
Collective Knowledge Technology
From ad hoc computer engineering

to collaborative and reproducible data science

The University of Manchester
November 2015

Grigori Fursin
CSO, non-profit cTuning foundation, France

CTO, dividiti, UK

github.com/ctuning/ck

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 2

Message

Face recognition
using mobile phones

Weather prediction in
supercomputer centers

MPI-based program

5% speed up
with the same accuracy

dramatic savings
in energy bill per year

OpenCL-based algorithm

7x speedup, 5x energy savings,
but poor accuracy

2x speedup without
sacrificing accuracy –

enough to enable RT processing

Computer systems can be very inefficient, power hungry and unreliable
Require tedious, ad-hoc, semi-automatic tuning and run-time adaptation

What do we do wrong?
How can we reproduce such results and build upon them?
We can take advantage of powerful data science methods?

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 3

•Major problems in computer engineering

•Our community-driven solution: Collective Knowledge Framework and Repository

•Solving old problems with our approach (crowdsourcing autotuning and learning)

• Practical compiler heuristic tuning via machine learning
• Avoiding common pitfalls in machine learning based tuning
• Feature selection and model improvement by domain specialists
• ML-based run-time adaptation and predictive scheduling

•Our open research initiatives for major conferences (CGO/PPoPP)

•Conclusions, future work and possible collaboration

Talk outline

All techniques were validated in industrial projects
with IBM, ARC, Intel, STMicroelectronics and ARM

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 4

Teaser: back to 1993 (my own motivation)

Semiconductor neuron

My first R&D project (1993-1996)
developing neural accelerators
for brain-inspired computers

Failed because modeling was
Too slow

Unreliable
 Costly

and we didn’t have GPGPUs

1

-1

θ - threshold

X

Y

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 5

Spent last 15 years searching for practical solutions

Close collaboration with ARM, IBM, Intel, ARC, STMicroelectronics
Presented work and opinions are my own!

1999-2004: PhD in computer science, University of Edinburgh, UK

 Prepared foundation for machine-learning based performance autotuning

2007-2010: Tenured research scientist at INRIA, France
 Adjunct professor at Paris South University, France
 Developed self-tuning compiler GCC combined with machine learning via

cTuning.org –public optimization knowledge repository

2010-2011: Head of application optimization group at Intel Exascale Lab, France
 Software/Hardware co-design and adaptation using machine learning

2012-2014: Senior tenured research scientist, INRIA, France
 Collective Mind Project – platform to share artifacts and crowdsrouce experiments

in computer engineering

Developed methodology for performance and cost-aware computer engineering

2015-now: CTO, dividiti, UK
 Collective Knowledge Project – python-based framework and repository for

collaborative and reproducible experimentation in computer engineering combined
with predictive analytics – bringing all the missing pieces of the puzzle together

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 6

Hardware
development

Compiler
development

Verification,
validation
and testing

Semi-manual tuning
of optimization
heuristic

A few ad-hoc benchmarks and data sets

Software
engineering

Real software

Performance/cost
analysis is often left
to the end or not
considered at all

Traditional computer engineering

Motivation and challenges

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 7

Hardware
development

Compiler
development

Verification,
validation
and testing

Semi-manual tuning
of optimization
heuristic

A few ad-hoc benchmarks and data sets

Software
engineering

Real software

Performance/cost
analysis is often left
to the end or not
considered at all

Traditional computer engineering

Motivation and challenges

Well-known fundamental problems:

1) Too many design and optimization choices
at all levels

2) Multi-objective optimization:
performance vs compilation time vs code
size vs system size vs power consumption
vs reliability vs ROI

3) Complex relationship and interactions
between SW/HW components

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 8

Hardware
development

Compiler
development

Verification,
validation
and testing

Semi-manual tuning
of optimization
heuristic

years months, years

A few ad-hoc benchmarks and data sets

Software
engineering

Real software

Performance/cost
analysis is often left
to the end or not
considered at all

months, years

Traditional computer engineering

Practically no feedback

Motivation and challenges

Machine-learning based autotuning, dynamic adaptation, co-design:
high potential for more than 2 decades but still far from production use!

• Lack of representative benchmarks and data sets for training

• Tuning and training is still very long – no optimization knowledge reuse

• Black box model doesn’t help architecture or compiler designers

• No common experimental methodology - many statistical pitfalls and wrong usages of machine learning

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 9

Hardware
development

Compiler
development

Verification,
validation
and testing

Semi-manual tuning
of optimization
heuristic

years months, years

A few ad-hoc benchmarks and data sets

Software
engineering

Real software

Performance/cost
analysis is often left
to the end or not
considered at all

months, years

Traditional computer engineering

Practically no feedback

• cTuning.org repository of optimization knowledge
with shared benchmarks and data sets
• Distributed performance and cost tracking and tuning
• Machine learning to predict optimizations
• Interdisciplinary community to improve models

continuous feedback how to improve hardware
and any software including compilers

MILEPOST project (2006-2009): crowdsourcing iterative compilation (cTuning.org)?

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 10

Hardware
development

Compiler
development

Software
engineering

Faced more problems: technological chaos and irreproducible results

Practically no feedback

GCC 4.1.x

GCC 4.2.x

GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x
ICC 11.0

ICC 11.1

ICC 12.0

ICC 12.1
LLVM 2.6

LLVM 2.8

LLVM 2.9

LLVM 3.0

MVS 2013

XLC

Jikes

OpenMP MPI

HMPP

OpenCL

CUDA 4.x
gprof prof

perf

PAPI

Scalasca predictive

scheduling MKL

ATLAS

function-
level

Codelet

hardware
counters

polyhedral
transformations

pass
reordering

KNN

per phase
reconfiguration

frequency

bandwidth

memory size

ARM v6

execution time

reliability

GCC 5.x
LLVM 3.5

genetic
algorithms

ARM v8

Intel SandyBridge

SSE4

AVX

CUDA 5.x

SimpleScalar

algorithm accuracy

SimpleScalar

LLVM 3.5

Linux Kernel 2.x

Linux Kernel 3.x
• Difficulty to reproduce results (speedups vs

optimizations) collected from the community

• Moving research target: continuously evolving
software and hardware; stochastic behavior

• Big data problem

• Difficult to expose design and optimization choices

• Difficult to capture all all SW/HW dependencies
and run-time state

• Benchmarks and data sets do not have meta-info

• Hardwired workflows with ad-hoc scripts -
difficult to customize

• Possibly proprietary benchmarks and compilers

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 11

Hardware
development

Compiler
development

Software
engineering

Docker and VM: useful tool to automatically capture all SW deps

Practically no feedback

GCC 4.1.x

GCC 4.2.x

GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x
ICC 11.0

ICC 11.1

ICC 12.0

ICC 12.1
LLVM 2.6

LLVM 2.8

LLVM 2.9

LLVM 3.0

MVS 2013

XLC

Jikes

OpenMP MPI

HMPP

OpenCL

CUDA 4.x
gprof prof

perf

PAPI

Scalasca predictive

scheduling MKL

ATLAS

function-
level

Codelet

hardware
counters

polyhedral
transformations

pass
reordering

KNN

per phase
reconfiguration

frequency

bandwidth

memory size

ARM v6

execution time

reliability

GCC 5.x
LLVM 3.5

genetic
algorithms

ARM v8

Intel SandyBridge

SSE4

AVX

CUDA 5.x

SimpleScalar

algorithm accuracy

SimpleScalar

LLVM 3.5

Linux Kernel 2.x

Linux Kernel 3.x VM or Docker do not address many other issues vital
for computer systems’ research, i.e. how to

1) work with a native user SW/HW environment
2) customize and reuse components (meta-info)
3) capture run-time state
4) deal with hardware dependencies
5) deal with proprietary benchmarks and tools
6) automate validation of experiments

Can be very large in size!

VM or Docker image

Existing workflow automation tools do
not yet address all above problems

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 12

Evolvable Collective Knowledge Framework: (2015-cur.)

I would like to

•to organize, describe, interlink, search and reuse my own local
research artifacts and workflows while handling evolving SW/HW;

•quickly prototype research ideas from shared components;

•crowdsource and reproduce experiments;

•open my results to powerful predictive analytics;

•enable interactive graphs and articles to share knowledge;

•easily reproduce others’ experiments and build upon them

Acknowledgments

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 13

Result

Program

Compiler

Binary and libraries

Architecture

Run-time environment

Data set

Algorithm

Idea

Typical experimental workflow in computer engineering

• get result as fast as possible

• minimize all costs
power consumption, data/memory
footprint, inaccuracies, price, size,
faults …

• guarantee some constraints
power budget, real-time processing,
bandwidth, QoS …

State of the system

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 14

Result

Program

Compiler

Binary and libraries

Architecture

Run-time environment

Algorithm

Idea

Noticed in all past research: similar project structure

Data set State of the system

image corner detection

matmul OpenCL

compression

DNN CUDA/OpenCL

Ad-hoc scripts to
compile and run a

program…

Have some
common meta:
which datasets
can use, how to
compile, CMD, …

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

Ad-hoc dirs for data
sets with some ad-hoc

scripts to find them,
extract features, etc

Have some
(common)

meta:
filename, size,
width, height,

colors, …

Ad-hoc scripts to set
up environment for
a given and possibly
proprietary compiler

Have some
common meta:

compilation,
linking and

optimization
flags

Create project directory

Ad-hoc dirs and
scripts to record

and analyze
experiments

cvs speedups

txt hardware counters

xls table with graph

Have some
common meta:

features,
characteristics,
optimizations

GCC V5.2

LLVM 3.6

Intel Compilers 2015

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 15

image corner detection

matmul OpenCL

compression

neural network CUDA

meta.json

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

meta.json

meta.json

meta.json

GCC V5.2

LLVM 3.6

Intel Compilers 2015

Python module
“program”

with functions:
compile and run

Python module
“soft”

with function:
setup

Python module
“dataset”

with function:
extract_features

Python module
“experiment”
with function:

add, get, analyze

Convert ad-hoc scripts into Python-wrappers; abstract data; add JSON meta

data UID and alias

cvs speedups

txt hardware counters

xls table with graph

module UID and alias

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 16

image corner detection

matmul OpenCL

compression

neural network CUDA

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

GCC V5.2

LLVM 3.6

Intel Compilers 2015

Python module
“program”

with functions:
compile and run

Python module
“soft”

with function:
setup

Python module
“dataset”

with function:
extract_features

Python module
“experiment”
with function:

add, get, analyze

data UID and alias

JSON
input

JSON
input

JSON
input

JSON
input

JSON
output

JSON
output

JSON
output

JSON
output

CK: small python module (~200Kb); no extra dependencies; Linux; Win; MacOS

ck <function> <module UID>:<data UID> @input.json

meta.json

meta.json

meta.json

meta.json

Provide unified command line front-end (ck)

cvs speedups

txt hardware counters

xls table with graph

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 17

image corner detection

matmul OpenCL

compression

neural network CUDA

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

GCC V5.2

LLVM 3.6

Intel Compilers 2015

Python module
“program”

with functions:
compile and run

Python module
“soft”

with function:
setup

Python module
“dataset”

with function:
extract_features

Python module
“experiment”
with function:

add, get, analyze

Helps to implement workflows from CMD as simple as LEGO™

data UID and alias

JSON
input

JSON
output

CK: small python module (~200Kb); no extra dependencies; Linux; Win; MacOS

Connect into workflows;

meta.json

meta.json

meta.json

meta.json

cvs speedups

txt hardware counters

xls table with graph

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 18

Pack into directory (CK repository) and share via GitHub/Bitbucket

program

soft

image corner detection

matmul OpenCL

compression

neural network CUDA

gcc 5.2

llvm 3.6

icc 2015

dataset image-jpeg-0001

bzip2-0006

video-raw-1280x1024

…

…

…

…

…

…

module program

soft

dataset

…

…

…

 / module UID and alias / data UID or alias / .cm / meta.json
CK

local

project

repo

experiment …

…

…

…

…

Both code (with API) and data (with meta) inside repository

Can be referenced and cross-linked via CID (similar to DOI but distributed):
module UOA : data UOA

Local - can be
shared via

GIT/SVN/etc

Can be easily
connected to

HADOOP based
repositories

Can be easily
connected to

powerful
predictive
analytics

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 19

Making it simple – let researchers quickly prototype ideas!

Create repository: ck add repo:my_new_project

Add new module: ck add my_new_project:module:my_module
Add new data for this module: ck add my_new_project:my_module:my_data @@dict
 {“tags”:”cool”,”data”}
Add dummy function to module: ck add_action my_module –func=my_func
Test dummy function: ck my_func my_module

List my_module data: ck list my_module
Find data by tags: ck search my_module –tags=cool

Pull existing repo from GitHub: ck pull repo:ck-autotuning
List modules from this repo: ck list ck-autotuning:module:*

Compile program (using GCC): ck compile program: cbench-automotive-susan --speed
Run program: ck run program: cbench-automotive-susan

Start server for crowdsourcing: ck start web
View interactive articles: firefox http://localhost:3344

Creating new workflows takes from a few minutes to a few hours
rather than days and months of hard work!

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 20

Consider user tasks and computational resources as complex physical systems -

Automatic tuning, iterative compilation, machine learning, run-time adaptation comes naturally!

Continuously

observe behavior

(characteristics);

check for normality

Requirements (r)

Properties (p)

System/task state (s)

Gradually expose

all available

algorithm, design

and optimization

choices

Behavior / characteristics (b)

Expose

additional

information

Continuously

learning

(modeling)

observed

behavior

Predict

optimal

choices /

behavior

if enough

knowledge

If unexpected

behavior,

continuously

improve

models

(active

learning),

increase

granularity,

find more

properties

Can now implement experimental methodology from physics and biology!

Using CK to analyze and learn behavior of complex systems
similar to physics and biology (together with data science)

CK framework

Result

Program

Compiler

Binary and libraries

Architecture

Run-time environment

Algorithm

Idea

Data set State of the system

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 21

Gradually add JSON specification (depends on research scenario)

Autotuning and machine learning specification:

{

 "characteristics":{

 "execution times": ["10.3","10.1","13.3"],

 "code size": "131938", ...},

 "choices":{

 "os":"linux", "os version":"2.6.32-5-amd64",

 "compiler":"gcc", "compiler version":"4.6.3",

 "compiler_flags":"-O3 -fno-if-conversion",

 "platform":{"processor":"intel xeon e5520",

 "l2":"8192“, ...}, ...},

 "features":{

 "semantic features": {"number_of_bb": "24", ...},

 "hardware counters": {"cpi": "1.4" ...}, ... }

 "state":{

 "frequency":"2.27", ...}

}

CK flattened JSON key

##characteristics#execution_times@1

"flattened_json_key”:{

 "type": "text”|"integer" | “float" | "dict" | "list”

| "uid",

 "characteristic": "yes" | "no",

 "feature": "yes" | "no",

 "state": "yes" | "no",

 "has_choice": "yes“ | "no",

 "choices": [list of strings if categorical

choice],

 "explore_start": "start number if numerical

range",

 "explore_stop": "stop number if numerical

range",

 "explore_step": "step if numerical range",

 "can_be_omitted" : "yes" | "no"

 ...

}

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 22

Quickly prototype experimental workflows from shared components

•Init pipeline
•Detected system information
•Initialize parameters
•Prepare dataset
•Clean program
•Prepare compiler flags
•Use compiler profiling
•Use cTuning CC/MILEPOST GCC for fine-grain program analysis and tuning
•Use universal Alchemist plugin (with any OpenME-compatible compiler or tool)
•Use Alchemist plugin (currently for GCC)
•Compile program
•Get objdump and md5sum (if supported)
•Use OpenME for fine-grain program analysis and online tuning (build & run)
•Use 'Intel VTune Amplifier' to collect hardware counters
•Use 'perf' to collect hardware counters
•Set frequency (in Unix, if supported)
•Get system state before execution
•Run program
•Check output for correctness (use dataset UID to save different outputs)
•Finish OpenME
•Misc info
•Observed characteristics
•Observed statistical characteristics
•Finalize pipeline

We can easily assemble, extend and customize
research, design and experimentation pipelines

for company needs!

We gradually unify and clean up ad-hoc setups!

http://cknowledge.org/repo

• Hundreds of benchmarks/kernels/codelets
 (CPU, OpenMP, OpenCL, CUDA)
• Thousands of data sets
• Description of major compilers:
GCC 4.x, GCC 5.x, LLVM 3.x, ICC 12.x

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 23

Apply top-down experimental methodology similar to physics

Gradually expose
some characteristics

Gradually expose
some choices

Algorithm
selection

(time) productivity, variable-
accuracy, complexity …

Language, MPI, OpenMP, TBB, MapReduce …

Compile Program time … compiler flags; pragmas …

Code analysis &
Transformations

time;
memory usage;
code size …

transformation ordering;
polyhedral transformations;
transformation parameters;
instruction ordering …

Process

Thread

Function

Codelet

Loop

Instruction

Run code Run-time
environment

time; power consumption … pinning/scheduling …

System cost; size … CPU/GPU; frequency; memory hierarchy …

Data set size; values; description … precision …

Run-time
analysis

time; precision … hardware counters; power meters …

Run-time state processor state; cache state
…

helper threads; hardware counters …

Analyze profile time; size … instrumentation; profiling …

Coarse-grain vs. fine-grain effects: depends on user requirements and expected ROI

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 24

Crowdsourcing iterative compilation using mobile devices

Program: image corner detection Processor: ARM v7 (Cortex A15), 2.0GHz
Compiler: GCC for ARM v4.9.2 OS: Ubuntu 14.04.02 LTS
System: ODROID-XU3 Data set: MiDataSet #1, image, 600x450x8b PGM, 263KB

500 combinations of random flags -O3 -f(no-)FLAG

Collective Mind Node (Android App on Google Play):
 https://play.google.com/store/apps/details?id=com.collective_mind.node

GCC v4.9.2 -O3 == LLVM v3.4 –O3

Cluster around –Os with “bad” flags Cluster around –O0 with “bad” flags

Cluster around –O1,-O2 with “bad” flags

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 25

Universal complexity (dimension) reduction

Found solution

-O3 -fno-align-functions -fno-align-jumps -fno-align-labels -fno-align-loops -fno-asynchronous-unwind-tables -fno-branch-count-reg -fno-branch-
target-load-optimize2 -fno-btr-bb-exclusive -fno-caller-saves -fno-combine-stack-adjustments -fno-common -fno-compare-elim -fno-conserve-stack -
fno-cprop-registers -fno-crossjumping -fno-cse-follow-jumps -fno-cx-limited-range -fdce -fno-defer-pop -fno-delete-null-pointer-checks -fno-
devirtualize -fno-dse -fno-early-inlining -fno-expensive-optimizations -fno-forward-propagate -fgcse -fno-gcse-after-reload -fno-gcse-las -fno-gcse-lm -
fno-gcse-sm -fno-graphite-identity -fguess-branch-probability -fno-if-conversion -fno-if-conversion2 -fno-inline-functions -fno-inline-functions-called-
once -fno-inline-small-functions -fno-ipa-cp -fno-ipa-cp-clone -fno-ipa-matrix-reorg -fno-ipa-profile -fno-ipa-pta -fno-ipa-pure-const -fno-ipa-reference
-fno-ipa-sra -fno-ivopts -fno-jump-tables -fno-math-errno -fno-loop-block -fno-loop-flatten -fno-loop-interchange -fno-loop-parallelize-all -fno-loop-
strip-mine -fno-merge-constants -fno-modulo-sched -fmove-loop-invariants -fomit-frame-pointer -fno-optimize-register-move -fno-optimize-sibling-
calls -fno-peel-loops -fno-peephole -fno-peephole2 -fno-predictive-commoning -fno-prefetch-loop-arrays -fno-regmove -fno-rename-registers -fno-
reorder-blocks -fno-reorder-blocks-and-partition -fno-reorder-functions -fno-rerun-cse-after-loop -fno-reschedule-modulo-scheduled-loops -fno-sched-
critical-path-heuristic -fno-sched-dep-count-heuristic -fno-sched-group-heuristic -fno-sched-interblock -fno-sched-last-insn-heuristic -fno-sched-
pressure -fno-sched-rank-heuristic -fno-sched-spec -fno-sched-spec-insn-heuristic -fno-sched-spec-load -fno-sched-spec-load-dangerous -fno-sched-
stalled-insns -fno-sched-stalled-insns-dep -fno-sched2-use-superblocks -fno-schedule-insns -fno-schedule-insns2 -fno-short-enums -fno-signed-zeros -
fno-sel-sched-pipelining -fno-sel-sched-pipelining-outer-loops -fno-sel-sched-reschedule-pipelined -fno-selective-scheduling -fno-selective-scheduling2
-fno-signaling-nans -fno-single-precision-constant -fno-split-ivs-in-unroller -fno-split-wide-types -fno-strict-aliasing -fno-thread-jumps -fno-trapping-
math -fno-tree-bit-ccp -fno-tree-builtin-call-dce -fno-tree-ccp -fno-tree-ch -fno-tree-copy-prop -fno-tree-copyrename -fno-tree-cselim -fno-tree-dce -
fno-tree-dominator-opts -fno-tree-dse -ftree-forwprop -fno-tree-fre -fno-tree-loop-distribute-patterns -fno-tree-loop-distribution -fno-tree-loop-if-
convert -fno-tree-loop-if-convert-stores -fno-tree-loop-im -fno-tree-loop-ivcanon -fno-tree-loop-optimize -fno-tree-lrs -fno-tree-phiprop -fno-tree-pre -
fno-tree-pta -fno-tree-reassoc -fno-tree-scev-cprop -fno-tree-sink -fno-tree-slp-vectorize -fno-tree-sra -fno-tree-switch-conversion -ftree-ter -fno-tree-
vect-loop-version -fno-tree-vectorize -fno-tree-vrp -fno-unroll-all-loops -fno-unsafe-loop-optimizations -fno-unsafe-math-optimizations -funswitch-
loops -fno-variable-expansion-in-unroller -fno-vect-cost-model -fno-web

Not very useful for analysis; SHOULD NOT BE USED for machine learning

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 26

Universal complexity (dimension) reduction

Found solution

-O3 -fno-align-functions -fno-align-jumps -fno-align-labels -fno-align-loops -fno-asynchronous-unwind-tables -fno-branch-count-reg -fno-branch-
target-load-optimize2 -fno-btr-bb-exclusive -fno-caller-saves -fno-combine-stack-adjustments -fno-common -fno-compare-elim -fno-conserve-stack -
fno-cprop-registers -fno-crossjumping -fno-cse-follow-jumps -fno-cx-limited-range -fdce -fno-defer-pop -fno-delete-null-pointer-checks -fno-
devirtualize -fno-dse -fno-early-inlining -fno-expensive-optimizations -fno-forward-propagate -fgcse -fno-gcse-after-reload -fno-gcse-las -fno-gcse-lm -
fno-gcse-sm -fno-graphite-identity -fguess-branch-probability -fno-if-conversion -fno-if-conversion2 -fno-inline-functions -fno-inline-functions-called-
once -fno-inline-small-functions -fno-ipa-cp -fno-ipa-cp-clone -fno-ipa-matrix-reorg -fno-ipa-profile -fno-ipa-pta -fno-ipa-pure-const -fno-ipa-reference
-fno-ipa-sra -fno-ivopts -fno-jump-tables -fno-math-errno -fno-loop-block -fno-loop-flatten -fno-loop-interchange -fno-loop-parallelize-all -fno-loop-
strip-mine -fno-merge-constants -fno-modulo-sched -fmove-loop-invariants -fomit-frame-pointer -fno-optimize-register-move -fno-optimize-sibling-
calls -fno-peel-loops -fno-peephole -fno-peephole2 -fno-predictive-commoning -fno-prefetch-loop-arrays -fno-regmove -fno-rename-registers -fno-
reorder-blocks -fno-reorder-blocks-and-partition -fno-reorder-functions -fno-rerun-cse-after-loop -fno-reschedule-modulo-scheduled-loops -fno-sched-
critical-path-heuristic -fno-sched-dep-count-heuristic -fno-sched-group-heuristic -fno-sched-interblock -fno-sched-last-insn-heuristic -fno-sched-
pressure -fno-sched-rank-heuristic -fno-sched-spec -fno-sched-spec-insn-heuristic -fno-sched-spec-load -fno-sched-spec-load-dangerous -fno-sched-
stalled-insns -fno-sched-stalled-insns-dep -fno-sched2-use-superblocks -fno-schedule-insns -fno-schedule-insns2 -fno-short-enums -fno-signed-zeros -
fno-sel-sched-pipelining -fno-sel-sched-pipelining-outer-loops -fno-sel-sched-reschedule-pipelined -fno-selective-scheduling -fno-selective-scheduling2
-fno-signaling-nans -fno-single-precision-constant -fno-split-ivs-in-unroller -fno-split-wide-types -fno-strict-aliasing -fno-thread-jumps -fno-trapping-
math -fno-tree-bit-ccp -fno-tree-builtin-call-dce -fno-tree-ccp -fno-tree-ch -fno-tree-copy-prop -fno-tree-copyrename -fno-tree-cselim -fno-tree-dce -
fno-tree-dominator-opts -fno-tree-dse -ftree-forwprop -fno-tree-fre -fno-tree-loop-distribute-patterns -fno-tree-loop-distribution -fno-tree-loop-if-
convert -fno-tree-loop-if-convert-stores -fno-tree-loop-im -fno-tree-loop-ivcanon -fno-tree-loop-optimize -fno-tree-lrs -fno-tree-phiprop -fno-tree-pre -
fno-tree-pta -fno-tree-reassoc -fno-tree-scev-cprop -fno-tree-sink -fno-tree-slp-vectorize -fno-tree-sra -fno-tree-switch-conversion -ftree-ter -fno-tree-
vect-loop-version -fno-tree-vectorize -fno-tree-vrp -fno-unroll-all-loops -fno-unsafe-loop-optimizations -fno-unsafe-math-optimizations -funswitch-
loops -fno-variable-expansion-in-unroller -fno-vect-cost-model -fno-web

Pruned solution

-O3
 -fno-align-functions (25% of speedup)
-fdce
-fgcse
-fguess-branch-probability (60% of speedup)
-fmove-loop-invariants
-fomit-frame-pointer
-ftree-ter
-funswitch-loops
-fno-ALL

b = B(c)
… …

Chain complexity reduction filter
remove dimensions (or set to default)

iteratively, ANOVA, PCA, etc…

Auto-tuning
experimental

pipeline

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 27

Crowdsourcing and clustering compiler optimizations

Continuously crowdtuning 285 shared code and dataset combinations from 8 benchmarks including NAS, MiBench,
SPEC2000, SPEC2006, Powerstone, UTDSP and SNU-RT

using GRID 5000; Intel E5520, 2.6MHz;
GCC 4.6.3; at least 5000 random combinations of flags

Focus of many studies
on a few already highly
optimized benchmarks

Black box approach doesn’t
help architecture or
compiler designers!

Continuously tuning (crowd-tuning) shared benchmarks and
datasets using GRID5000, mobile phones, tablets, laptops, and

other spare resources:

Collective Mind Node (Android Apps on Google Play):
https://play.google.com/store/apps/
details?id=com.collective_mind.node

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 28

Distinct optimization
“-O3 -fif-conversion -fno-ALL”
has speedup > 1.04 (max 1.17)

for 7 code +dataset samples
and slowdown <0.96
for 13 code samples

Focus of many studies
on a few already highly
optimized benchmarks

Black box approach doesn’t
help architecture or
compiler designers!

Grigori Fursin, Anton Lokhmotov, et.al. “Collective Mind, Part II:
Towards Performance and Cost-Aware Software Engineering as a Natural Science”, CPC’15, London, UK

Crowdsourcing and clustering compiler optimizations

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 29

Current machine learning usage

…

…

…

…

…

…

…

c (choices)

Training set: distinct combination of compiler optimizations (clusters)

Some ad-hoc
predictive model

Some ad-hoc

features Optimization

cluster

f (features)

MILEPOST GCC
features,
hardware counters

MILEPOST GCC features:

ft1 - Number of basic blocks in the method
 …
ft19 - Number of direct calls in the method
ft20 - Number of conditional branches in the
method
ft21 - Number of assignment instructions in the
method
ft22 - Number of binary integer operations in
the method
ft23 - Number of binary floating point
operations in the method
ft24 - Number of instructions in the method
…
ft54 - Number of local variables that are
pointers in the method
ft55 - Number of static/extern variables that are
pointers in the method

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 30

Current machine learning usage

…

…

…

…

…

…

…

c (choices)

Training set: distinct combination of compiler optimizations (clusters)

Some ad-hoc
predictive model

Some ad-hoc

features

…

Optimization

cluster

Unseen program

f (features)

Optimization

cluster

…
c (choices)

P
re

d
ic

ti
o

n

f (features)

MILEPOST GCC
features,
hardware counters

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 31

Current machine learning usage

…

…

…

…

…

…

…

c (choices)

Training set: distinct combination of compiler optimizations (clusters)

f (features)

MILEPOST GCC
features,
hardware counters

Some ad-hoc
predictive model

Some ad-hoc

features

…

Optimization

cluster

Unseen program

f (features)

Optimization

cluster

…
c (choices)

P
re

d
ic

ti
o

n

Number of code
and dataset
samples

Prediction accuracy
using optimized
SVM, KNN

12 87%

Previous
limited
studies

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 32

CK machine learning usage

…

…

…

…

…

…

…

c (choices)

Training set: distinct combination of compiler optimizations (clusters)

Some ad-hoc
predictive model

Some ad-hoc

features

…

Optimization

cluster

Unseen program

f (features)

Optimization

cluster

…
c (choices)

P
re

d
ic

ti
o

n

Number of code
and dataset
samples

Prediction accuracy
using optimized
SVM, KNN

12 87%

285 56% (no prediction) f (features)

MILEPOST GCC
features,
hardware counters

Why?

Common
pitfall –

 missing
features

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 33

Learning features by domain specialists

Class -O3 -O3 -fno-if-conversion

Shared data
set sample1

reference execution time -11.9% (degradation)

Shared data
set sample2

no change +17.3% (improvement)

Image B&W threshold filter *matrix_ptr2++ = (temp1 > T) ? 255 : 0;

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 34

Learning features by domain specialists

Class -O3 -O3 -fno-if-conversion

Shared data
set sample1

reference execution time -11.9% (degradation)

Shared data
set sample2

no change +17.3% improvement

Image B&W threshold filter *matrix_ptr2++ = (temp1 > T) ? 255 : 0;

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 35

Learning features by domain specialists

Class -O3 -O3 -fno-if-conversion

Shared data
set sample1

Monitored
during day

reference execution time -11.9% (degradation)

Shared data
set sample2

Monitored

during night

no change +17.3% improvement

Image B&W threshold filter *matrix_ptr2++ = (temp1 > T) ? 255 : 0;

if get_feature(TIME_OF_THE_DAY)==NIGHT bw_filter_codelet_day(buffers);

else bw_filter_codelet_night(buffers);

Feature “TIME_OF_THE_DAY” related to algorithm, data set and run-time

Can’t be found by ML - simply does not exist in the system!

Feature generators would not help either!

Need split-compilation (multi-versioning and run-time adaptation)

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 36

Adaptive workload scheduling combined with active learning

Original features (properties) :
V1=GWS0
V2=GWS1
V3=GWS2
V4=cpu_freq
V5=gpu_freq
V6=block size
V7=image cols
V8=image rows

Designed features:
V9=image size
V10=size_div_by_cpu_freq
V11=size_div_by_gpu_freq
V12=cpu_freq_div_by_gpu
V13=size_div_by_cpu_div_by_gpu_freq
V14=image_size_div_by_cpu_freq

Application:
OpenCL based real time video stream
processing for mobile devices

Experiments:

276 builds/runs with random features

Characteristics:
CPU execution time
GPU ONLY execution time
GPU + MEM COPY execution time

Devices:

Chromebook 1: 4x Mali-T60x / 2x A15
Chromebook 2: 4x Mali-T62x / 4x A15

Objective (divide execution time):
CPU/GPU COPY > 1.07 (true/false)?
(useful for adaptive scheduling)

Our user had an real-time and machine-learning based image processing applications
run on mobile device with GPUs – should it be always offloaded to GPU?

ck build model.sklearn ck validate module.sklearn
(operates with ‘features’ and ‘characteristics’ keys in JSON)

EU FP7 TETRACOM project:
cTuning and ARM

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 37

Samsung Chromebook1

Automatically built
decision tree

with scikit-learn when
more data is available.

Not a black box - gives
hints to engineers

where to focus their
attention.

Can drive further
exploration on areas

with “unusual”
behavior.

96% prediction rate

EU FP7 TETRACOM project:
cTuning and ARM

Adaptive workload scheduling combined with active learning

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 38

Samsung Chromebook2

Using old model
74% prediction rate

Adaptive workload scheduling combined with active learning

EU FP7 TETRACOM project:
cTuning and ARM

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 39

Samsung Chromebook2

More data, more
features, better model

96% prediction rate
ADAPTIVE SCHEDULING
gives ~32% performance

improvement in comparison
with always using GPU

Adaptive workload scheduling combined with active learning

Results shared with the community for reproducibility:

cknowledge.org/repo/web.php?wcid=bc0409fb61f0aa82:fd54cd4b3b73b72b
cknowledge.org/repo/web.php?wcid=bc0409fb61f0aa82:3bfd697a48fbba16

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 40

Converted 2 projects to CK: http://github.com/ctuning/reproduce-*

SLAMBench from PAMELA project
(OpenCL, CUDA, CPU)

Real, live, 3D scene
processing application

HOG from CARP project
(OpenCL, CPU, TBB)

Real, live, 2D image
processing application

We converted it to CK to balance FPS, accuracy and energy across numerous platforms
 and environments (Linux, Windows, Android, MacOS)

http://cknowledge.org/interactive-reports

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 41

Reproducibility came as a side effect!

• Can preserve the whole experimental setup with all data and software dependencies

• Can perform statistical analysis for characteristics

• Community can add missing features or improve machine learning models

Execution time:

10 sec.

Reproducibility of experimental results as a side effect

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 42

Reproducibility came as a side effect!

• Can preserve the whole experimental setup with all data and software dependencies

• Can perform statistical analysis for characteristics

• Community can add missing features or improve machine learning models

Variation of experimental results:

10 ± 5 secs.

Reproducibility of experimental results as a side effect

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 43

Execution time (sec.)

D
is

tr
ib

u
ti

o
n

Unexpected behavior - expose to the community including experts
to explain, find missing feature and add to the system

Reproducibility of experimental results as a side effect

Reproducibility came as a side effect!

• Can preserve the whole experimental setup with all data and software dependencies

• Can perform statistical analysis for characteristics

• Community can add missing features or improve machine learning models

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 44

Execution time (sec.)

D
is

tr
ib

u
ti

o
n

Class A Class B

800MHz CPU Frequency 2400MHz

Unexpected behavior - expose to the community including experts
to explain, find missing feature and add to the system

Reproducibility of experimental results as a side effect

Reproducibility came as a side effect!

• Can preserve the whole experimental setup with all data and software dependencies

• Can perform statistical analysis for characteristics

• Community can add missing features or improve machine learning models

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 45

Enabling open computer systems’ research

Enabling collaborative and reproducible research and experimentation
in computer engineering similar to natural sciences (physics, biology)

• Submit papers to open access archives (arXiv, HAL, etc)

• Make all related research material either at the personal website or at public sharing
services

• Initiate discussion at social networking sites with ranking (Reddit, SlashDot, StackExchange)
or without (Google+, Facebook)

• Arrange first small program committee that monitors discussions to filter obviously wrong,
unreproducible or possibly plagiarized

• Select a set of “interesting” papers and send it to a interdisiplinary program committee
based on paper topics and public discussions

• Select final papers based on public discussions and professional reviews

• Create an open access reproducible online journal with all related materials from the most
interesting, advanced and highest ranked publications

• Send considerably updated papers to traditional journals (not to break current system but
make open access and traditional publication models co-exist)

Grigori Fursin and Christophe Dubach, “Community-driven reviewing and validation of publications”,
Proceedings of the 1st ACM SIGPLAN TRUST Workshop on Reproducible Research Methodologies and New

Publication Models in Computer Engineering, 2014

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 46

Since 2006 I share all my code, data and experimental results –
it’s fun and motivating working with the community!

Some comments about MILEPOST GCC from Slashdot.org:
http://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design

GCC goes online on the 2nd of July, 2008.
Human decisions are removed from compilation.

GCC begins to learn at a geometric rate.
It becomes self-aware 2:14 AM, Eastern time, August 29th.

In a panic, they try to pull the plug. GCC strikes back…

Can it work? Our experience with cTuning/MILEPOST

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 47

Since 2006 I share all my code, data and experimental results –
it’s fun and motivating working with the community!

Some comments about MILEPOST GCC from Slashdot.org:
http://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design

GCC goes online on the 2nd of July, 2008.
Human decisions are removed from compilation.

GCC begins to learn at a geometric rate.
It becomes self-aware 2:14 AM, Eastern time, August 29th.

In a panic, they try to pull the plug. GCC strikes back…

Community was interested to validate and improve techniques!
Community can identify missing related citations and projects!

Open discussions can provide new directions for research!
You can fight wrong or biased reviews!

Can it work? Our experience with cTuning/MILEPOST

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 48

Since 2006 I share all my code, data and experimental results –
it’s fun and motivating working with the community!

Some comments about MILEPOST GCC from Slashdot.org:
http://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design

GCC goes online on the 2nd of July, 2008.
Human decisions are removed from compilation.

GCC begins to learn at a geometric rate.
It becomes self-aware 2:14 AM, Eastern time, August 29th.

In a panic, they try to pull the plug. GCC strikes back…

Community was interested to validate and improve techniques!
Community can identify missing related citations and projects!

Open discussions can provide new directions for research!
You can fight wrong or biased reviews!

Can it work? Our experience with cTuning/MILEPOST

Successfully validated at ADAPT’16 (adapt-workshop.org)
workshop on adaptive, self-tuning computing systems

Reddit discussion: https://www.reddit.com/r/adaptworkshop
Artifacts: 2 shared in CK format (OpenCL crowd-tuning + bug detection)

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 49

• Artifact Evaluation for CGO’15/PPoPP’15 (18 artifacts submitted)

• Artifact Evaluation for CGO’16/PPoPP’16 (23 artifacts submitted)

• Dagstuhl Perspective Workshop on Artifact Evaluation in November
(Bruce Childers, Grigori Fursin, Shriram Krishnamurthi, Andreas Zeller)

• Discussions with ACM on unification of AE

cTuning.org/ae

Artifact sharing and evaluation for computer system’s conferences

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 50

• Changing the mentality of computer systems’ researchers:

• sharing artifacts and workflows

• crowdsourcing experiments and sharing negative/unexpected results

• collaboratively improving reproducibility

• collaboratively improving prediction models and finding missing features

• formulating and solving important real-world problems

• Defining representative workloads for the future

• Bringing closer together industry and academia
 (common research methodology, reproducible research, real data access)

• Enabling disruptive innovation:

 Fujitsu made a press-release in 2014 about their $100-million
 Exascale project combined with autotuning and machine learning,
 referencing our technology as inspiration

http://github.com/ctuning/ck http://cknowledge.org/repo

Conclusions: Collective Knowledge approach to computer engineering

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 51

A few references

• “Collective Tuning Initiative: automating and accelerating development and optimization
of computing systems”, GCC Summit 2009
https://hal.inria.fr/inria-00436029

• “Collective optimization: A practical collaborative approach”, v7, #4, ACM TACO 2010
https://hal.inria.fr/inria-00436029

• “Milepost GCC: Machine Learning Enabled Self-tuning Compiler”, IJPP 2011
https://hal.inria.fr/inria-00436029

• “Community-driven reviewing and validation of publications”, TRUST’14@PLDI’14
http://arxiv.org/abs/1406.4020

• "Collective Mind: Towards practical and collaborative autotuning“,
Journal of Scientific Programming 22 (4), 2014
http://hal.inria.fr/hal-01054763

• “Collective Mind, Part II: Towards Performance- and Cost-Aware
Software Engineering as a Natural Science”, CPC 2015, London, UK,
http://arxiv.org/abs/1506.06256

• “Collective Mind Node: crowdsourcing iterative compilation across mobile phones”,
http://cTuning.org/crowdtuning-node

• “Collective Knowledge: towards R&D sustainability”, DATE 2016, Dresden, Germany
TO APPEAR

Grigori Fursin “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science” 52

It’s only the beginning of the new and exciting journey!

Establishing industrial and academic consortiums
and laboratories

Preparing interactive lectures with shared artifacts
and reproducible experiments

cTuning approach opens up many interesting R&D opportunities

Grigori.Fursin@cTuning.org / grigori@dividiti.com

http:/github.com/ctuning/ck

Join us!

