ft65 0.39 0.36

decision trees without cross validation; depth 2 ft1 .. ft65 0.40 0.40

decision trees without cross validation; depth 4 ft1 .. ft65 0.49 0.47

decision trees without cross validation; depth 8 ft1 .. ft65 0.69 0.68

decision trees without cross validation; depth 16 ft1 .. ft65 0.94 0.96

decision trees without cross validation; depth 20 ft1 .. ft65 0.98 0.96

decision trees without cross validation; depth 25 ft1 .. ft65 0.98 0.96

decision trees without cross validation; depth 29 ft1 .. ft65 0.98 0.96

dnn tf with cross validation; iteration 1 ft1 .. ft65 0.68 0.30

dnn tf with cross validation; iteration 2 ft1 .. ft65 0.64 0.33

dnn tf with cross validation; iteration 3 ft1 .. ft65 0.61 0.45

dnn tf with cross validation; iteration 4 ft1 .. ft65 0.64 0.44

dnn tf without cross validation; iteration 1 ft1 .. ft65 0.72 0.29

dnn tf without cross validation; iteration 2 ft1 .. ft65 0.72 0.47

dnn tf without cross validation; iteration 3 ft1 .. ft65 0.72 0.48

dnn tf without cross validation; iteration 4 ft1 .. ft65 0.68 0.62

milepost nn ft1 .. ft121 0.30 0.30

milepost nn ft1 .. ft56 0.37 0.30

milepost nn ft1 .. ft65 0.30 0.30

milepost nn ft57 .. ft121 0.30 0.30

milepost nn ft57 .. ft65 0.30 0.30

milepost nn ft66 .. ft121 0.36 0.32

milepost nn ft1 .. ft121
(normalized)

0.37 0.37

milepost nn ft1 .. ft56
(normalized)

0.37 0.33

milepost nn ft1 .. ft65
(normalized)

0.39 0.32

milepost nn ft57 .. ft121
(normalized)

0.37 0.39

milepost nn ft57 .. ft65
(normalized)

0.37 0.35

milepost nn ft66 .. ft121
(normalized)

0.38 0.38

milepost nn (reduce complexity1) ft1 .. ft121
(normalized)

0.45 0.44

milepost nn (reduce complexity2) ft1 .. ft121
(normalized)

0.45 0.40

Table 5: Prediction accuracy when autotuning or reducing complexity of decision tree, nearest neighbor and deep
learning classifiers across different groups of program features.
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yes

*L34*
samples = 2

S2 (2)

no

X[89] <= 0.225
samples = 3

yes

*L33*
samples = 2

S1 (2)

no

*L30*
samples = 1

S7 (1)

yes

X[60] <= 67.0
samples = 2

no

*L31*
samples = 1

S5 (1)

yes

*L32*
samples = 1

S4 (1)

no

X[70] <= 0.091
samples = 2

yes

*L38*
samples = 7

S0 (7)

no

*L36*
samples = 1

S7 (1)

yes

*L37*
samples = 1

S6 (1)

no

X[66] <= 0.108
samples = 13

yes

X[47] <= 4.5
samples = 3

no

*L39*
samples = 1

S8 (1)

yes

X[90] <= 0.03
samples = 12

no

*L40*
samples = 1

S1 (1)

yes

X[100] <= 0.195
samples = 11

no

*L41*
samples = 10

S4 (10)

yes

*L42*
samples = 1

S7 (1)

no

*L43*
samples = 2

S1 (2)

yes

*L44*
samples = 1

S3 (1)

no

X[10] <= 2.5
samples = 7

yes

*L48*
samples = 2

S2 (2)

no

*L46*
samples = 6

S3 (6)

yes

*L47*
samples = 1

S4 (1)

no

*L49*
samples = 3

S5 (3)

yes

X[34] <= 2.5
samples = 103

no

X[46] <= 12.0
samples = 16

yes

X[114] <= 2.216
samples = 87

no

X[53] <= 3.5
samples = 9

yes

X[96] <= 0.025
samples = 7

no

X[87] <= 0.143
samples = 3

yes

X[2] <= 1.5
samples = 6

no

*L50*
samples = 2

S1 (2)

yes

*L51*
samples = 1

S9 (1)

no

*L52*
samples = 2

S1 (1)

yes

*L53*
samples = 4

S2 (4)

no

*L54*
samples = 2

S3 (2)

yes

X[47] <= 4.5
samples = 5

no

*L55*
samples = 2

S6 (2)

yes

X[4] <= 10.0
samples = 3

no

*L56*
samples = 1

S12 (1)

yes

X[96] <= 0.156
samples = 2

no

*L57*
samples = 1

S7 (1)

yes

*L58*
samples = 1

S11 (1)

no

X[114] <= 2.028
samples = 27

yes

X[47] <= 11.5
samples = 60

no

X[114] <= 1.919
samples = 5

yes

X[110] <= 0.024
samples = 22

no

*L59*
samples = 2

S1 (2)

yes

X[70] <= 0.067
samples = 3

no

*L60*
samples = 1

S6 (1)

yes

X[98] <= 0.106
samples = 2

no

*L61*
samples = 1

S7 (1)

yes

*L62*
samples = 1

S4 (1)

no

X[78] <= 0.011
samples = 3

yes

X[68] <= 0.001
samples = 19

no

*L63*
samples = 1

S2 (1)

yes

X[100] <= 0.064
samples = 2

no

*L64*
samples = 1

S3 (1)

yes

*L65*
samples = 1

S1 (1)

no

X[111] <= 0.059
samples = 17

yes

X[42] <= 5.0
samples = 2

no

*L66*
samples = 1

S5 (1)

yes

X[118] <= 0.158
samples = 16

no

*L67*
samples = 14

S0 (14)

yes

X[12] <= 8.5
samples = 2

no

*L68*
samples = 1

S0 (1)

yes

*L69*
samples = 1

S9 (1)

no

*L70*
samples = 1

S4 (1)

yes

*L71*
samples = 1

S10 (1)

no

X[9] <= 2.5
samples = 45

yes

X[98] <= 0.065
samples = 15

no

X[111] <= 0.188
samples = 41

yes

*L92*
samples = 4

S4 (4)

no

X[114] <= 2.702
samples = 24

yes

X[51] <= 20.0
samples = 17

no

X[105] <= 0.22
samples = 22

yes

*L83*
samples = 2

S13 (2)

no

X[87] <= 0.139
samples = 10

yes

X[100] <= 0.121
samples = 12

no

X[91] <= 0.019
samples = 6

yes

*L76*
samples = 4

S6 (4)

no

X[66] <= 0.06
samples = 3

yes

X[1] <= 4.0
samples = 3

no

*L72*
samples = 2

S0 (1)

yes

*L73*
samples = 1

S0 (1)

no

*L74*
samples = 2

S4 (1)

yes

*L75*
samples = 1

S4 (1)

no

X[69] <= 0.104
samples = 5

yes

X[78] <= 0.01
samples = 7

no

X[61] <= 14.0
samples = 2

yes

*L79*
samples = 3

S2 (3)

no

*L77*
samples = 1

S0 (1)

yes

*L78*
samples = 1

S6 (1)

no

X[62] <= 27.388
samples = 3

yes

*L82*
samples = 4

S4 (4)

no

*L80*
samples = 1

S4 (1)

yes

*L81*
samples = 2

S0 (2)

no

*L84*
samples = 3

S0 (3)

yes

X[69] <= 0.176
samples = 14

no

X[86] <= 0.286
samples = 10

yes

X[4] <= 16.5
samples = 4

no

X[118] <= 0.118
samples = 5

yes

X[114] <= 2.374
samples = 5

no

*L85*
samples = 2

S3 (2)

yes

X[111] <= 0.197
samples = 3

no

*L86*
samples = 1

S5 (1)

yes

*L87*
samples = 2

S4 (1)

no

*L88*
samples = 3

S1 (3)

yes

*L89*
samples = 2

S0 (2)

no

*L90*
samples = 3

S9 (3)

yes

*L91*
samples = 1

S11 (1)

no

*L93*
samples = 3

S12 (3)

yes

X[86] <= 0.22
samples = 12

no

*L94*
samples = 3

S1 (3)

yes

X[111] <= 0.13
samples = 9

no

X[81] <= 0.005
samples = 4

yes

X[48] <= 110.0
samples = 5

no

*L95*
samples = 1

S4 (1)

yes

X[42] <= 0.5
samples = 3

no

X[85] <= 0.982
samples = 2

yes

*L98*
samples = 1

S10 (1)

no

*L96*
samples = 1

S11 (1)

yes

*L97*
samples = 1

S13 (1)

no

X[48] <= 70.5
samples = 4

yes

*L101*
samples = 1

S5 (1)

no

*L99*
samples = 2

S8 (2)

yes

*L100*
samples = 2

S0 (1)

no

*L102*
samples = 9

S0 (9)

yes

*L103*
samples = 1

S1 (1)

no

X[12] <= 3.5
samples = 6

yes

X[104] <= 0.011
samples = 46

no

*L104*
samples = 2

S4 (2)

yes

X[114] <= 2.261
samples = 4

no

X[84] <= 0.045
samples = 2

yes

*L107*
samples = 2

S13 (2)

no

*L105*
samples = 1

S0 (1)

yes

*L106*
samples = 1

S6 (1)

no

X[99] <= 0.279
samples = 44

yes

*L118*
samples = 2

S4 (2)

no

X[75] <= 0.063
samples = 43

yes

*L117*
samples = 1

S6 (1)

no

X[89] <= 0.009
samples = 42

yes

*L116*
samples = 1

S9 (1)

no

*L108*
samples = 1

S8 (1)

yes

X[114] <= 2.152
samples = 41

no

*L109*
samples = 1

S8 (1)

yes

X[86] <= 0.168
samples = 40

no

X[62] <= 28.123
samples = 35

yes

X[45] <= 5.5
samples = 5

no

X[98] <= 0.003
samples = 3

yes

*L112*
samples = 32

S0 (32)

no

*L110*
samples = 1

S12 (1)

yes

*L111*
samples = 2

S0 (2)

no

X[5] <= 11.5
samples = 2

yes

*L115*
samples = 3

S0 (3)

no

*L113*
samples = 1

S11 (1)

yes

*L114*
samples = 1

S7 (1)

no

Figure 32: Example of automatically generated decision trees of depth 1 and 4 with leave-one-out cross-validation,
and 15 without cross-validation to predict GCC 7.1.0 compiler optimizations using CK modules.

are so much more computationally intensive, resource
hungry and difficult to interpret than decision trees,
one must carefully balance accuracy vs speed vs size.
That is why we suggest to use hierarchical models
where high-level and coarse-grain program behavior is
quickly captured using decision trees, while all fine-grain
behavior is captured by deep learning and similar
techniques. Another possible use of deep learning can
be in automatically capturing influential features from
the source code, data sets and hardware.

All scripts to generate above experiments (require
further documentation) are available in the following CK
entry:

$ ck find script:rpi3-crowdmodel

10 Enabling input-aware
optimization

Current prediction accuracy which we achieved for the
most efficient compiler flags is still disappointing: around
0.45% for GCC 7.1.0. We explained this in more detail
in [64, 65] by missing features particularly available
at run-time from data sets and hardware. Having
a customizable experimental workflow with pluggable
artifacts makes it relatively straightforward to analyze
reactions of a given program to the most efficient
optimization across multiple data sets and search for
missing features.

First, we converted 474 different data sets from
the MiDataSet suite [59] as pluggable CK artifacts
and shared them as a zip archive ( 800MB).
It is possible to download it from the Google
Drive from https://drive.google.com/open?id=

0B-wXENVfIO82OUpZdWIzckhlRk0 (we plan to move it
to a permanent repository in the future) and then install
via CK as following:

$ ck add repo --zip=ckr-ctuning-datasets.zip

--quiet

$ ck ls dataset --all

$ ck search dataset --tags=image,jpeg

All these data sets will be immediately visible to all
related programs via the CK autotuning workflow. For
example, if we now run susan corners program, CK will
prompt user a choice of 20 related images from the above
data sets:

$ ck compile program:cbench-automotive-susan

--speed

$ ck run program:cbench-automotive-susan

Next, we can apply all most efficient compiler
optimizations to a given program with all data sets.
Figure 33 shows such reactions (ratio of an execution
time with a given optimization to an execution time with
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Figure 33: Reactions of a jpeg decoder across 20 distinct data sets (jpeg images) to all top performing combinations
of compiler optimizations for GCC 7.1.0 on RPi3 device (speedups if value is more than 1.0).

the default -O3 compiler optimization) of a jpeg decoder
across 20 different jpeg images from the above MiDataSet
on RPi3.

One can observe that the same combination of
compiler flags can both considerably improve or degrade
execution time for the same program but across different
data sets. For example, data sets 4,5,13,16 and 17 can
benefit from the most efficient combination of compiler
flags found by the community with speedups ranging
from 1.2 to 1.7. On the other hand, it’s better to run all
other data sets with the default -O3 optimization level.

Unfortunately, finding data set and other features
which could easily differentiate above optimizations is
often very challenging. Even deep learning may not
help if a feature is not yet exposed. We explain this
issue in [64] when optimizing real B&W filter kernel - we
managed to improve predictions by exposing a ”time of
the day” feature only via human intervention. However,
yet again, the CK concept is to bring the interdisciplinary
community on board to share such cases in a reproducible
way and then collaboratively find various features to
improve predictions.

Another aspect which can influence the quality of
predictive models, is that the same combinations of
compiler flags are too coarse-grain and can make
different internal optimization decisions for different
programs. Therefore, we need to have an access
to fine-grain optimizations (inlining, tiling, unrolling,
vectorization, prefetching, etc) and related features to

continue improving our models. However, this follows
our top-down optimization and modeling methodology
which we implemented in the Collective Knowledge
framework. We want first to analyze, optimize and model
coarse-grain behavior of shared workloads together with
the community and students while gradually adding
more workloads, data sets, models and platforms. Only
when we reached the limit of prediction accuracy,
we start gradually exposing finer-grain optimizations
and features via extensible CK JSON interface while
avoiding explosion in design and optimization spaces (see
details in [65] for our previous version of the workflow
framework, Collective Mind). This is much in spirit of
how physicists moved from Newton’s three coarse-grain
laws of motion to fine-grain quantum mechanics.

To demonstrate this approach, we shared a simple
skeletonized matrix multiply kernel from [57] in the CK
format with blocking (tiling) parameter and data set
feature (square matrix size) exposed via CK API:

$ ck compile program:shared-matmul-c2

--flags="-DUSE BLOCKED MATMUL=YES

$ ck run program:shared-matmul-c2

--env.CT MATRIX DIMENSION=128

--env.CT BLOCK SIZE=16

We can then reuse universal autotuning (exploration)
strategies available as CK modules or implement
specialized ones to explore exposed fine-grain
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Figure 34: Performance of a tiled matrix multiply in GFLOPS for different square matrix sizes. Blue circles
show performance of original (non-blocked) matrix multiply while red crosses show best performance found during
autotuning on RPi3 device.

optimizations versus different data sets. Figure 34
shows matmul performance in GFLOPS during random
exploration of a blocking parameter for different square
matrix sizes on RPi3. These results are in line with
multiple past studies showing that unblocked matmul
is more efficient for small matrix sizes (less than 32
on RPi3) since all data fits cache, or between 32 and
512 (on RPi3) if they are not power of 2. In contrast,
the tiled matmul is better on RPi3 for matrix sizes of
power of 2 between 32 and 512, since it can help reduce
cache conflict misses, and for all matrix sizes more than
512 where tiling can help optimize access to slow main
memory.

Our customizable workflow can help teach students
how to build efficient, adaptive and self-optimizing
libraries including BLAS, neural networks and FFT.
Such libraries are assembled from the most efficient
routines found during continuous crowd-tuning across
numerous data sets and platforms, and combined with
fast and automatically generated decision trees or other
more precise classifiers [99, 83, 85, 64]. The most efficient
routines are then selected at run-time depending on data
set, hardware and other features as conceptually shown
in Figure 35..

All demo scripts to generate data and graphs in this
section are available in the following CK entries:

$ ck find

script:rpi3-all-autotune-multiple-datasets

$ ck find

script:rpi3-input-aware-autotune-blas

11 Reinventing computer
engineering via reproducible
competitions

Having a common and customizable workflow framework
with ”plug&play” artifacts opens up another interesting
opportunity for computer engineering. Researchers
can use it to compare and improve their techniques
(optimizations, models, algorithms, architectures)
against each other via open and reproducible
competitions while being on the same page.

This is in spirit with existing machine learning
competitions such as Kaggle and ImageNet challenge [15,
14] to improve prediction accuracy of various models.
The main difference is that we want to focus on
optimizing the whole software/hardware/model stack
while trading off multiple metrics including speed,
accuracy, and costs [31, 64, 24].

Experimental results from such competitions can
be continuously aggregated and presented in the
live Collective Knowledge scoreboard [8]. Other
academic and industrial researchers can then pay a
specific attention to the ”winning” techniques close
to a Pareto frontier in a multi-dimensional space of
accuracy, execution time, power/energy consumption,
hardware/code/model footprint, monetary costs etc
thus speeding up technology transfer. Furthermore,
”winning” artifacts and workflows can now be
recompiled, reused and extended on the newer platforms
with the latest environment thus improving overall
research sustainability.

For a proof-of-concept, we started helping some
authors convert their artifacts and experimental
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Figure 35: Enabling adaptive and self-optimizing libraries assembled from the most efficient routines continuously
optimized by the community across different platforms and data sets. These routines are selected automatically at
run-time based on platform, data set and other features.
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Figure 36: Random exploration of various SLAM algorithms and their parameters (Simultaneous localization and
mapping) in terms of accuracy (average trajectory error or ATE) versus speed (frames per second) on RPi3 using
CK.
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Figure 37: Developing common evaluation methodology for empirical results in systems research: (a) Calculating
speedups between two optimizations T1 and T2 using min, mean and expected values, and reporting max difference.
(b) Reporting a problem when several system states are detected

workflows to the CK format during Artifact
Evaluation [11, 36, 20]. Association for Computing
Machinery (ACM) [1] also recently joined this effort
funded by the Alfred P. Sloan Foundation to convert
already published experimental workflows and artifacs
from the ACM Digital Library to the CK format [55].

We can then reuse CK functionality to crowdsource
benchmarking and multi-objective autotuning of shared
workloads across diverse data sets, models and platforms.
For example, Figure 36 shows results from random
exploration of various SLAM algorithms (Simultaneous
localization and mapping) and their parameters from [93]
in terms of accuracy (average trajectory error or
ATE) versus speed (frames per second) on RPi3 using
CK [3]. Researchers may easily spend 50% of their time
developing experimental, benchmarking and autotuning
infrastructure in such complex projects, and then
continuously updating it to adapt to ever changing
software and hardware instead of innovating. Worse,
such ad-hoc infrastructure may not even survive the end
of the project or if leading developers leave project.

Using common and portable workflow framework can
relieve researchers from this burden and let them reuse
already existing artifacts and focus on innovation rather
than re-developing ad-hoc software from scratch. Other
researchers can also pick up the winning designs on
a Pareto frontier, reproduce results via CK, try them
on different platforms and with different data sets,
build upon them, and eventually try to develop more
efficient algorithms. Finally, researchers can implement a
common experimental methodology to evaluate empirical
results in systems research similar to physics within
a common workflow framework rather than writing
their own ad-hoc scripts. Figure 37 shows statistical
analysis of experimental results implemented in the CK
to compare different optimizations depending on research

scenarios. For example, we report minimal execution
time from multiple experiments to understand the limits
of a given architecture, expected value to see how a
given workload performs on average, and max time to
detect abnormal behavior. If more than one expected
value is detected, it usually means that system was
in several different run-time states during experiments
(often related to adaptive changes in CPU and GPU
frequency due to DVFS) and extra analysis is required.

We now plan to validate our Collective Knowledge
approach in the 1st reproducible ReQuEST tournament
at the ACM ASPLOS’18 conference [31] as presented in
Figure 38. ReQuEST is aimed at providing a scalable
tournament framework, a common experimental
methodology and an open repository for continuous
evaluation and optimization of the quality vs. efficiency
Pareto optimality of a wide range of real-world
applications, libraries, and models across the whole
hardware/software stack on complete platforms.
ReQuEST also promote reproducibility of experimental
results and reusability/customization of systems research
artifacts by standardizing evaluation methodologies and
facilitating the deployment of efficient solutions on
heterogeneous platforms.

ReQuEST will use CK and our artifact evaluation
methodology [20] to provide unified evaluation and a
live scoreboard of submissions. Figure 39 shows a
proof-of-concept example of such a scoreboard powered
by CK to collaboratively benchmark inference (speed vs.
platform cost) across diverse deep learning frameworks
(TensorFlow, Caffe, MXNet, etc.), models (AlexNet,
GoogleNet, SqueezeNet, ResNet, etc.), real user data
sets, and mobile devices provided by volunteers (see the
latest results at cKnowledge.org/repo). Our goal is to
teach students and researchers how to

• release research artifacts of their on-going or
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Figure 39: An example of a live Collective Knowledge scoreboard to crowd-benchmark inference in terms of speed,
accuracy and platform cost across diverse deep learning frameworks, models, data sets, and Android devices provided
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accomplished research as portable and reusable
components, standardize evaluation workflows,
and facilitate deployment and tech transfer of
state-of-the-art research,

• continuously optimize various algorithms across
diverse models, data sets and platforms in terms of
speed, accuracy, size, energy usage and other costs,

• build upon each others’ work to develop the next
generation of efficient software and hardware stack
for emerging workloads.

12 Conclusions and Future Work

Researchers are now in a race to bring artificial
intelligence to all possible devices from IoT to
supercomputers which will require much more efficient
software and hardware then currently available. At
the same time, computer engineers have already
been struggling for many years to develop efficient
sub-components of computer systems including
algorithms, compilers and run-time systems.

The major issues including raising complexity, lack of
a common experimental framework and lack of practical
knowledge exchange between academia and industry.
Rather than innovating, researchers have to spend more
and more time writing their own, ad-hoc and not easily
customizable support tools to perform experiments such
as multi-objective autotuning.

We presented our long-term educational initiative
to teach students and researchers how to solve the
above problems using customizable workflow frameworks
similar to other sciences. We showed how to
convert ad-hoc, multi-objective and multi-dimensional
autotuning into a portable and customizable workflow
based on open-source Collective Knowledge workflow
framework. We then demonstrated how to use it
to implement various scenarios such as compiler flag
autotuning of benchmarks and realistic workloads across
Raspberry Pi 3 devices in terms of speed and size. We
also demonstrated how to crowdsource such autotuning
across different devices provided by volunteers similar to
SETI@home, collect the most efficient optimizations in
a reproducible way in a public repository of knowledge
at cKnowledge.org/repo, apply various machine learning
techniques including decision trees, the nearest neighbor
classifier and deep learning to predict the most efficient
optimizations for previously unseen workloads, and then
continue improving models and features as a community
effort. We now plan to develop an open web platform
together with the community to provide a user-friendly
front-end to all presented workflows while hiding all
complexity.

We use our methodology and open-source CK workflow
framework and repository to teach students how to
exchange their research artifacts and results as reusable

components with a a unified API and meta-information,
perform collaborative experiments, automate Artifact
Evaluation at journals and conferences [20], build upon
each others’ work, make their research more reproducible
and sustainable, and eventually accelerate transfer of
their ideas to industry. Students and researchers can
later use such skills and unified artifacts to participate
in our open ReQuEST tournaments on reproducible
and Pareto-efficient co-design of the whole software
and hardware stack for emerging workloads such as
deep learning and quantum computing in terms of
speed, accuracy, energy and costs [31]. This, in turn,
should help the community build an open repository
of portable, reusable and customizable algorithms
continuously optimized across diverse platforms, models
and data sets to assemble efficient computer systems and
accelerate innovation.
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A Artifact Appendix

Submission guidelines:

cTuning.org/ae/submission-20161020.html

This is an example of an Artifact Appendix which
we introduced at the computer systems conferences
including CGO, PPoPP, PACT and SuperComputing to
gradually unify artifact evaluation, sharing and reuse [20,
48, 60, 58]. We briefly describe how to install and use
our autotuning workflow, visualize optimization results
and reproduce them. We also shared all scripts which
we used to generate data and graphs in all sections from
this report though we did not yet have time to thoroughly
document them. In fact, we plan to gradually document
them and standardize APIs of shared CK modules with
the help of the community and motivated students.

A.1 Abstract

We provided the whole Collective Knowledge workflow
with all dependencies for collaborative, customizable,
multi-dimensional and multi-objective autotuning of
realistic workloads on Raspberry Pi 3 and other devices.

Current optimization results are available for GCC
7.1.0 (link) and for GCC 4.9.2 (link). They are also
available as a CK repository and can be replayed on
another platform via CK.

A.2 Description

A.2.1 Check-list (artifact meta information)

• Algorithm: -

• Program: shared programs from the CK
ctuning-programs repository

• Compilation: any GCC

• Transformations: compiler flag optimizations

• Binary: will be produced during autotuning

• Data set: real inputs from the CK
ctuning-datasets-min repository

• Run-time environment: Raspbian (or any other)

• Hardware: Raspberry Pi 3 (or any other)

• Run-time state: will be monitored by CK (CPU
frequency)

• Execution: empirical measurements of the execution
time of autotuned workloads via CK workflow

• Output: best combinations of GCC compiler flags that
improve execution time and code size

• Experiment workflow: autotuning, crowd-tuning and
collaborative machine learning workflow implemented
using CK framework

• Experiment customization: standard customization
via CK API: select compiler, programs and data sets for
autotuning, crowd-tuning and predictive modeling

• Publicly available?: yes - CK autotuning and machine
learning workflow (available under BSD 3-clause license)
and all related artifacts are shared as reusable and
customizable components via GitHub.

A.2.2 How software can be obtained (if
available)

You can obtain CK repositories with optimization
results, shared programs and data sets, workflow for
autotuning and crowd-tuning as following:

$ sudo pip install ck

$ ck pull repo:ck-rpi-optimization-results

Note that you may need around 1GB of free space.
You can install 2 additional CK repositories [63] from
the public FigShare repository as following (need 3GB
of free space):

$ ck add

repo:ck-rpi-optimization-results-reactions

--zip=https://ndownloader.figshare.com/files/10218435

--quiet

$ ck add

repo:ck-rpi-optimization-results-reactions2

--zip=https://ndownloader.figshare.com/files/10218441

--quiet

$ ck ls experiment:rpi3-*

These repositories are so large because they contain all
experiments from this report in a reproducible way (we
also plan to considerably reduce this size by removing
duplicate information in the future). But if you want
to prepare and run your own repositories you will
likely need less than 100MB. See this artifact in the
CK from the ACM CGO’17 paper [36] as example:
github.com/SamAinsworth/reproduce-cgo2017-paper

A.2.3 Hardware dependencies

Tested on Raspberry Pi Model B 3 devices with 4-core
BCM2709 processor but should work on any platform.

A.2.4 Software dependencies

• Raspbian GNU/Linux 8 (jessie)

• Collective Knowledge Framework [25, 62]

• Python 2.7+ or 3.4+

• Git client

• GCC 4.9.2 or GCC 7.1.0

A.2.5 Data sets

A minimal set of inputs for cTuning benchmarks
available from the CK ctuning-datasets-min repository.
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A.3 Installation

Installation is performed using CK with the help of
integrated cross-platform package manager [22]:

$ sudo pip install ck

$ ck pull repo:ck-rpi-optimization-results

$ ck compile program:zlib --speed

CK will automatically detect required software
which is already installed on your platform, install
missing packages, and prepare autotuning workflow for
execution.

Note that CK allows multiple versions of different
software to natively co-exist. Therefore, you can install
several versions of GCC which will be automatically
detected by CK and their environment prepared
accordingly. For example, you can install (build) GCC
7.1.0 on RPi 3 via CK as following:

$ ck pull repo:ck-dev-compilers

$ ck install

package:compiler-gcc-any-src-linux-no-deps

--env.PARALLEL BUILDS=1

--env.GCC COMPILE CFLAGS=-O0

--env.GCC COMPILE CXXFLAGS=-O0

--env.EXTRA CFG GCC=--disable-bootstrap

--env.RPI3=YES --force version=7.1.0

$ ck show env --tags=gcc

Note that you may need to install extra dependencies
including

$ sudo apt-get install texinfo build-essential

libgmp-dev libmpfr-dev libisl-dev

libcloog-isl-dev libmpc-dev

You may also want to increase a swap size on
RPi 3 to speed up GCC building. You can change
”CONF SWAPSIZE=100” in /etc/dphys-swapfile to
”CONF SWAPSIZE=1000”. But do not forget to change
it back after successful build to avoid damaging your SD
card.

A.4 Experiment workflow

Autotuning example
You can run zlib autotuning via CK as following:

$ ck autotune program:zlib --iterations=150

--repetitions=3 --scenario=9d88674c45b94971

--cmd key=decode

--record uoa=my-first-experiment

CK will automatically detect available compilers, will
ask user to select data set, and will evaluate 150
combinations of random compiler flags (repeating each

experiment 3 times for statistical analysis of empirical
variation of results).

Experimental results will be aggregated in a CK entry
”experiment:my-first-experiment” a local CK repository:

$ ck find experiment:my-first-experiment

You can plot graph (execution time vs binary size) or
view results in a web browser as following:

$ ck plot graph:my-first-experiment

$ ck browser experiment:my-first-experiment

You can compile and run zlib program via CK as
following:

$ ck compile program:zlib --flags="some flags"

$ ck run program:zlib

Finally, you can participate in GCC crowd-tuning as
following:

$ ck crowdsource program.optimization --gcc

A.5 Evaluation and expected result

You can find all scripts to perform experiments from this
article as following:

$ ck ls ck-rpi-optimization-results:script:* |

sort

You can then go to each individual entry and see
related scripts:

$ ls ‘ck find script:rpi3-susan-autotune‘

You can find all experimental results in the following
entries:

$ ck ls

ck-rpi-optimization-results:experiment:* |

sort

You can then browse all results in your web browser
as following:

$ ck browser

experiment:rpi3-zlib-decode-gcc4-150b-rnd-frontier

You can find information about how to replay each
autotuning iteration there, for example:

$ ck replay experiment:b0f31c56475aa510

--point=46049203405c5347

CK should normally show expected and new results
while reporting any unexpected behavior (if difference is
more than some threshold such as 5%).
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A.6 Experimental methodology

One of the most important points of using Collective
Knowledge framework is to take advantage of the
experimental methodology for computer systems
research continuously improved by the community. For
this purpose, we instrument programs using a small
xOpenME library [65] which allows us to monitor
behavior of some code regions and dump final statistics
to a JSON file in the CK format. CK will then repeat
each autotuning iteration N times, apply statistical
analysis on all exposed characteristics, report min, max
and mean values, and calculate expected value based on
a histogram of all results (if supported by used Python)
as shown in Figure 37 (a).

We then calculate improvements of a given
optimization over reference one (-O3) using minimal
and expected execution times, and record differences. If
the difference is more than 5%, we mark such experient
is noise and untrustable to be analyzed and improved
later by the community. If several system states are
detected as shown in Figure 37 (b), CK will not be able
to reproduce them - it then means that the common
CK experimental workflow should also be improved for
this hardware and environment to be able to distinguish
such states (such as CPU and GPU frequency due to
DVFS for example).

A.7 Notes

We did not have time to thoroughly document
experiments from sections 7+ of this report. However we
shared all CK modules, workflows and scripts we used in
this report in the following CK entries:

$ ck ls script:rpi3-*

$ ck ls converting-ad-hoc-works-to-ck-*

Scripts from Sections 3 and 4 to invoke portable and
customizable CK autotuning workflow:

$ ck find script:rpi3-susan-autotune

$ ck find script:rpi3-susan-graphs

$ ck find script:rpi3-susan-reduce

$ ck find script:rpi3-all-autotune

Scripts from Section 5:

$ ck find script:rpi3-all-autotune

$ ck find script:rpi3-crowdtune

Scripts from Section 6:

$ ck find script:rpi3-zlib-decode-autotune

$ ck find script:rpi3-zlib-decode-graphs

$ ck find script:rpi3-zlib-decode-reduce

$ ck find script:rpi3-zlib-encode-autotune

$ ck find script:rpi3-zlib-encode-graphs

$ ck find script:rpi3-zlib-encode-reduce

Scripts from Section 7:

$ ck find script:rpi3-susan-fuzz-bugs

Scripts from Sections 8 and 9:

$ ck find script:rpi3-crowdmodel

Scripts from Section 10: //input-aware

$ ck find

script:rpi3-all-autotune-multiple-datasets

$ ck find

script:rpi3-input-aware-autotune-blas

Scripts from Section 11:

$ ck find

script:converting-ad-hoc-works-to-ck-slambench-autotuning

A.8 Conclusion

We hope that our customizable autotuning and
machine learning workflow can teach students,
scientists and engineers learn how to collaboratively
co-design Pareto-efficient software and hardware
stack for emerging workloads. Please feel free to
send us updates and patches to fix, help us improve
or extend our artifacts with documentation, and
keep in touch with our community via CK mailing
list: groups.google.com/d/forum/collective-knowledge!
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