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Message 

Face recognition  
using mobile phones 

Weather prediction in 
supercomputer centers 

MPI-based program 

5% speed up  
with the same accuracy 

dramatic savings  
in energy bill per year 

OpenCL-based algorithm 

7x speedup, 5x energy savings,  
but poor accuracy 

2x speedup without  
sacrificing accuracy –  

enough to enable RT processing 

Computer systems can be very inefficient, power hungry and unreliable 
Require tedious, ad-hoc, semi-automatic tuning and run-time adaptation 

What do we do wrong? 
How can we reproduce such results and build upon them? 
We can take advantage of powerful data science methods? 
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•Major problems in computer engineering 

•Our community-driven solution: Collective Knowledge Framework and Repository 

•Solving old problems with our approach (crowdsourcing autotuning and learning) 

• Practical compiler heuristic tuning via machine learning 
• Avoiding common pitfalls in machine learning based tuning 
• Feature selection and model improvement by domain specialists  
• ML-based run-time adaptation and predictive scheduling 

•Our open research initiatives for major conferences (CGO/PPoPP) 

•Conclusions, future work and possible collaboration 

Talk outline 

All techniques were validated in industrial projects  
with IBM, ARC, Intel, STMicroelectronics and ARM 
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Teaser: back to 1993 (my own motivation) 

Semiconductor neuron 

My first R&D project (1993-1996)  
developing neural accelerators  
for brain-inspired computers 

Failed because modeling was  
Too slow 

Unreliable 
 Costly 

and we didn’t have GPGPUs 

1 

-1 

θ - threshold  

X 

Y 
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Spent last 15 years searching for practical solutions 

Close collaboration with ARM, IBM, Intel, ARC, STMicroelectronics 
Presented work and opinions are my own! 

1999-2004:  PhD in computer science, University of Edinburgh, UK 

 Prepared foundation for machine-learning based performance autotuning 

2007-2010:  Tenured research scientist at INRIA, France 
 Adjunct  professor at Paris South University, France 
 Developed self-tuning compiler GCC combined with machine learning  via 

cTuning.org –public optimization knowledge repository 

2010-2011:  Head of application optimization group at Intel Exascale Lab, France 
 Software/Hardware co-design and adaptation using machine learning 

2012-2014:  Senior tenured research scientist, INRIA, France 
 Collective Mind Project – platform to share artifacts and crowdsrouce experiments 

in computer engineering 

Developed methodology for performance and cost-aware computer engineering 

2015-now:  CTO, dividiti, UK 
 Collective Knowledge Project – python-based framework and repository for 

collaborative and reproducible experimentation in computer engineering combined 
with predictive analytics – bringing all the missing pieces of the puzzle together 
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Hardware 
development 

Compiler 
development 

Verification, 
validation  
and testing 

Semi-manual tuning 
of optimization 
heuristic 

A few ad-hoc  benchmarks and data sets 

Software 
engineering 

Real software 

Performance/cost 
analysis is often left 
to the end or not 
considered at all 

Traditional computer engineering 

Motivation and challenges 



Grigori Fursin        “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science”                                         7 

Hardware 
development 

Compiler 
development 

Verification, 
validation  
and testing 

Semi-manual tuning 
of optimization 
heuristic 

A few ad-hoc  benchmarks and data sets 

Software 
engineering 

Real software 

Performance/cost 
analysis is often left 
to the end or not 
considered at all 

Traditional computer engineering 

Motivation and challenges 

Well-known fundamental problems: 

1) Too many design and optimization choices 
at all levels 

2) Multi-objective optimization:  
performance vs compilation time vs code 
size vs system size vs power consumption 
vs reliability vs ROI 

3) Complex relationship and interactions 
between SW/HW components  
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Hardware 
development 

Compiler 
development 

Verification, 
validation  
and testing 

Semi-manual tuning 
of optimization 
heuristic 

years months, years 

A few ad-hoc  benchmarks and data sets 

Software 
engineering 

Real software 

Performance/cost 
analysis is often left 
to the end or not 
considered at all 

months, years 

Traditional computer engineering 

Practically no feedback 

Motivation and challenges 

Machine-learning based autotuning, dynamic adaptation, co-design:  
high potential for more than 2 decades but still far from production use! 

• Lack of representative benchmarks and data sets for training 

• Tuning and training is still very long – no optimization knowledge reuse  

• Black box model doesn’t help architecture or compiler designers  

• No common experimental methodology - many statistical pitfalls and wrong usages of machine learning  



Grigori Fursin        “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science”                                         9 

Hardware 
development 

Compiler 
development 

Verification, 
validation  
and testing 

Semi-manual tuning 
of optimization 
heuristic 

years months, years 

A few ad-hoc  benchmarks and data sets 

Software 
engineering 

Real software 

Performance/cost 
analysis is often left 
to the end or not 
considered at all 

months, years 

Traditional computer engineering 

Practically no feedback 

• cTuning.org repository  of optimization knowledge 
with shared benchmarks and data sets 
• Distributed performance and cost tracking and tuning 
• Machine learning to predict optimizations 
• Interdisciplinary community to improve models 

continuous feedback how to improve hardware 
and any software including compilers 

MILEPOST project (2006-2009): crowdsourcing iterative compilation (cTuning.org)? 
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Hardware 
development 

Compiler 
development 

Software 
engineering 

Faced more problems: technological chaos and irreproducible results 

Practically no feedback 

GCC 4.1.x 

GCC 4.2.x 

GCC 4.3.x 

GCC 4.4.x 

GCC 4.5.x 

GCC 4.6.x 
ICC 11.0 

ICC 11.1 

ICC 12.0 

ICC 12.1 
LLVM 2.6 

LLVM 2.8 

LLVM 2.9 

LLVM 3.0 

MVS 2013 

XLC 

Jikes 

OpenMP MPI 

HMPP 

OpenCL 

CUDA 4.x 
gprof prof 

perf 

PAPI 

Scalasca predictive 

scheduling MKL 

ATLAS 

function-
level 

Codelet 

hardware 
counters 

polyhedral 
transformations 

pass 
reordering 

KNN 

per phase 
reconfiguration 

frequency 

bandwidth 

memory size 

ARM v6 

execution time 

reliability 

GCC 5.x 
LLVM 3.5 

genetic 
algorithms 

ARM v8 

Intel SandyBridge 

SSE4 

AVX 

CUDA 5.x 

SimpleScalar 

algorithm accuracy 

SimpleScalar 

LLVM 3.5 

Linux Kernel 2.x 

Linux Kernel 3.x 
• Difficulty to reproduce results (speedups vs 

optimizations) collected from the community 

• Moving research target: continuously evolving 
software and hardware; stochastic  behavior  

• Big data problem 

• Difficult to expose design and optimization choices 

• Difficult to capture all all SW/HW dependencies 
and run-time state 

• Benchmarks and data sets do not have meta-info 

• Hardwired workflows with ad-hoc scripts  - 
difficult to customize 

• Possibly proprietary benchmarks and compilers 
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Hardware 
development 

Compiler 
development 

Software 
engineering 

Docker and VM: useful tool to automatically capture all SW deps 

Practically no feedback 

GCC 4.1.x 

GCC 4.2.x 

GCC 4.3.x 

GCC 4.4.x 

GCC 4.5.x 

GCC 4.6.x 
ICC 11.0 

ICC 11.1 

ICC 12.0 

ICC 12.1 
LLVM 2.6 

LLVM 2.8 

LLVM 2.9 

LLVM 3.0 

MVS 2013 

XLC 

Jikes 

OpenMP MPI 

HMPP 

OpenCL 

CUDA 4.x 
gprof prof 

perf 

PAPI 

Scalasca predictive 

scheduling MKL 

ATLAS 

function-
level 

Codelet 

hardware 
counters 

polyhedral 
transformations 

pass 
reordering 

KNN 

per phase 
reconfiguration 

frequency 

bandwidth 

memory size 

ARM v6 

execution time 

reliability 

GCC 5.x 
LLVM 3.5 

genetic 
algorithms 

ARM v8 

Intel SandyBridge 

SSE4 

AVX 

CUDA 5.x 

SimpleScalar 

algorithm accuracy 

SimpleScalar 

LLVM 3.5 

Linux Kernel 2.x 

Linux Kernel 3.x VM or Docker do not address many other issues vital 
for computer systems’ research, i.e. how to  
 
1) work with a native user SW/HW environment 
2) customize and reuse components (meta-info) 
3) capture run-time state 
4) deal with hardware dependencies 
5) deal with proprietary benchmarks and tools 
6) automate validation of experiments 
 

Can be very large in size! 

 
 
 
 
 
 

VM or Docker image 

Existing workflow automation tools do 
not yet address all above problems 
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Evolvable Collective Knowledge Framework: (2015-cur.) 

I would like to  

•to organize, describe, interlink, search and reuse my own local 
research artifacts and workflows while handling evolving SW/HW; 

•quickly prototype research ideas from shared components;  

•crowdsource and reproduce experiments; 

•open my results to powerful predictive analytics; 

•enable interactive graphs and articles to share knowledge; 

•easily reproduce others’ experiments and build upon them 

Acknowledgments 
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Result 

Program 

Compiler 

Binary and libraries 

Architecture 

Run-time environment 

Data set 

Algorithm 

Idea 

Typical experimental workflow in computer engineering 

• get result as fast as possible 

• minimize all costs 
power consumption, data/memory 
footprint, inaccuracies, price, size, 
faults … 

• guarantee some constraints 
power budget, real-time processing, 
bandwidth, QoS … 

State of the system 
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Result 

Program 

Compiler 

Binary and libraries 

Architecture 

Run-time environment 

Algorithm 

Idea 

Noticed in all past research: similar project structure 

Data set State of the system 

image corner detection 

matmul OpenCL 

compression 

DNN CUDA/OpenCL 

Ad-hoc scripts to 
compile and run a 

program… 

Have some 
common meta: 
which datasets 
can use, how to 
compile, CMD, … 

image-jpeg-0001 

bzip2-0006 

txt-0012 

video-raw-1280x1024 

Ad-hoc dirs for data 
sets with some ad-hoc 

scripts to find them, 
extract features, etc 

Have some  
(common) 

meta:  
filename, size, 
width, height, 

colors, … 

Ad-hoc scripts to set 
up environment for 
a given and possibly 
proprietary compiler 

Have some 
common meta: 

compilation,  
linking and 

optimization 
flags 

Create project directory 

Ad-hoc dirs and 
scripts to record 

and analyze 
experiments 

cvs speedups 

txt hardware counters 

xls table with graph 

Have some  
common meta:  

features, 
characteristics, 
optimizations 

GCC V5.2 

LLVM 3.6 

Intel Compilers 2015 
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image corner detection 

matmul OpenCL 

compression 

neural network CUDA 

meta.json 

image-jpeg-0001 

bzip2-0006 

txt-0012 

video-raw-1280x1024 

meta.json 

meta.json 

meta.json 

GCC V5.2 

LLVM 3.6 

Intel Compilers 2015 

Python module 
“program” 

with functions: 
compile and run 

Python module 
“soft” 

with function: 
setup 

Python module 
“dataset” 

with function: 
extract_features 

Python module 
“experiment” 
with function: 

add, get, analyze 

Convert ad-hoc scripts into Python-wrappers; abstract data; add JSON meta 

data UID and alias 

cvs speedups 

txt hardware counters 

xls table with graph 

module UID and alias 
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image corner detection 

matmul OpenCL 

compression 

neural network CUDA 

image-jpeg-0001 

bzip2-0006 

txt-0012 

video-raw-1280x1024 

GCC V5.2 

LLVM 3.6 

Intel Compilers 2015 

Python module 
“program” 

with functions: 
compile and run 

Python module 
“soft” 

with function: 
setup 

Python module 
“dataset” 

with function: 
extract_features 

Python module 
“experiment” 
with function: 

add, get, analyze 

data UID and alias 

JSON  
input 

JSON  
input 

JSON  
input 

JSON  
input 

JSON  
output 

JSON  
output 

JSON  
output 

JSON  
output 

CK: small python module (~200Kb); no extra dependencies; Linux; Win; MacOS 

ck <function> <module UID>:<data UID> @input.json 

meta.json 

meta.json 

meta.json 

meta.json 

Provide unified command line front-end (ck) 

cvs speedups 

txt hardware counters 

xls table with graph 
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image corner detection 

matmul OpenCL 

compression 

neural network CUDA 

image-jpeg-0001 

bzip2-0006 

txt-0012 

video-raw-1280x1024 

GCC V5.2 

LLVM 3.6 

Intel Compilers 2015 

Python module 
“program” 

with functions: 
compile and run 

Python module 
“soft” 

with function: 
setup 

Python module 
“dataset” 

with function: 
extract_features 

Python module 
“experiment” 
with function: 

add, get, analyze 

Helps to implement workflows from CMD as simple as LEGO™ 

data UID and alias 

JSON  
input 

JSON  
output 

CK: small python module (~200Kb); no extra dependencies; Linux; Win; MacOS 

Connect into workflows;  

meta.json 

meta.json 

meta.json 

meta.json 

cvs speedups 

txt hardware counters 

xls table with graph 
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Pack into directory (CK repository) and share via GitHub/Bitbucket 

program 

soft 

image corner detection 

matmul OpenCL 

compression 

neural network CUDA 

gcc 5.2 

llvm 3.6 

icc 2015 

dataset image-jpeg-0001 

bzip2-0006 

video-raw-1280x1024 

… 

… 

… 

… 

… 

… 

module program 

soft 

dataset 

… 

… 

… 

                 / module UID and alias   / data UID or alias                                       / .cm / meta.json 
CK 

local 

project 

repo 

experiment … 

… 

… 

… 

… 

Both code (with API) and data (with meta) inside repository 

Can be referenced and cross-linked via CID (similar to DOI but distributed): 
module UOA : data UOA 

Local - can be 
shared via 

GIT/SVN/etc 

Can be easily 
connected to 

HADOOP based 
repositories 

Can be easily 
connected to 

powerful 
predictive 
analytics 
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Making it simple – let researchers quickly prototype ideas! 

Create repository:  ck add repo:my_new_project 
 
Add new module:  ck add my_new_project:module:my_module 
Add new data for this module:  ck add my_new_project:my_module:my_data @@dict 
    {“tags”:”cool”,”data”} 
Add dummy function to module: ck add_action my_module –func=my_func 
Test dummy function: ck my_func my_module 
 
List my_module data: ck list my_module 
Find data by tags: ck search my_module –tags=cool 
 
Pull existing repo from GitHub: ck pull repo:ck-autotuning 
List modules from this repo: ck list ck-autotuning:module:* 
 
Compile program (using GCC): ck compile program: cbench-automotive-susan --speed 
Run program: ck run program: cbench-automotive-susan 
 
Start server for crowdsourcing: ck start web 
View interactive articles: firefox http://localhost:3344 

Creating new workflows  takes from a few minutes to a few hours  
rather than days and months of hard work! 
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Consider user tasks and computational resources  as complex physical systems - 

Automatic tuning, iterative compilation, machine learning, run-time adaptation comes naturally! 

Continuously 

observe behavior 

(characteristics); 

check for normality 

Requirements  (  r  ) 

Properties  (  p  ) 

System/task state (  s  ) 

Gradually expose 

all available 

algorithm, design 

and optimization 

choices 

Behavior / characteristics  (  b  ) 

Expose 

additional  

information 

Continuously 

learning 

(modeling) 

observed 

behavior 

Predict 

optimal 

choices / 

behavior 

if enough 

knowledge 

If unexpected 

behavior, 

continuously 

improve 

models 

(active 

learning), 

increase 

granularity, 

find more 

properties 

Can now implement experimental methodology from physics and biology! 

Using CK to analyze and learn behavior of complex systems 
similar to physics and biology (together with data science) 

CK framework 

Result 

Program 

Compiler 

Binary and libraries 

Architecture 

Run-time environment 

Algorithm 

Idea 

Data set State of the system 
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Gradually add JSON specification (depends on research scenario) 

Autotuning and machine learning specification: 
 

 

{ 

 "characteristics":{ 

  "execution times": ["10.3","10.1","13.3"], 

  "code size": "131938", ...}, 

 "choices":{ 

  "os":"linux", "os version":"2.6.32-5-amd64", 

  "compiler":"gcc", "compiler version":"4.6.3", 

  "compiler_flags":"-O3 -fno-if-conversion", 

  "platform":{"processor":"intel xeon e5520",  

          "l2":"8192“, ...}, ...}, 

 "features":{ 

  "semantic features": {"number_of_bb": "24", ...}, 

  "hardware counters": {"cpi": "1.4" ...}, ... } 

 "state":{ 

  "frequency":"2.27", ...} 

} 

CK flattened JSON key 

##characteristics#execution_times@1 

"flattened_json_key”:{ 

 "type": "text”|"integer" | “float" | "dict" | "list” 

| "uid", 

 "characteristic": "yes" | "no", 

 "feature": "yes" | "no", 

 "state": "yes" | "no", 

 "has_choice": "yes“ | "no", 

 "choices": [ list of strings if categorical 

choice], 

 "explore_start": "start number if numerical 

range", 

 "explore_stop": "stop number if numerical 

range", 

 "explore_step": "step if numerical range", 

 "can_be_omitted" : "yes" | "no" 

 ... 

} 
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Quickly prototype experimental workflows from shared components 

•Init pipeline    
•Detected system information    
•Initialize parameters    
•Prepare dataset    
•Clean program    
•Prepare compiler flags    
•Use compiler profiling    
•Use cTuning CC/MILEPOST GCC for fine-grain program analysis and tuning    
•Use universal Alchemist plugin (with any OpenME-compatible compiler or tool)    
•Use Alchemist plugin (currently for GCC)    
•Compile program    
•Get objdump and md5sum (if supported)    
•Use OpenME for fine-grain program analysis and online tuning (build & run)    
•Use 'Intel VTune Amplifier' to collect hardware counters    
•Use 'perf' to collect hardware counters    
•Set frequency (in Unix, if supported)    
•Get system state before execution    
•Run program    
•Check output for correctness (use dataset UID to save different outputs)    
•Finish OpenME    
•Misc info    
•Observed characteristics    
•Observed statistical characteristics    
•Finalize pipeline 

We can easily assemble, extend and customize 
research, design and experimentation pipelines 

for company needs! 

We gradually unify and clean up ad-hoc setups! 

http://cknowledge.org/repo 

• Hundreds of benchmarks/kernels/codelets  
  (CPU, OpenMP, OpenCL, CUDA) 
• Thousands of data sets 
• Description of major compilers:  
GCC 4.x, GCC 5.x, LLVM 3.x, ICC 12.x 
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Apply top-down experimental methodology similar to physics 

Gradually expose 
some characteristics 

Gradually expose 
some choices 

Algorithm 
selection 

(time) productivity, variable-
accuracy, complexity … 

Language, MPI, OpenMP, TBB, MapReduce … 

Compile Program time …   compiler flags; pragmas … 

Code analysis & 
Transformations 

time;   
memory usage;  
code size … 

transformation ordering;   
polyhedral transformations;  
transformation parameters; 
instruction ordering … 
 

Process 

Thread 

Function 

Codelet 

Loop 

Instruction 

Run code Run-time 
environment 

time; power consumption … pinning/scheduling … 

System cost; size … CPU/GPU; frequency; memory  hierarchy … 

Data set size; values; description … precision … 

Run-time 
analysis 

time;  precision … hardware counters; power meters … 

Run-time state processor state; cache state 
…  

helper threads; hardware counters … 

Analyze profile time;  size … instrumentation; profiling … 

Coarse-grain vs. fine-grain effects: depends on user requirements and expected ROI 
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Crowdsourcing iterative compilation using mobile devices 

Program:  image corner detection  Processor:  ARM v7 (Cortex A15), 2.0GHz 
Compiler:  GCC for ARM v4.9.2  OS:  Ubuntu 14.04.02 LTS 
System:  ODROID-XU3  Data set:  MiDataSet #1, image, 600x450x8b PGM, 263KB 

500 combinations of random flags -O3 -f(no-)FLAG 
 

Collective Mind Node (Android App on Google Play): 
 https://play.google.com/store/apps/details?id=com.collective_mind.node 

 

GCC v4.9.2 -O3 == LLVM v3.4 –O3 

Cluster around –Os with “bad” flags Cluster around –O0 with “bad” flags 

Cluster around –O1,-O2 with “bad” flags 
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Universal complexity (dimension) reduction 

Found solution 

-O3 -fno-align-functions -fno-align-jumps -fno-align-labels -fno-align-loops -fno-asynchronous-unwind-tables -fno-branch-count-reg -fno-branch-
target-load-optimize2 -fno-btr-bb-exclusive -fno-caller-saves -fno-combine-stack-adjustments -fno-common -fno-compare-elim -fno-conserve-stack -
fno-cprop-registers -fno-crossjumping -fno-cse-follow-jumps -fno-cx-limited-range -fdce -fno-defer-pop -fno-delete-null-pointer-checks -fno-
devirtualize -fno-dse -fno-early-inlining -fno-expensive-optimizations -fno-forward-propagate -fgcse -fno-gcse-after-reload -fno-gcse-las -fno-gcse-lm -
fno-gcse-sm -fno-graphite-identity -fguess-branch-probability -fno-if-conversion -fno-if-conversion2 -fno-inline-functions -fno-inline-functions-called-
once -fno-inline-small-functions -fno-ipa-cp -fno-ipa-cp-clone -fno-ipa-matrix-reorg -fno-ipa-profile -fno-ipa-pta -fno-ipa-pure-const -fno-ipa-reference 
-fno-ipa-sra -fno-ivopts -fno-jump-tables -fno-math-errno -fno-loop-block -fno-loop-flatten -fno-loop-interchange -fno-loop-parallelize-all -fno-loop-
strip-mine -fno-merge-constants -fno-modulo-sched -fmove-loop-invariants -fomit-frame-pointer -fno-optimize-register-move -fno-optimize-sibling-
calls -fno-peel-loops -fno-peephole -fno-peephole2 -fno-predictive-commoning -fno-prefetch-loop-arrays -fno-regmove -fno-rename-registers -fno-
reorder-blocks -fno-reorder-blocks-and-partition -fno-reorder-functions -fno-rerun-cse-after-loop -fno-reschedule-modulo-scheduled-loops -fno-sched-
critical-path-heuristic -fno-sched-dep-count-heuristic -fno-sched-group-heuristic -fno-sched-interblock -fno-sched-last-insn-heuristic -fno-sched-
pressure -fno-sched-rank-heuristic -fno-sched-spec -fno-sched-spec-insn-heuristic -fno-sched-spec-load -fno-sched-spec-load-dangerous -fno-sched-
stalled-insns -fno-sched-stalled-insns-dep -fno-sched2-use-superblocks -fno-schedule-insns -fno-schedule-insns2 -fno-short-enums -fno-signed-zeros -
fno-sel-sched-pipelining -fno-sel-sched-pipelining-outer-loops -fno-sel-sched-reschedule-pipelined -fno-selective-scheduling -fno-selective-scheduling2 
-fno-signaling-nans -fno-single-precision-constant -fno-split-ivs-in-unroller -fno-split-wide-types -fno-strict-aliasing -fno-thread-jumps -fno-trapping-
math -fno-tree-bit-ccp -fno-tree-builtin-call-dce -fno-tree-ccp -fno-tree-ch -fno-tree-copy-prop -fno-tree-copyrename -fno-tree-cselim -fno-tree-dce -
fno-tree-dominator-opts -fno-tree-dse -ftree-forwprop -fno-tree-fre -fno-tree-loop-distribute-patterns -fno-tree-loop-distribution -fno-tree-loop-if-
convert -fno-tree-loop-if-convert-stores -fno-tree-loop-im -fno-tree-loop-ivcanon -fno-tree-loop-optimize -fno-tree-lrs -fno-tree-phiprop -fno-tree-pre -
fno-tree-pta -fno-tree-reassoc -fno-tree-scev-cprop -fno-tree-sink -fno-tree-slp-vectorize -fno-tree-sra -fno-tree-switch-conversion -ftree-ter -fno-tree-
vect-loop-version -fno-tree-vectorize -fno-tree-vrp -fno-unroll-all-loops -fno-unsafe-loop-optimizations -fno-unsafe-math-optimizations -funswitch-
loops -fno-variable-expansion-in-unroller -fno-vect-cost-model -fno-web 

Not very useful for analysis; SHOULD NOT BE USED for machine learning 
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Universal complexity (dimension) reduction 

Found solution 

-O3 -fno-align-functions -fno-align-jumps -fno-align-labels -fno-align-loops -fno-asynchronous-unwind-tables -fno-branch-count-reg -fno-branch-
target-load-optimize2 -fno-btr-bb-exclusive -fno-caller-saves -fno-combine-stack-adjustments -fno-common -fno-compare-elim -fno-conserve-stack -
fno-cprop-registers -fno-crossjumping -fno-cse-follow-jumps -fno-cx-limited-range -fdce -fno-defer-pop -fno-delete-null-pointer-checks -fno-
devirtualize -fno-dse -fno-early-inlining -fno-expensive-optimizations -fno-forward-propagate -fgcse -fno-gcse-after-reload -fno-gcse-las -fno-gcse-lm -
fno-gcse-sm -fno-graphite-identity -fguess-branch-probability -fno-if-conversion -fno-if-conversion2 -fno-inline-functions -fno-inline-functions-called-
once -fno-inline-small-functions -fno-ipa-cp -fno-ipa-cp-clone -fno-ipa-matrix-reorg -fno-ipa-profile -fno-ipa-pta -fno-ipa-pure-const -fno-ipa-reference 
-fno-ipa-sra -fno-ivopts -fno-jump-tables -fno-math-errno -fno-loop-block -fno-loop-flatten -fno-loop-interchange -fno-loop-parallelize-all -fno-loop-
strip-mine -fno-merge-constants -fno-modulo-sched -fmove-loop-invariants -fomit-frame-pointer -fno-optimize-register-move -fno-optimize-sibling-
calls -fno-peel-loops -fno-peephole -fno-peephole2 -fno-predictive-commoning -fno-prefetch-loop-arrays -fno-regmove -fno-rename-registers -fno-
reorder-blocks -fno-reorder-blocks-and-partition -fno-reorder-functions -fno-rerun-cse-after-loop -fno-reschedule-modulo-scheduled-loops -fno-sched-
critical-path-heuristic -fno-sched-dep-count-heuristic -fno-sched-group-heuristic -fno-sched-interblock -fno-sched-last-insn-heuristic -fno-sched-
pressure -fno-sched-rank-heuristic -fno-sched-spec -fno-sched-spec-insn-heuristic -fno-sched-spec-load -fno-sched-spec-load-dangerous -fno-sched-
stalled-insns -fno-sched-stalled-insns-dep -fno-sched2-use-superblocks -fno-schedule-insns -fno-schedule-insns2 -fno-short-enums -fno-signed-zeros -
fno-sel-sched-pipelining -fno-sel-sched-pipelining-outer-loops -fno-sel-sched-reschedule-pipelined -fno-selective-scheduling -fno-selective-scheduling2 
-fno-signaling-nans -fno-single-precision-constant -fno-split-ivs-in-unroller -fno-split-wide-types -fno-strict-aliasing -fno-thread-jumps -fno-trapping-
math -fno-tree-bit-ccp -fno-tree-builtin-call-dce -fno-tree-ccp -fno-tree-ch -fno-tree-copy-prop -fno-tree-copyrename -fno-tree-cselim -fno-tree-dce -
fno-tree-dominator-opts -fno-tree-dse -ftree-forwprop -fno-tree-fre -fno-tree-loop-distribute-patterns -fno-tree-loop-distribution -fno-tree-loop-if-
convert -fno-tree-loop-if-convert-stores -fno-tree-loop-im -fno-tree-loop-ivcanon -fno-tree-loop-optimize -fno-tree-lrs -fno-tree-phiprop -fno-tree-pre -
fno-tree-pta -fno-tree-reassoc -fno-tree-scev-cprop -fno-tree-sink -fno-tree-slp-vectorize -fno-tree-sra -fno-tree-switch-conversion -ftree-ter -fno-tree-
vect-loop-version -fno-tree-vectorize -fno-tree-vrp -fno-unroll-all-loops -fno-unsafe-loop-optimizations -fno-unsafe-math-optimizations -funswitch-
loops -fno-variable-expansion-in-unroller -fno-vect-cost-model -fno-web 

Pruned solution 

-O3 
 -fno-align-functions              (25% of speedup) 
-fdce  
-fgcse  
-fguess-branch-probability    (60% of speedup) 
-fmove-loop-invariants  
-fomit-frame-pointer  
-ftree-ter  
-funswitch-loops   
-fno-ALL 

b       =                          B( c        )   
… … 

Chain complexity reduction filter 
remove dimensions (or set to default) 

iteratively, ANOVA, PCA, etc… 

Auto-tuning  
experimental  

pipeline 
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Crowdsourcing and clustering compiler optimizations  

Continuously crowdtuning 285 shared code and dataset combinations from 8 benchmarks including NAS, MiBench, 
SPEC2000, SPEC2006, Powerstone, UTDSP and SNU-RT  

using GRID 5000; Intel E5520, 2.6MHz;  
GCC 4.6.3; at least 5000 random combinations of flags 

 

Focus of many studies  
on a few already highly 
optimized benchmarks 

Black box approach doesn’t 
help architecture or 
compiler designers! 

Continuously tuning (crowd-tuning) shared benchmarks and 
datasets using GRID5000, mobile phones, tablets, laptops, and 

other spare resources: 
 

Collective Mind Node (Android Apps on Google Play): 
https://play.google.com/store/apps/ 
details?id=com.collective_mind.node 
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Distinct optimization   
“-O3 -fif-conversion -fno-ALL” 
has speedup > 1.04 (max 1.17)  

for 7 code +dataset samples 
and slowdown <0.96  
for 13 code samples 

Focus of many studies  
on a few already highly 
optimized benchmarks 

Black box approach doesn’t 
help architecture or 
compiler designers! 

Grigori Fursin, Anton Lokhmotov, et.al. “Collective Mind, Part II: 
Towards Performance and Cost-Aware Software Engineering as a Natural Science”, CPC’15, London, UK 

Crowdsourcing and clustering compiler optimizations  
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Current machine learning usage 

… 

… 

… 

… 

… 

… 

… 

c (choices) 

Training set: distinct combination of  compiler optimizations (clusters) 

Some ad-hoc 
predictive model 

 
Some ad-hoc 

features Optimization 

cluster 

f (features) 

MILEPOST GCC 
features,  
hardware counters 

MILEPOST GCC features: 
 
ft1  - Number of basic blocks in the method 
                                … 
ft19 - Number of direct calls in the method 
ft20 - Number of conditional branches in the 
method  
ft21 - Number of assignment instructions in the 
method  
ft22 - Number of binary integer operations in 
the method  
ft23 - Number of binary floating point 
operations in the method  
ft24 - Number of instructions in the method  
… 
ft54 - Number of local variables that are 
pointers in the method  
ft55 - Number of static/extern variables that are 
pointers in the method  
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Current machine learning usage 

… 

… 

… 

… 

… 

… 

… 

c (choices) 

Training set: distinct combination of  compiler optimizations (clusters) 

Some ad-hoc 
predictive model 

 
Some ad-hoc 

features 

… 

Optimization 

cluster 

Unseen program 

f (features) 

Optimization 

cluster 

… 
c (choices) 

P
re

d
ic

ti
o

n
 

f (features) 

MILEPOST GCC 
features,  
hardware counters 
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Current machine learning usage 

… 

… 

… 

… 

… 

… 

… 

c (choices) 

Training set: distinct combination of  compiler optimizations (clusters) 

f (features) 

MILEPOST GCC 
features,  
hardware counters 

Some ad-hoc 
predictive model 

 
Some ad-hoc 

features 

… 

Optimization 

cluster 

Unseen program 

f (features) 

Optimization 

cluster 

… 
c (choices) 

P
re

d
ic

ti
o

n
 

Number of code 
and dataset 
samples 

Prediction accuracy 
using optimized 
SVM, KNN 

12  87% 

Previous 
limited 
studies 
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CK machine learning usage 

… 

… 

… 

… 

… 

… 

… 

c (choices) 

Training set: distinct combination of  compiler optimizations (clusters) 

Some ad-hoc 
predictive model 

 
Some ad-hoc 

features 

… 

Optimization 

cluster 

Unseen program 

f (features) 

Optimization 

cluster 

… 
c (choices) 

P
re

d
ic

ti
o

n
 

Number of code 
and dataset 
samples 

Prediction accuracy 
using optimized 
SVM, KNN 

12  87% 

285 56% (no prediction) f (features) 

MILEPOST GCC 
features,  
hardware counters 

Why? 

Common 
pitfall – 

 missing 
features 
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Learning features by domain specialists 

Class -O3 -O3 -fno-if-conversion 

Shared data  
set sample1 

 
 

reference execution time -11.9% (degradation) 

Shared data  
set sample2 

 

no change +17.3% (improvement) 

Image B&W threshold filter        *matrix_ptr2++ = (temp1 > T) ? 255 : 0; 



Grigori Fursin        “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science”                                         34 

Learning features by domain specialists 

Class -O3 -O3 -fno-if-conversion 

Shared data  
set sample1 

 
 

reference execution time -11.9% (degradation) 

Shared data  
set sample2 

 

no change +17.3% improvement 

Image B&W threshold filter        *matrix_ptr2++ = (temp1 > T) ? 255 : 0; 
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Learning features by domain specialists 

Class -O3 -O3 -fno-if-conversion 

Shared data  
set sample1 

 
Monitored 
during day 

 

reference execution time -11.9% (degradation) 

Shared data  
set sample2 

 
Monitored 

during night 

no change +17.3% improvement 

Image B&W threshold filter        *matrix_ptr2++ = (temp1 > T) ? 255 : 0; 

if get_feature(TIME_OF_THE_DAY)==NIGHT        bw_filter_codelet_day(buffers); 

else                                                                          bw_filter_codelet_night(buffers); 

Feature “TIME_OF_THE_DAY” related to algorithm, data set and run-time  

Can’t be found by ML - simply does not exist in the system!  

Feature generators would not help either! 

Need split-compilation (multi-versioning and run-time adaptation) 
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Adaptive workload scheduling combined with active learning 

Original features (properties) : 
V1=GWS0 
V2=GWS1  
V3=GWS2  
V4=cpu_freq  
V5=gpu_freq  
V6=block size 
V7=image cols  
V8=image rows 
 

Designed features: 
V9=image size 
V10=size_div_by_cpu_freq 
V11=size_div_by_gpu_freq 
V12=cpu_freq_div_by_gpu 
V13=size_div_by_cpu_div_by_gpu_freq 
V14=image_size_div_by_cpu_freq 

Application: 
OpenCL based real time video stream 
processing for mobile devices 

 
Experiments: 

276 builds/runs with random features 
 

Characteristics: 
CPU execution time 
GPU ONLY execution time 
GPU + MEM COPY execution time 

 
Devices: 

Chromebook 1: 4x Mali-T60x / 2x A15 
Chromebook 2: 4x Mali-T62x / 4x A15 
 

Objective (divide execution time): 
CPU/GPU COPY > 1.07 (true/false)? 
(useful for adaptive scheduling) 

Our user had an real-time and machine-learning based image processing applications  
run on mobile device with GPUs – should it  be always offloaded to GPU? 

ck build model.sklearn     ck validate module.sklearn   
(operates with ‘features’ and ‘characteristics’ keys in JSON) 

EU FP7 TETRACOM project:  
cTuning and ARM 
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Samsung Chromebook1 

Automatically built 
decision tree  

with scikit-learn when 
more data is available. 

Not a black box - gives 
hints to engineers 

where to focus their 
attention. 

Can drive further 
exploration on areas 

with “unusual” 
behavior. 

 
96% prediction rate 

EU FP7 TETRACOM project:  
cTuning and ARM 

Adaptive workload scheduling combined with active learning 
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Samsung Chromebook2  
 

Using old model 
74% prediction rate 

Adaptive workload scheduling combined with active learning 

EU FP7 TETRACOM project:  
cTuning and ARM 
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Samsung Chromebook2  
 

More data, more 
features, better model 

96% prediction rate 
ADAPTIVE SCHEDULING  
gives ~32% performance 

improvement in comparison 
with always using GPU 

Adaptive workload scheduling combined with active learning 

Results shared with the community for reproducibility: 

cknowledge.org/repo/web.php?wcid=bc0409fb61f0aa82:fd54cd4b3b73b72b 
cknowledge.org/repo/web.php?wcid=bc0409fb61f0aa82:3bfd697a48fbba16 



Grigori Fursin        “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science”                                         40 

Converted 2 projects to CK: http://github.com/ctuning/reproduce-* 

SLAMBench from PAMELA project 
(OpenCL, CUDA, CPU) 

Real, live, 3D scene  
processing application  

HOG from CARP project 
(OpenCL, CPU, TBB) 

Real, live, 2D image  
processing application 

We converted it to CK to balance FPS, accuracy and energy across numerous platforms 
 and environments (Linux, Windows, Android, MacOS) 

http://cknowledge.org/interactive-reports 
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Reproducibility came as a side effect! 

• Can preserve the whole experimental setup with all data and software dependencies 

• Can perform statistical analysis for characteristics 

• Community can add missing features or improve machine learning models 

Execution time: 

10 sec. 

 

Reproducibility of experimental results as a side effect 
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Reproducibility came as a side effect! 

• Can preserve the whole experimental setup with all data and software dependencies 

• Can perform statistical analysis for characteristics 

• Community can add missing features or improve machine learning models 

Variation of experimental results: 

10 ± 5 secs. 

 

Reproducibility of experimental results as a side effect 
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Execution time (sec.) 
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Unexpected behavior - expose to the community including experts  
to explain, find missing feature and add to the system 

Reproducibility of experimental results as a side effect 

Reproducibility came as a side effect! 

• Can preserve the whole experimental setup with all data and software dependencies 

• Can perform statistical analysis for characteristics 

• Community can add missing features or improve machine learning models 
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Execution time (sec.) 
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Class A                      Class B 

800MHz                 CPU Frequency                   2400MHz 

Unexpected behavior - expose to the community including experts  
to explain, find missing feature and add to the system 

Reproducibility of experimental results as a side effect 

Reproducibility came as a side effect! 

• Can preserve the whole experimental setup with all data and software dependencies 

• Can perform statistical analysis for characteristics 

• Community can add missing features or improve machine learning models 
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Enabling open computer systems’ research 

Enabling collaborative and reproducible research and experimentation  
in computer engineering similar to natural sciences (physics, biology) 

• Submit papers to open access archives (arXiv, HAL, etc) 

• Make all related research material either at the personal website or at public sharing 
services 

• Initiate discussion at social networking sites with ranking (Reddit, SlashDot, StackExchange) 
or without (Google+, Facebook) 

• Arrange first small program committee that monitors discussions to filter obviously wrong, 
unreproducible or possibly plagiarized 

• Select a set of “interesting” papers and send it to a interdisiplinary program committee 
based on paper topics and public discussions 

• Select final papers based on public discussions and professional reviews 

• Create an open access reproducible online journal with all related materials from the most 
interesting, advanced and highest ranked publications 

• Send considerably updated papers to traditional journals (not to break current system but 
make open access and traditional publication models co-exist) 

Grigori Fursin and Christophe Dubach, “Community-driven reviewing and validation of publications”, 
Proceedings of the 1st ACM SIGPLAN TRUST Workshop on Reproducible Research Methodologies and New 

Publication Models in Computer Engineering, 2014 



Grigori Fursin        “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science”                                         46 

Since 2006 I share all my code, data and experimental results – 
it’s fun and motivating working with the community! 

Some comments about MILEPOST GCC from Slashdot.org: 
http://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design 

GCC goes online on the 2nd of July, 2008.  
Human decisions are removed from compilation.  

GCC begins to learn at a geometric rate.  
It becomes self-aware 2:14 AM, Eastern time, August 29th.  

In a panic, they try to pull the plug. GCC strikes back… 

Can it work? Our experience with cTuning/MILEPOST 
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Since 2006 I share all my code, data and experimental results – 
it’s fun and motivating working with the community! 

Some comments about MILEPOST GCC from Slashdot.org: 
http://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design 

GCC goes online on the 2nd of July, 2008.  
Human decisions are removed from compilation.  

GCC begins to learn at a geometric rate.  
It becomes self-aware 2:14 AM, Eastern time, August 29th.  

In a panic, they try to pull the plug. GCC strikes back… 

Community was interested to validate and improve techniques! 
Community can identify missing related citations and projects! 

Open discussions can provide new directions for research! 
You can fight wrong or biased reviews! 

Can it work? Our experience with cTuning/MILEPOST 
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Since 2006 I share all my code, data and experimental results – 
it’s fun and motivating working with the community! 

Some comments about MILEPOST GCC from Slashdot.org: 
http://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design 

GCC goes online on the 2nd of July, 2008.  
Human decisions are removed from compilation.  

GCC begins to learn at a geometric rate.  
It becomes self-aware 2:14 AM, Eastern time, August 29th.  

In a panic, they try to pull the plug. GCC strikes back… 

Community was interested to validate and improve techniques! 
Community can identify missing related citations and projects! 

Open discussions can provide new directions for research! 
You can fight wrong or biased reviews! 

Can it work? Our experience with cTuning/MILEPOST 

Successfully validated at ADAPT’16 (adapt-workshop.org) 
workshop on adaptive, self-tuning computing systems 

Reddit discussion: https://www.reddit.com/r/adaptworkshop 
Artifacts: 2 shared in CK format (OpenCL crowd-tuning + bug detection) 
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• Artifact Evaluation for CGO’15/PPoPP’15 (18 artifacts submitted) 

• Artifact Evaluation for CGO’16/PPoPP’16 (23 artifacts submitted) 

• Dagstuhl Perspective Workshop on Artifact Evaluation in November  
(Bruce Childers, Grigori Fursin, Shriram Krishnamurthi, Andreas Zeller) 

• Discussions with ACM on unification of AE 

cTuning.org/ae 

Artifact sharing and evaluation for computer system’s conferences  



Grigori Fursin        “Collective Knowledge Project: from ad hoc computer engineering to collaborative and reproducible data science”                                         50 

• Changing the mentality of computer systems’ researchers:  

• sharing artifacts and workflows 

• crowdsourcing  experiments and sharing negative/unexpected results 

• collaboratively improving reproducibility  

• collaboratively improving prediction models and finding missing features  

• formulating and solving important real-world problems 

• Defining representative workloads for the future 

• Bringing closer together industry and academia  
  (common research methodology, reproducible research, real data access) 

• Enabling disruptive innovation: 

 Fujitsu made a press-release in 2014 about their $100-million  
   Exascale project combined with autotuning and machine learning,  
   referencing our technology as inspiration 

http://github.com/ctuning/ck                http://cknowledge.org/repo 

Conclusions: Collective Knowledge approach to computer engineering 
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A few references 

• “Collective Tuning Initiative: automating and accelerating development and optimization 
of computing systems”, GCC Summit 2009 
https://hal.inria.fr/inria-00436029 

• “Collective optimization: A practical collaborative approach”, v7, #4, ACM TACO 2010 
https://hal.inria.fr/inria-00436029 

• “Milepost GCC: Machine Learning Enabled Self-tuning Compiler”, IJPP 2011 
https://hal.inria.fr/inria-00436029 

• “Community-driven reviewing and validation of publications”, TRUST’14@PLDI’14   
http://arxiv.org/abs/1406.4020 

• "Collective Mind: Towards practical and collaborative autotuning“,  
Journal of Scientific Programming 22 (4), 2014 
http://hal.inria.fr/hal-01054763 

• “Collective Mind, Part II: Towards Performance-  and Cost-Aware  
Software Engineering as a Natural Science”, CPC 2015, London, UK, 
http://arxiv.org/abs/1506.06256 

• “Collective Mind Node: crowdsourcing iterative compilation across mobile phones”,  
http://cTuning.org/crowdtuning-node 

• “Collective Knowledge: towards R&D sustainability”, DATE 2016, Dresden, Germany  
TO APPEAR 
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It’s only the beginning of the new and exciting journey! 

Establishing industrial and academic consortiums  
and laboratories 

Preparing interactive lectures with shared artifacts  
and reproducible experiments 

cTuning approach opens up many interesting R&D opportunities 

Grigori.Fursin@cTuning.org / grigori@dividiti.com 

http:/github.com/ctuning/ck 

Join us! 


